Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Synthesis of 5-(trifluoroacetyl)imidazoles from Bromoenones and Benzimidamides via Aza-Michael Initiated Ring Closure Reaction

Author(s): Alexey R. Romanov*, Evgeniy V. Kondrashov and Sergey V. Zinchenko

Volume 21, Issue 2, 2024

Published on: 13 June, 2023

Page: [195 - 209] Pages: 15

DOI: 10.2174/1570179420666230420100643

Price: $65

Abstract

Introduction: A simple method for the preparation of 5-(trifluoroacetyl)imidazoles was elaborated.

Methods: The reaction of trifluoromethyl(α-bromoalkenyl)ketones with benzimidamides was employed to afford the target heterocycles in good yields.

Results: The assembly of imidazole core proceeds via aza-Michael adduct formation followed by intramolecular nucleophilic substitution and spontaneous aromatization as an oxidation sequence.

Conclusion: The yields of target imidazoles can be improved by the use of soft oxidizing agents.

Keywords: Fluorine-bearing azaheterocycles, imidazoles, CF3-bromoenones, aza-MIRC synthesis, aza-Michael addition, oxidizing agents.

Graphical Abstract
[1]
a) Thompson, L.A.; Ellman, J.A. Synthesis and applications of small molecule libraries. Chem. Rev, 1996, 96(1), 555-600.
[http://dx.doi.org/10.1021/cr9402081] [PMID: 11848765];
b) Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem., 2014, 57(24), 10257-10274.
[http://dx.doi.org/10.1021/jm501100b] [PMID: 25255204];
c) Rulev, A.Yu. Assembly of nitrogen-containing heterocycles initiated by the aza-Michael reaction. Russ. Chem. Bull. Int. Ed, 2016, 65, 1687-1699.
[http://dx.doi.org/10.1007/s11172-016-1497-6];
d) Song, F.; Xu, G.; Gaul, M.D.; Zhao, B.; Lu, T.; Zhang, R.; DesJarlais, R.L.; DiLoreto, K.; Huebert, N.; Shook, B.; Rentzeperis, D.; Santulli, R.; Eckardt, A.; Demarest, K. Design, synthesis and structure activity relationships of indazole and indole derivatives as potent glucagon receptor antagonists. Bioorg. Med. Chem. Lett., 2019, 29(15), 1974-1980.
[http://dx.doi.org/10.1016/j.bmcl.2019.05.036] [PMID: 31138472];
e) Huang, J.; Liang, Y.Y.; Ouyang, X.H.; Xiao, Y.T.; Qin, J.H.; Song, R.J.; Li, J.H. Three-component photoredox 1,2-alkylamination of styrenes with alkanes and nitrogen nucleophiles via C(sp3)–H bond cleavage. Org. Chem. Front., 2021, 8(24), 7009-7014.
[http://dx.doi.org/10.1039/D1QO01263K]
[2]
a) De Luca, L. Naturally occurring and synthetic imidazoles: their chemistry and their biological activities. Curr. Med. Chem., 2006, 13(1), 1-23.
[http://dx.doi.org/10.2174/092986709787002826] [PMID: 16457636];
b) Jin, Z. Muscarine, imidazole, oxazole and thiazole alkaloids. Nat. Prod. Rep., 2009, 26(3), 382-445.
[http://dx.doi.org/10.1039/b718045b] [PMID: 19240947];
c) Forte, B.; Malgesini, B.; Piutti, C.; Quartieri, F.; Scolaro, A.; Papeo, G. A submarine journey: The pyrrole-imidazole alkaloids. Mar. Drugs, 2009, 7(4), 705-753.
[http://dx.doi.org/10.3390/md7040705] [PMID: 20098608];
d) Koswatta, P.B.; Lovely, C.J. Structure and synthesis of 2-aminoimidazole alkaloids from Leucetta and Clathrina sponges. Nat. Prod. Rep., 2011, 28(3), 511-528.
[http://dx.doi.org/10.1039/C0NP00001A] [PMID: 20981389]
[3]
a) Nagarajan, N.; Velmurugan, G.; Prakash, A.; Shakti, N.; Katiyar, M.; Venuvanalingam, P.; Renganathan, R. Highly emissive luminogens based on imidazo[1,2-a]pyridine for electroluminescent applications. Chem. Asian J., 2014, 9(1), 294-304.
[http://dx.doi.org/10.1002/asia.201301061] [PMID: 24151047];
b) Asensio, J.A.; Gómez-Romero, P. Recent developments on proton conducting poly(2,5-benzimidazole) (ABPBI) membranes for high temperature polymer electrolyte membrane fuel cells. Fuel Cells, 2005, 5(3), 336-343.
[http://dx.doi.org/10.1002/fuce.200400081];
c) Kwon, J.E.; Park, S.; Park, S.Y. Realizing molecular pixel system for full-color fluorescence reproduction: RGB-emitting molecular mixture free from energy transfer crosstalk. J. Am. Chem. Soc., 2013, 135(30), 11239-11246.
[http://dx.doi.org/10.1021/ja404256s] [PMID: 23876082];
d) Yamamoto, T.; Uemura, T.; Tanimoto, A.; Sasaki, S. Synthesis and chemical properties of π-conjugated poly(imidazole-2,5-diyl)s. Macromolecules, 2003, 36(4), 1047-1053.
[http://dx.doi.org/10.1021/ma0211232];
e) Lin, W.; Long, L.; Yuan, L.; Cao, Z.; Chen, B.; Tan, W. A ratiometric fluorescent probe for cysteine and homocysteine displaying a large emission shift. Org. Lett., 2008, 10(24), 5577-5580.
[http://dx.doi.org/10.1021/ol802436j] [PMID: 19053722]
[4]
a) Gaba, M.; Mohan, C. Development of drugs based on imidazole and benzimidazole bioactive heterocycles: Recent advances and future directions. Med. Chem. Res., 2016, 25(2), 173-210.
[http://dx.doi.org/10.1007/s00044-015-1495-5];
b) Zheng, X.; Ma, Z.; Zhang, D. Synthesis of imidazole-based medicinal molecules utilizing the van Leusen imidazole synthesis. Pharmaceuticals, 2020, 13(3), 37.
[http://dx.doi.org/10.3390/ph13030037] [PMID: 32138202];
c) Zhang, L.; Peng, X.M.; Damu, G.L.V.; Geng, R.X.; Zhou, C.H. Comprehensive review in current developments of imidazole-based medicinal chemistry. Med. Res. Rev., 2014, 34(2), 340-437.
[http://dx.doi.org/10.1002/med.21290] [PMID: 23740514]
[5]
a) Lee, J.C.; Laydon, J.T.; McDonnell, P.C.; Gallagher, T.F.; Kumar, S.; Green, D.; McNulty, D.; Blumenthal, M.J.; Keys, J.R. Land vatter, S.W.; Strickler, J.E.; McLaughlin, M.M.; Siemens, I.R.; Fisher, S.M.; Livi, G.P.; White, J.R.; Adams, J.L.; Young, P.R. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature, 1994, 372(6508), 739-746.
[http://dx.doi.org/10.1038/372739a0] [PMID: 7997261];
b) Adams, J.L.; Boehm, J.C.; Gallagher, T.F.; Kassis, S.; Webb, E.F.; Hall, R.; Sorenson, M.; Garigipati, R.; Griswold, D.E.; Lee, J.C. Pyrimidinylimidazole inhibitors of p38: Cyclic N-1 imidazole substituents enhance p38 kinase inhibition and oral activity. Bioorg. Med. Chem. Lett., 2001, 11(21), 2867-2870.
[http://dx.doi.org/10.1016/S0960-894X(01)00570-4] [PMID: 11597418];
c) Koch, P.; Bäuerlein, C.; Jank, H.; Laufer, S. Targeting the ribose and phosphate binding site of p38 mitogen-activated protein (MAP) kinase: Synthesis and biological testing of 2-alkylsulfanyl-, 4(5)-aryl-, 5(4)-heteroaryl-substituted imidazoles. J. Med. Chem., 2008, 51(18), 5630-5640.
[http://dx.doi.org/10.1021/jm800373t] [PMID: 18763757];
d) Che, H.; Tuyen, T.N.; Kim, H.P.; Park, H. 1,5-Diarylimidazoles with strong inhibitory activity against COX-2 catalyzed PGE2 production from LPS-induced RAW 264.7 cells. Bioorg. Med. Chem. Lett., 2010, 20(14), 4035-4037.
[http://dx.doi.org/10.1016/j.bmcl.2010.05.092] [PMID: 20554444]
[6]
a) Ujjinamatada, R.K.; Baier, A.; Borowski, P.; Hosmane, R.S. An analogue of AICAR with dual inhibitory activity against WNV and HCV NTPase/helicase: Synthesis and in vitro screening of 4-carbamoyl-5-(4,6-diamino-2,5-dihydro-1,3,5-triazin-2-yl)imidazole-1-β-d-ribofuranoside. Bioorg. Med. Chem. Lett., 2007, 17(8), 2285-2288.
[http://dx.doi.org/10.1016/j.bmcl.2007.01.074] [PMID: 17289387];
b) Sharma, D.; Narasimhan, B.; Kumar, P.; Judge, V.; Narang, R.; De Clercq, E.; Balzarini, J. Synthesis, antimicrobial and antiviral evaluation of substituted imidazole derivatives. Eur. J. Med. Chem., 2009, 44(6), 2347-2353.
[http://dx.doi.org/10.1016/j.ejmech.2008.08.010] [PMID: 18851889];
c) Zhan, P.; Liu, X.; Zhu, J.; Fang, Z.; Li, Z.; Pannecouque, C.; Clercq, E.D. Synthesis and biological evaluation of imidazole thioacetanilides as novel non-nucleoside HIV-1 reverse transcriptase inhibitors. Bioorg. Med. Chem., 2009, 17(16), 5775-5781.
[http://dx.doi.org/10.1016/j.bmc.2009.07.028] [PMID: 19643613]
[7]
a) Antolini, M.; Bozzoli, A.; Ghiron, C.; Kennedy, G.; Rossi, T.; Ursini, A. Analogues of 4,5-bis(3,5-dichlorophenyl)-2-trifluoromethyl-1H-imidazole as potential antibacterial agents. Bioorg. Med. Chem. Lett., 1999, 9(7), 1023-1028.
[http://dx.doi.org/10.1016/S0960-894X(99)00112-2] [PMID: 10230632];
b) Heerding, D.A.; Chan, G.; DeWolf, W.E., Jr; Fosberry, A.P.; Janson, C.A.; Jaworski, D.D.; McManus, E.; Miller, W.H.; Moore, T.D.; Payne, D.J.; Qiu, X.; Rittenhouse, S.F.; Slater-Radosti, C.; Smith, W.; Takata, D.T.; Vaidya, K.S.; Yuan, C.C.K.; Huffman, W.F. 1,4-Disubstituted imidazoles are potential antibacterial agents functioning as inhibitors of enoyl acyl carrier protein reductase (FabI). Bioorg. Med. Chem. Lett., 2001, 11(16), 2061-2065.
[http://dx.doi.org/10.1016/S0960-894X(01)00404-8] [PMID: 11514139];
c) Yurttaş L.; Duran, M.; Demirayak, Ş Gençer, H.K.; Tunalı Y. Synthesis and initial biological evaluation of substituted 1-phenylamino-2-thio-4,5-dimethyl-1H-imidazole derivatives. Bioorg. Med. Chem. Lett., 2013, 23(24), 6764-6768.
[http://dx.doi.org/10.1016/j.bmcl.2013.10.024] [PMID: 24176398];
d) Bhandari, K.; Srinivas, N.; Shiva Keshava, G.B.; Shukla, P.K. Tetrahydronaphthyl azole oxime ethers: The conformationally rigid analogues of oxiconazole as antibacterials. Eur. J. Med. Chem., 2009, 44(1), 437-447.
[http://dx.doi.org/10.1016/j.ejmech.2008.01.006] [PMID: 18313805];
e) Vijesh, A.M.; Isloor, A.M.; Telkar, S.; Peethambar, S.K.; Rai, S.; Isloor, N. Synthesis, characterization and antimicrobial studies of some new pyrazole incorporated imidazole derivatives. Eur. J. Med. Chem., 2011, 46(8), 3531-3536.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.005] [PMID: 21620535]
[8]
a) Rodrigues, A.D.; Gibson, G.G.; Ioannides, C.; Parke, D.V. Interactions of imidazole antifungal agents with purified cytochrome P-450 proteins. Biochem. Pharmacol., 1987, 36(24), 4277-4281.
[http://dx.doi.org/10.1016/0006-2952(87)90670-8] [PMID: 3500726];
b) Emami, S.; Foroumadi, A.; Falahati, M.; Lotfali, E.; Rajabalian, S.; Ebrahimi, S.A.; Farahyar, S.; Shafiee, A. 2-Hydroxyphenacyl azoles and related azolium derivatives as antifungal agents. Bioorg. Med. Chem. Lett., 2008, 18(1), 141-146.
[http://dx.doi.org/10.1016/j.bmcl.2007.10.111] [PMID: 18032039];
c) Wolff, D.J.; Datto, G.A.; Samatovicz, R.A. The dual mode of inhibition of calmodulin-dependent nitric-oxide synthase by antifungal imidazole agents. J. Biol. Chem., 1993, 268(13), 9430-9436.
[http://dx.doi.org/10.1016/S0021-9258(18)98369-9] [PMID: 7683652];
d) Sennequier, N.; Wolan, D.; Stuehr, D.J. Antifungal imidazoles block assembly of inducible NO synthase into an active dimer. J. Biol. Chem., 1999, 274(2), 930-938.
[http://dx.doi.org/10.1074/jbc.274.2.930] [PMID: 9873034];
e) Koga, H.; Nanjoh, Y.; Makimura, K.; Tsuboi, R. In vitro antifungal activities of luliconazole, a new topical imidazole. Med. Mycol., 2009, 47(6), 640-647.
[http://dx.doi.org/10.1080/13693780802541518] [PMID: 19115136]
[9]
a) Hura, N.; Sawant, A.V.; Kumari, A.; Guchhait, S.K.; Panda, D. Combretastatin-inspired heterocycles as antitubulin anticancer agents. ACS Omega, 2018, 3(8), 9754-9769.
[http://dx.doi.org/10.1021/acsomega.8b00996] [PMID: 31459105];
b) Congiu, C.; Cocco, M.T.; Onnis, V. Design, synthesis, and in vitro antitumor activity of new 1,4-diarylimidazole-2-ones and their 2-thione analogues. Bioorg. Med. Chem. Lett., 2008, 18(3), 989-993.
[http://dx.doi.org/10.1016/j.bmcl.2007.12.023] [PMID: 18164978];
c) Al-Raqa, S.Y.; ElSharief, A.M.S.; Khalil, S.M.E.; Al-Amri, A.M. Synthesis of some novel imidazolidine derivatives and their metal complexes with biological and antitumor activity. Heteroatom Chem., 2006, 17(7), 634-647.
[http://dx.doi.org/10.1002/hc.20244];
d) Perchellet, E.M.; Perchellet, J.P.; Baures, P.W. Imidazole-4,5-dicarboxamide derivatives with antiproliferative activity against HL-60 cells. J. Med. Chem., 2005, 48(19), 5955-5965.
[http://dx.doi.org/10.1021/jm050160r] [PMID: 16161999]
[10]
Draghici, B.; Vullo, D.; Akocak, S.; Walker, E.A.; Supuran, C.T.; Ilies, M.A. Ethylene bis-imidazoles are highly potent and selective activators for isozymes VA and VII of carbonic anhydrase, with a potential nootropic effect. Chem. Commun., 2014, 50(45), 5980-5983.
[http://dx.doi.org/10.1039/C4CC02346C] [PMID: 24763985]
[11]
a) Tao, Y.; Dong, R.; Pavlidis, I.V.; Chen, B.; Tan, T. Using imidazolium-based ionic liquids as dual solvent-catalysts for sustainable synthesis of vitamin esters: Inspiration from bio- and organo-catalysis. Green Chem., 2016, 18(5), 1240-1248.
[http://dx.doi.org/10.1039/C5GC02557E];
b) Ngo, H.L.; LeCompte, K.; Hargens, L.; McEwen, A.B. Thermal properties of imidazolium ionic liquids. Thermochim. Acta, 2000, 357-358, 97-102.
[http://dx.doi.org/10.1016/S0040-6031(00)00373-7];
c) Wasserscheid, P.; Keim, W. Ionic liquids – new “solutions” for transition metal catalysis. Angew. Chem. Int. Ed., 2000, 39(21), 3772-3789.
[http://dx.doi.org/10.1002/1521-3773(20001103)39:21<3772:AID-ANIE3772>3.0.CO;2-5] [PMID: 11091453];
d) Plaquevent, J.C.; Levillain, J.; Guillen, F.; Malhiac, C.; Gaumont, A.C. Ionic liquids: New targets and media for α-amino acid and peptide chemistry. Chem. Rev., 2008, 108(12), 5035-5060.
[http://dx.doi.org/10.1021/cr068218c] [PMID: 19053329];
e) Welton, T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev., 1999, 99(8), 2071-2084.
[http://dx.doi.org/10.1021/cr980032t] [PMID: 11849019]
[12]
a) Castro-Osma, J.A.; Martínez, J.; de la Cruz-Martínez, F.; Caballero, M.P.; Fernández-Baeza, J.; Rodríguez-López, J.; Otero, A.; Lara-Sánchez, A.; Tejeda, J. Development of hydroxy-containing imidazole organocatalysts for CO2 fixation into cyclic carbonates. Catal. Sci. Technol., 2018, 8(7), 1981-1987.
[http://dx.doi.org/10.1039/C8CY00381E];
b) Gholinejad, M.; Bonyasi, R.; Najera, C.; Saadati, F.; Bahrami, M.; Dasvarz, N. Gold nanoparticles supported on imidazole-modified bentonite: Environmentally benign heterogeneous catalyst for the three-component synthesis of propargylamines in water. ChemPlusChem, 2018, 83(5), 431-438.
[http://dx.doi.org/10.1002/cplu.201800162] [PMID: 31957366];
c) Herrmann, W.A. N-heterocyclic carbenes: A new concept in organometallic catalysis. Angew. Chem. Int. Ed., 2002, 41(8), 1290-1309.
[http://dx.doi.org/10.1002/1521-3773(20020415)41:8<1290::AIDANIE1290>3.0.CO;2-Y] [PMID: 19750753];
d) Zhang, Z.; Xie, F.; Jia, J.; Zhang, W. Chiral bicycle imidazole nucleophilic catalysts: Rational design, facile synthesis, and successful application in asymmetric Steglich rearrangement. J. Am. Chem. Soc., 2010, 132(45), 15939-15941.
[http://dx.doi.org/10.1021/ja109069k] [PMID: 20977235];
e) Díez-González, S.; Marion, N.; Nolan, S.P. N-heterocyclic carbenes in late transition metal catalysis. Chem. Rev., 2009, 109(8), 3612-3676.
[http://dx.doi.org/10.1021/cr900074m] [PMID: 19588961]
[13]
Van Leusen, A.M.; Wildeman, J.; Oldenziel, O.H. Chemistry of sulfonylmethyl isocyanides. 12. Base-induced cycloaddition of sulfonylmethyl isocyanides to carbon,nitrogen double bonds. Synthesis of 1,5-disubstituted and 1,4,5-trisubstituted imidazoles from aldimines and imidoyl chlorides. J. Org. Chem., 1977, 42(7), 1153-1159.
[http://dx.doi.org/10.1021/jo00427a012]
[14]
Bredereck, H.; Gompper, R.; Hayer, D. Formamid-Reaktionen, XIII. Imidazole aus α-Diketonen. Chem. Ber., 1959, 92(2), 338-343.
[http://dx.doi.org/10.1002/cber.19590920214]
[15]
Benincori, T.; Brenna, E.; Sannicolo, F. Studies on Wallach’s imidazole synthesis. J. Chem. Soc., Perkin Trans. 1, 1993, (6), 675-679.
[http://dx.doi.org/10.1039/p19930000675]
[16]
a) Nagarapu, L.; Apuri, S.; Kantevari, S. Potassium dodecatugstocobaltate trihydrate (K5CoW12O40•3H2O): A mild and efficient reusable catalyst for the one-pot synthesis of 1,2,4,5-tetrasubstituted imidazoles under conventional heating and microwave irradiation. J. Mol. Catal. Chem., 2007, 266(1-2), 104-108.
[http://dx.doi.org/10.1016/j.molcata.2006.10.056];
b) Sarshar, S.; Siev, D.; Mjalli, A.M.M. Imidazole libraries on solid support. Tetrahedron Lett., 1996, 37(6), 835-838.
[http://dx.doi.org/10.1016/0040-4039(95)02334-8]
[17]
a) Shaaban, S.; Abdel-Wahab, B.F. Groebke–Blackburn–Bienaymé multicomponent reaction: Emerging chemistry for drug discovery. Mol. Divers., 2016, 20(1), 233-254.
[http://dx.doi.org/10.1007/s11030-015-9602-6] [PMID: 26016721];
b) Bell, C.E.; Shaw, A.Y.; De Moliner, F.; Hulme, C. MCRs reshaped into a switchable microwave-assisted protocol toward 5-aminoimidazoles and dihydrotriazines. Tetrahedron, 2014, 70(1), 54-59.
[http://dx.doi.org/10.1016/j.tet.2013.11.035] [PMID: 24535889]
[18]
Zhang, X.; Wu, P.; Fu, Y.; Zhang, F.; Chen, B. A practical metal-free route to 1,2,4,5-tetrasubstituted imidazoles derivatives from the annulation of amidines and β-keto esters. Tetrahedron Lett., 2017, 58(9), 870-873.
[http://dx.doi.org/10.1016/j.tetlet.2017.01.052]
[19]
Stone, E.A.; Mercado, B.Q.; Miller, S.J. Structure and reactivity of highly twisted N-acylimidazoles. Org. Lett., 2019, 21(7), 2346-2351.
[http://dx.doi.org/10.1021/acs.orglett.9b00624] [PMID: 30860852]
[20]
a) Li, Y.; Fu, Y.; Ren, C.; Tang, D.; Wu, P.; Meng, X.; Chen, B. Copper-catalyzed oxidative coupling reaction of αβ-unsaturated aldehydes with amidines: Synthesis of 1,2,4-trisubstituted-1H-imidazole-5-carbaldehydes. Org. Chem. Front., 2015, 2(12), 1632-1636.
[http://dx.doi.org/10.1039/C5QO00285K];
b) Wu, P.; Qu, J.; Li, Y.; Guo, X.; Tang, D.; Meng, X.; Yan, R.; Chen, B. Iron(III)/Iodine-Catalyzed C(sp2)–H activation of αβ-unsaturated aldehydes/ketones with amidines: Synthesis of 1,2,4,5-tetra-substituted imidazoles. Adv. Synth. Catal., 2015, 357(18), 3868-3874.
[http://dx.doi.org/10.1002/adsc.201500701];
c) Zhu, Y.; Li, C.; Zhang, J.; She, M.; Sun, W.; Wan, K.; Wang, Y.; Yin, B.; Liu, P.; Li, J. A facile FeCl3/I2-catalyzed aerobic oxidative coupling reaction: Synthesis of tetrasubstituted imidazoles from amidines and chalcones. Org. Lett., 2015, 17(15), 3872-3875.
[http://dx.doi.org/10.1021/acs.orglett.5b01854] [PMID: 26196356];
d) Wu, P.; Zhang, X.; Chen, B. Direct synthesis of 2,4,5-trisubstituted imidazoles and di/tri-substituted pyrimidines via cycloadditions of αβ-unsaturated ketones/aldehydes and N&#8242;-hydroxyl imidamides. Tetrahedron Lett., 2019, 60(16), 1103-1107.
[http://dx.doi.org/10.1016/j.tetlet.2019.03.025];
e) Camp, J.E.; Shabalin, D.A.; Dunsford, J.J.; Ngwerume, S.; Saunders, A.R.; Gill, D.M. Synthesis of 2,4-disubstituted imidazoles via nucleophilic catalysis. Synlett, 2020, 31(8), 797-800.
[http://dx.doi.org/10.1055/s-0039-1690832]
[21]
a) Tang, P.; Ke, D.; Shao, J.; Chen, W.; Yu, Y. Synthesis of polyfunctional imidazoles from vinyl azides and amidine along with NHBoc as a leaving group. Tetrahedron, 2019, 75(33), 4419-4424.
[http://dx.doi.org/10.1016/j.tet.2019.04.008];
b) Hu, B.; Wang, Z.; Ai, N.; Zheng, J.; Liu, X.H.; Shan, S.; Wang, Z. Catalyst-free preparation of 1,2,4,5-tetrasubstituted imidazoles from a novel unexpected domino reaction of 2-azido acrylates and nitrones. Org. Lett., 2011, 13(24), 6362-6365.
[http://dx.doi.org/10.1021/ol202650z] [PMID: 22070138];
c) Tang, D.; Wu, P.; Liu, X.; Chen, Y.X.; Guo, S.B.; Chen, W.L.; Li, J.G.; Chen, B.H. Synthesis of multisubstituted imidazoles via copper-catalyzed [3 + 2] cycloadditions. J. Org. Chem., 2013, 78(6), 2746-2750.
[http://dx.doi.org/10.1021/jo302555z] [PMID: 23409756]
[22]
Zhang, L.; Xiao, K.; Qiao, Y.; Li, X.; Song, C.; Chang, J. Base-promoted cycloisomerization for the synthesis of oxazoles and imidazoles. Eur. J. Org. Chem., 2018, 2018(48), 6913-6918.
[http://dx.doi.org/10.1002/ejoc.201801351]
[23]
a) Pusch, S.; Opatz, T. A photochemical one-pot three-component synthesis of tetrasubstituted imidazoles. Org. Lett., 2014, 16(20), 5430-5433.
[http://dx.doi.org/10.1021/ol502667h] [PMID: 25286171];
b) Morita, T.; Fuse, S.; Nakamura, H. Photochemical conversion of isoxazoles to 5-hydroxyimidazolines. Org. Lett., 2020, 22(9), 3460-3463.
[http://dx.doi.org/10.1021/acs.orglett.0c00910] [PMID: 32286839]
[24]
Bellina, F.; Cauteruccio, S.; Rossi, R. Synthesis and biological activity of vicinal diaryl-substituted 1H-imidazoles. Tetrahedron, 2007, 63(22), 4571-4624.
[http://dx.doi.org/10.1016/j.tet.2007.02.075]
[25]
Heravi, M.M.; Daraie, M.; Zadsirjan, V. Current advances in the synthesis and biological potencies of tri- and tetra-substituted 1 H-imidazoles. Mol. Divers., 2015, 19(3), 577-623.
[http://dx.doi.org/10.1007/s11030-015-9590-6] [PMID: 25863807]
[26]
a) Kawase, M.; Saito, S. Convenient synthesis of 5-trifluoroacetylated imidazoles by ring transformation of mesoionic 1,3-oxazolium-5-olates. Chem. Pharm. Bull., 2000, 48(3), 410-414.
[http://dx.doi.org/10.1248/cpb.48.410] [PMID: 10726867];
b) Hamper, B.C.; Jerome, K.D.; Yalamanchili, G.; Walker, D.M.; Chott, R.C.; Mischke, D.A. Synthesis of highly substituted 5-(trifluoromethyl)ketoimidazoles using a mixed-solid/solution phase motif. Biotechnol. Bioeng., 2000, 71(1), 28-37.
[http://dx.doi.org/10.1002/(SICI)1097-0290(200024)71:1<28:AID-BIT5>3.0.CO;2-F] [PMID: 10629533];
c) Kacharova, L.M.; Gerus, I.I.; Kacharov, A.D. Reaction of α-halogen substituted β-ethoxyvinyl trifluoromethyl ketones with 2-aminopyridine: New route to trifluoroacetyl-containing heterocycles. J. Fluor. Chem., 2002, 117(2), 193-197.
[http://dx.doi.org/10.1016/S0022-1139(02)00190-2];
d) Palumbo Piccionello, A.; Pace, A.; Buscemi, S.; Vivona, N.; Pani, M. Synthesis of trifluoromethylated 2-benzoyl- and 2-aminoimidazoles from ring rearrangement of 1,2,4-oxadiazole derivatives. Tetrahedron, 2008, 64(18), 4004-4010.
[http://dx.doi.org/10.1016/j.tet.2008.02.047]
[27]
Petrov, V.A. Ed.; Fluorinated Heterocyclic Compounds: Synthesis, Chemistry, and Applications; Wiley: New Jersey, 2009, p. 515. Nenajdenko, V.G., Ed.; Fluorine in Heterocyclic Chemistry; Springer: Cham, 2014, Vol. 1, p. 681.
[28]
a) Rulev, A.Yu.; Muzalevskiy, M.V.; Kondrashov, E.V.; Ushakov, I.A.; Romanov, A.R.; Khrustalev, V.N.; Nenajdenko, V.G. Reaction of a-bromoenones with 1,2-diamines. Cascade assembly of 3-CF3- piperazine-2-ones via rearrangement. Org. Lett., 2013, 15, 2726-2729.
[http://dx.doi.org/10.1021/ol401041f] [PMID: 23718550];
b) Muzalevskiy, V.M.; Ustynyuk, Y.A.; Gloriozov, I.P.; Chertkov, V.A.; Rulev, A.Y.; Kondrashov, E.V.; Ushakov, I.A.; Romanov, A.R.; Nenajdenko, V.G. Experimental and theoretical study of an intramolecular CF3-group shift in the reactions of α-bromoenones with 1,2-diamines. Chemistry, 2015, 21(47), 16982-16989.
[http://dx.doi.org/10.1002/chem.201502706] [PMID: 26440451];
c) Rulev, A.Y.; Romanov, A.R.; Kondrashov, E.V.; Ushakov, I.A.; Vashchenko, A.V.; Muzalevskiy, V.M.; Nenajdenko, V.G. Domino assembly of trifluoromethylated N,O-heterocycles by the reaction of fluorinated α-bromoenones with amino alcohols. J. Org. Chem., 2016, 81(20), 10029-10034.
[http://dx.doi.org/10.1021/acs.joc.6b01927] [PMID: 27656759];
d) Rulev, A.Y.; Romanov, A.R.; Kondrashov, E.V.; Ushakov, I.A.; Muzalevskiy, V.M.; Nenajdenko, V.G. Assembly of trifluoromethylated morpholines through cascade reactions of bromoenones with secondary amino alcohols. Eur. J. Org. Chem., 2018, 2018(30), 4202-4210.
[http://dx.doi.org/10.1002/ejoc.201800659]
[29]
Rulev, A.Y.; Romanov, A.R.; Popov, A.V.; Kondrashov, E.V.; Zinchenko, S.V. Reaction of bromoenones with amidines: A simple catalyst-free approach to trifluoromethylated pyrimidines. Synthesis, 2020, 52(10), 1512-1522.
[http://dx.doi.org/10.1055/s-0040-1707969]
[30]
a) Rulev, A.Yu.; Ushakov, I.A.; Nenajdenko, V.G.; Balenkova, E.S.; Voronkov, M.G. Domino transformations of gem-trifluoroacetyl(bromo)alkenes under the action of secondary amines. Eur. J. Org. Chem., 2007, 2007(36), 6039-6045.
[http://dx.doi.org/10.1002/ejoc.200700606];
b) Bonnier, M.; Marsura, A.; Luu-Duc, C. Synthesis of 2,4-diphenyl-5-ethoxycarbonyl-1-heptadeuterated isopropyl-2-imidazoline. J. Labelled Comp. Radiopharm., 1986, 23(1), 67-71.
[http://dx.doi.org/10.1002/jlcr.2580230109];
c) Marsura, A.; Luu-Duc, C.; Gellon, G. New one-step synthesis of functionalized 2-imidazolines. Synthesis, 1985, 1985(5), 537-541.
[http://dx.doi.org/10.1055/s-1985-31267];
d) Guchhait, S.K.; Hura, N.; Shah, A.P. Synthesis of polysubstituted 2-aminoimidazoles via alkene-diamination of guanidine with conjugated α-bromoalkenones. J. Org. Chem., 2017, 82(5), 2745-2752.
[http://dx.doi.org/10.1021/acs.joc.6b03021] [PMID: 28195472];
e) Shilcrat, S.C.; Mokhallalati, M.K.; Fortunak, J.M.D.; Pridgen, L.N. A new regioselective synthesis of 1,2,5-trisubstituted 1H-imidazoles and its application to the development of eprosartan. J. Org. Chem., 1997, 62(24), 8449-8454.
[http://dx.doi.org/10.1021/jo971304f] [PMID: 11671984]
[31]
a) Morel, B.; Franck, P.; Bidange, J.; Sergeyev, S.; Smith, D.A.; Moseley, J.D.; Maes, B.U.W. Concise xanthine synthesis via a double amidination reaction of a 6-chlorouracil with amidines using base metal catalysis. ChemSusChem, 2017, 10, 624-628.;
b) Kolb, H.C.; Kanamarlapudi, R.C.; Richardson, P.F.; Khan, G. Modified safe and efficient process for the environmentally friendly synthesis of imidoesters. U.S. Patent 6806380 B2, 2002.;
c) Jung, K-Y.; Kim, S-K.; Gao, Z-G.; Gross, A.S.; Melman, N.; Jacobson, K.A.; Kin, Y-C. Structure–activity relationships of thiazole and thiadiazole derivatives as potent and selective human adenosine A3 receptor antagonists. Bioorg. Med. Chem., 2004, 12, 613-623.;
d) Lu, X.; Xin, X.; Wan, B. Silver-catalyzed [3+2+1] annulation of aryl amidines with benzyl isocyanide. Tetrahedron Lett., 2018, 59, 361-364.
[32]
a) Funabiki, K.; Nakamura, H.; Matsui, M.; Shibata, K. One-pot Preparation of 2,6-disubstituted 4-(trifluoromethyl)pyrimidines via the tandem cyclization, dehydration, and oxidation reaction of α,β- unsaturated trifluoromethyl ketones using POCl3-pyridine-silica gel and MnO2 systems. Synlett, 1999, 1999(6), 756-758.
[http://dx.doi.org/10.1055/s-1999-2741];
b) Rulev, A.Yu.; Ushakov, I.A.; Nenajdenko, V.G.; Balenkova, E.S.; Voronkov, M.G. Domino transformations of gem-trifluoroacetyl(bromo) alkenes under the action of secondary amines. Eur. J. Org. Chem, 2007, 2007(36), 6039-6045.;
c) Rulev, A.Yu.; Ushakov, I.A.; Nenajdenko, V.G. One-pot synthesis of functionalized indenols from 2-bromoalkenyl trifluoromethyl ketones. Tetrahedron, 2008, 64(35), 8073-8077.
[http://dx.doi.org/10.1016/j.tet.2008.06.069]
[33]
a) Lipinski, C.A.; Blizniak, T.E.; Craig, R.H. An improved preparation and use of 2-bromoacetoacetaldehyde in a new synthesis of 2- substituted-4-acetylimidazoles. J. Org. Chem., 1984, 49(3), 566-570.
[http://dx.doi.org/10.1021/jo00177a042];
b) Kolb, H.C.; Kanamarlapudi, R.C.; Richardson, P.F.; Khan, G. Modified safe and efficient process for the environmentally friendly synthesis of imidoesters. U.S. Patent 6806380 B2, 2002.;
c) Jung, K.Y.; Kim, S.K.; Gao, Z.G.; Gross, A.S.; Melman, N.; Jacobson, K.A.; Kim, Y.C. Structure–activity relationships of thiazole and thiadiazole derivatives as potent and selective human adenosine A3 receptor antagonists. Bioorg. Med. Chem., 2004, 12(3), 613-623.
[http://dx.doi.org/10.1016/j.bmc.2003.10.041] [PMID: 14738972];
d) Lu, X.; Xin, X.; Wan, B. Silver-catalyzed [3+2+1] annulation of aryl amidines with benzyl isocyanide. Tetrahedron Lett., 2018, 59(4), 361-364.
[http://dx.doi.org/10.1016/j.tetlet.2017.10.032]
[34]
Reiter, L.A. Synthesis of 2-substituted 5-acetyl-1(H)-imidazoles via 3-chloro-4,4-dimethoxy-2-butanone and related 3,4-disubstituted 3-buten-2-ones. J. Org. Chem., 1984, 49(19), 3494-3498.
[http://dx.doi.org/10.1021/jo00193a012]

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy