Generic placeholder image

Current Drug Safety

Editor-in-Chief

ISSN (Print): 1574-8863
ISSN (Online): 2212-3911

Research Article

Association between Glucose-lowering Treatments and Risk of Diabetic Retinopathy in People with Type 2 Diabetes: A Nationwide Cohort Study

Author(s): Jakob Hasselstrøm Jensen, Peter Vestergaard and Morten Hasselstrøm Jensen*

Volume 19, Issue 2, 2024

Published on: 10 May, 2023

Page: [236 - 243] Pages: 8

DOI: 10.2174/1574886318666230420084701

Price: $65

conference banner
Abstract

Introduction: Glycaemic variability is possibly linked to the development of diabetic retinopathy, and newer second-line glucose-lowering treatments in type 2 diabetes might reduce glycaemic variability.

Aim: This study aimed to investigate whether newer second-line glucose-lowering treatments are associated with an alternative risk of developing diabetic retinopathy in people with type 2 diabetes.

Methods: A nationwide cohort of people with type 2 diabetes on second-line glucose-lowering treatment regimens in 2008-2018 was extracted from the Danish National Patient Registry. Adjusted time to diabetic retinopathy was estimated with a Cox Proportional Hazards model. The model was adjusted for age, sex, diabetes duration, alcohol abuse, treatment start year, education, income, history of late-diabetic complications, history of non-fatal major adverse cardiovascular events, history of chronic kidney disease, and history of hypoglycaemic episodes.

Results: Treatment regimens of metformin + basal insulin (HR: 3.15, 95% CI: 2.42-4.10) and metformin + glucagon-like peptide-1 receptor agonist (GLP-1-RA, HR: 1.46, 95% CI: 1.09-1.96) were associated with an increased risk of diabetic retinopathy compared with metformin + dipeptidyl peptidase-4 inhibitors (DPP-4i). Treatment with metformin + sodium–glucose cotransporter-2 inhibitor (SGLT2i, HR: 0.77, 95% CI: 0.28-2.11) was associated with the numerically lowest risk of diabetic retinopathy compared with all regimens investigated.

Conclusion: Findings from this study indicate that basal insulin and GLP-1-RA are suboptimal second- line choices for people with type 2 diabetes at risk of developing diabetic retinopathy. However, many other considerations concerning the choice of second-line glucose-lowering treatment for type 2 diabetes patients should be taken into account.

Keywords: Diabetic retinopathy, type 2 diabetes, glucose-lowering treatment, antidiabetic treatment, risk factors, arterial hypertension.

Graphical Abstract
[1]
Klein R, Knudtson MD, Lee KE, Gangnon R, Klein BEK. The wisconsin epidemiologic study of diabetic retinopathy: XXII the twenty-five-year progression of retinopathy in persons with type 1 diabetes. Ophthalmology 2008; 115(11): 1859-68.
[http://dx.doi.org/10.1016/j.ophtha.2008.08.023] [PMID: 19068374]
[2]
Andersen N, Hjortdal JØ, Schielke KC, Bek T, Grauslund J, Laugesen CS. The danish registry of diabetic retinopathy. Clin Epidemiol 2016; 8: 613-9.
[http://dx.doi.org/10.2147/CLEP.S99507]
[3]
Ghanchi F, Bailey C, Chakravarthy U, Cohen S, Dodson P, Gibson J. The Royal College of Ophthalmologists’ clinical guidelines for diabetic retinopathy: A summary. Eye 2013; 27(2): 285-7.
[http://dx.doi.org/10.1038/eye.2012.287] [PMID: 23306724]
[4]
Brown MM, Brown GC, Sharma S, Busbee B. Quality of life associated with visual loss. Ophthalmology 2003; 110(6): 1076-81.
[http://dx.doi.org/10.1016/S0161-6420(03)00254-9] [PMID: 12799229]
[5]
Grauslund J, Green A, Sjølie AK. Blindness in a 25-year follow-up of a population-based cohort of Danish type 1 diabetic patients. Ophthalmology 2009; 116(11): 2170-4.
[http://dx.doi.org/10.1016/j.ophtha.2009.04.043] [PMID: 19744716]
[6]
Resnikoff S, Pascolini D, Etya’ale D, et al. Global data on visual impairment in the year 2002. Bull World Health Organ 2004; 82(11): 844-51.
[PMID: 15640920]
[7]
Stitt AW, Curtis TM, Chen M, et al. The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res 2016; 51: 156-86.
[http://dx.doi.org/10.1016/j.preteyeres.2015.08.001] [PMID: 26297071]
[8]
Nathan DM. Long-term complications of diabetes mellitus. N Engl J Med 1993; 329(20): 1437-41.
[PMID: 8366922]
[9]
UK Prospective Diabetes Study (UKPDS) Group Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 352(9131): 837-53.
[http://dx.doi.org/10.1016/S0140-6736(98)07019-6] [PMID: 9742976]
[10]
Rodriguez-Gutierrez R, Gionfriddo MR, Ospina NS, et al. Shared decision making in endocrinology: Present and future directions. Lancet Diabetes Endocrinol 2016; 4(8): 706-16.
[http://dx.doi.org/10.1016/S2213-8587(15)00468-4] [PMID: 26915314]
[11]
Zelniker TA, Wiviott SD, Raz I, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: A systematic review and meta-analysis of cardiovascular outcome trials. Lancet 2019; 393(10166): 31-9.
[http://dx.doi.org/10.1016/S0140-6736(18)32590-X] [PMID: 30424892]
[12]
Neuen BL, Young T, Heerspink HJL, et al. SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol 2019; 7(11): 845-54.
[http://dx.doi.org/10.1016/S2213-8587(19)30256-6] [PMID: 31495651]
[13]
Kristensen SL, Rørth R, Jhund PS, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: A systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol 2019; 7(10): 776-85.
[http://dx.doi.org/10.1016/S2213-8587(19)30249-9] [PMID: 31422062]
[14]
Famulla S, Pieber TR, Eilbracht J, et al. Glucose exposure and variability with empagliflozin as adjunct to insulin in patients with type 1 diabetes: Continuous glucose monitoring data from a 4-week, randomized, placebo-controlled trial (EASE-1). Diabetes Technol Ther 2017; 19(1): 49-60.
[http://dx.doi.org/10.1089/dia.2016.0261] [PMID: 27929674]
[15]
Hsu CR, Chen YT, Sheu WHH. Glycemic variability and diabetes retinopathy: A missing link. J Diabetes Complications 2015; 29(2): 302-6.
[http://dx.doi.org/10.1016/j.jdiacomp.2014.11.013] [PMID: 25534877]
[16]
Davies MJ, D’Alessio DA, Fradkin J, et al. Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). [published correction appears in Diabetologia. 2019; 62(5): 873]. Diabetologia 2018; 61(12): 2461-98.
[http://dx.doi.org/10.1007/s00125-018-4729-5]
[17]
Lynge E, Sandegaard JL, Rebolj M. The Danish national patient register. Scand J Public Health 2011; 39(S7): 30-3.
[http://dx.doi.org/10.1177/1403494811401482] [PMID: 21775347]
[18]
Mosbech J, Jørgensen J, Madsen M, Rostgaard K, Thornberg K, Poulsen TD. The national patient registry. Evaluation of data quality. Ugeskr Laeger 1995; 157(26): 3741-5.
[PMID: 7631448]
[19]
Vestergaard P, Mosekilde L. Fracture risk in patients with celiac Disease, Crohn’s disease, and ulcerative colitis: a nationwide follow-up study of 16,416 patients in Denmark. Am J Epidemiol 2002; 156(1): 1-10.
[http://dx.doi.org/10.1093/aje/kwf007] [PMID: 12076883]
[20]
Lühdorf P, Overvad K, Schmidt EB, Johnsen SP, Bach FW. Predictive value of stroke discharge diagnoses in the Danish National Patient Register. Scand J Public Health 2017; 45(6): 630-6.
[http://dx.doi.org/10.1177/1403494817716582] [PMID: 28701076]
[21]
Joensen AM, Jensen MK, Overvad K, et al. Predictive values of acute coronary syndrome discharge diagnoses differed in the Danish National Patient Registry. J Clin Epidemiol 2009; 62(2): 188-94.
[http://dx.doi.org/10.1016/j.jclinepi.2008.03.005] [PMID: 18722087]
[22]
Pottegård A, Schmidt SAJ, Wallach-Kildemoes H, Sørensen HT, Hallas J, Schmidt M. Data resource profile: The Danish national prescription registry. Int J Epidemiol 2017; 46(3): 798-798f.
[PMID: 27789670]
[23]
Lee S, Lee H, Kim Y, Kim E. Effect of DPP-IV Inhibitors on Glycemic Variability in Patients with T2DM: A Systematic Review and Meta-Analysis. Sci Rep 2019; 9(1): 13296.
[http://dx.doi.org/10.1038/s41598-019-49803-9] [PMID: 31527625]
[24]
Douros A, Filion KB, Yin H, et al. Glucagon-like peptide 1 receptor agonists and the risk of incident diabetic retinopathy. Diabetes Care 2018; 41(11): 2330-8.
[http://dx.doi.org/10.2337/dc17-2280] [PMID: 30150234]
[25]
Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA. LEADER Trial Investigators. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2016; 375: 311-22.
[26]
Marso SP, Bain SC, Consoli A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 2016; 375(19): 1834-44.
[http://dx.doi.org/10.1056/NEJMoa1607141] [PMID: 27633186]
[27]
Inzucchi SE, Wanner C, Hehnke U, et al. Retinopathy outcomes with empagliflozin versus placebo in the EMPA-REG OUTCOME trial. Diabetes Care 2019; 42(4): e53-5.
[http://dx.doi.org/10.2337/dc18-1355] [PMID: 30705060]
[28]
Mitsuhiko F, Yasushi A, Hisashi M. Socioeconomic status and type 2 diabetes complications among young adult patients in Japan. PLoS One 2017; 12(4): e0176087.
[http://dx.doi.org/10.1371/journal.pone.0176087] [PMID: 28437472]
[29]
Lima VC, Cavalieri GC, Lima MC, Nazario NO, Lima GC. Risk factors for diabetic retinopathy: A case–control study. Int J Retina Vitreous 2016; 2(1): 21.
[http://dx.doi.org/10.1186/s40942-016-0047-6] [PMID: 27847639]
[30]
Davies MJ, Gagliardino JJ, Gray LJ, Khunti K, Mohan V, Hughes R. Real-world factors affecting adherence to insulin therapy in patients with Type 1 or Type 2 diabetes mellitus: A systematic review. Diabet Med 2013; 30(5): 512-24.
[http://dx.doi.org/10.1111/dme.12128] [PMID: 23323988]
[31]
Brod M, Rana A, Barnett AH. Adherence patterns in patients with type 2 diabetes on basal insulin analogues: Missed, mistimed and reduced doses. Curr Med Res Opin 2012; 28(12): 1933-46.
[http://dx.doi.org/10.1185/03007995.2012.743458] [PMID: 23150949]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy