Mini-Review Article

Gene Therapy for Alzheimer and Parkinson Diseases

Author(s): Jasen F. Saad and Fawzy A. Saad*

Volume 23, Issue 3, 2023

Published on: 04 May, 2023

Page: [163 - 169] Pages: 7

DOI: 10.2174/1566523223666230419101023

Price: $65

Abstract

Alzheimer and Parkinson diseases are associated with cholinergic neuron loss and deterioration of bone mineral density. Gene therapy through either gene transfer, CRISPR gene editing, or CRISPR gene modulation holds the potential to cure Alzheimer and Parkinson diseases. The emerging role of weight-bearing exercise in the prevention of, and care for, osteoporosis, obesity, and diabetes has been previously recognized. Moreover, endurance exercise offers a viable alternative to reduce amyloid peptides deposits while increasing bone mineral density in Alzheimer and Parkinson patients. β-amyloid peptides, α-synuclein, and tau aggregates start building up two decades before the onset of Alzheimer and Parkinson diseases. Therefore, an early intervention program for the detection of these deposits is required to prevent or delay the onset of these diseases. This article spots light on the potential of gene therapy for Alzheimer and Parkinson diseases.

Keywords: Alzheimer disease, Parkinson disease, CRISPR/Cas gene editing, gene therapy, gene drugs, epigenetic drug (epidrug), β-amyloid peptides, α-synuclein, tau aggregates, adeno-associated virus.

Next »
Graphical Abstract
[1]
Jorge NR. Pereira de AL. Gene therapy for Parkinson’s and Alzheimer’s diseases: From the bench to clinical trials. Curr Pharm Des 2011; 17(31): 3434-45.
[http://dx.doi.org/10.2174/138161211798072472] [PMID: 21902665]
[2]
Owens LV, Benedetto A, Dawson N, Gaffney CJ, Parkin ET. Gene therapy-mediated enhancement of protective protein expression for the treatment of Alzheimer’s disease. Brain Res 1753; 147264: 2021.
[PMID: 33422539]
[3]
Braddock M. Safely slowing down the decline in Alzheimer’s disease: Gene therapy shows potential. Expert Opin Investig Drugs 2005; 14(7): 913-5.
[http://dx.doi.org/10.1517/13543784.14.7.913] [PMID: 16022580]
[4]
Chung KA, Lobb BM, Nutt JG, Horak FB. Effects of a central cholinesterase inhibitor on reducing falls in Parkinson disease. Neurology 2010; 75(14): 1263-9.
[http://dx.doi.org/10.1212/WNL.0b013e3181f6128c] [PMID: 20810998]
[5]
Zhao Y, Shen L, Ji HF. Osteoporosis risk and bone mineral density levels in patients with Parkinson’s disease: A meta-analysis. Bone 2013; 52(1): 498-505.
[http://dx.doi.org/10.1016/j.bone.2012.09.013] [PMID: 23000281]
[6]
Başgöz BB, İnce S, Safer U, Naharcı Mİ, Taşçı İ. Low bone density and osteoporosis among older adults with Alzheimer’s disease, vascular dementia, and mixed dementia: A cross-sectional study with prospective enrollment. Turk J Phys Med Rehabil 2020; 66(2): 193-200.
[http://dx.doi.org/10.5606/tftrd.2020.3803] [PMID: 32760897]
[7]
Whittemore K, Derevyanko A, Martinez P, et al. Telomerase gene therapy ameliorates the effects of neurodegeneration associated to short telomeres in mice. Aging 2019; 11(10): 2916-48.
[http://dx.doi.org/10.18632/aging.101982] [PMID: 31140977]
[8]
Ping L, Duong DM, Yin L, et al. Global quantitative analysis of the human brain proteome in Alzheimer’s and Parkinson’s Disease. Sci Data 2018; 5(1): 180036.
[http://dx.doi.org/10.1038/sdata.2018.36] [PMID: 29533394]
[9]
Xie A, Gao J, Xu L, Meng D. Shared mechanisms of neurodegeneration in Alzheimer’s disease and Parkinson’s disease. BioMed Res Int 2014; 2014: 648740.
[http://dx.doi.org/10.1155/2014/648740] [PMID: 24900975]
[10]
Kelly J, Moyeed R, Carroll C, Albani D, Li X. Gene expression meta-analysis of Parkinson’s disease and its relationship with Alzheimer’s disease. Mol Brain 2019; 12(1): 16.
[http://dx.doi.org/10.1186/s13041-019-0436-5] [PMID: 30819229]
[11]
Kelly J, Moyeed R, Carroll C, Luo S, Li X. Genetic networks in Parkinson’s and Alzheimer’s disease. Aging 2020; 12(6): 5221-43.
[http://dx.doi.org/10.18632/aging.102943] [PMID: 32205467]
[12]
Li X, James S, Lei P. Interactions between α-Synuclein and tau protein: Implications to neurodegenerative disorders. J Mol Neurosci 2016; 60(3): 298-304.
[http://dx.doi.org/10.1007/s12031-016-0829-1] [PMID: 27629562]
[13]
Giacomelli C, Daniele S, Martini C. Potential biomarkers and novel pharmacological targets in protein aggregation-related neurodegenerative diseases. Biochem Pharmacol 2017; 131: 1-15.
[http://dx.doi.org/10.1016/j.bcp.2017.01.017] [PMID: 28159621]
[14]
Irion S. Cell Therapies for Parkinson’s Disease. Clin Transl Sci 2019; 12(2): 95-7.
[http://dx.doi.org/10.1111/cts.12612] [PMID: 30771274]
[15]
Twohig D, Nielsen HM. α-synuclein in the pathophysiology of Alzheimer’s disease. Mol Neurodegener 2019; 14(1): 23.
[http://dx.doi.org/10.1186/s13024-019-0320-x] [PMID: 31186026]
[16]
Dodel R. Comment: β-Amyloid pathology and Parkinson disease. Neurology 2017; 89(23): 2339.
[http://dx.doi.org/10.1212/WNL.0000000000004756] [PMID: 29117960]
[17]
Masliah E, Rockenstein E, Veinbergs I, et al. β-Amyloid peptides enhance α-synuclein accumulation and neuronal deficits in a transgenic mouse model linking Alzheimer’s disease and Parkinson’s disease. Proc Natl Acad Sci 2001; 98(21): 12245-50.
[http://dx.doi.org/10.1073/pnas.211412398] [PMID: 11572944]
[18]
Lee WJ, Brown JA, Kim HR, et al. Regional Aβ-tau interactions promote onset and acceleration of Alzheimer’s disease tau spreading. Neuron 2022; 110(12): 1932-1943.e5.
[http://dx.doi.org/10.1016/j.neuron.2022.03.034] [PMID: 35443153]
[19]
Daniele S, Frosini D, Pietrobono D, et al. α-Synuclein heterocomplexes with β-amyloid are increased in red blood cells of parkinson’s disease patients and correlate with disease severity. Front Mol Neurosci 2018; 11: 53.
[http://dx.doi.org/10.3389/fnmol.2018.00053] [PMID: 29520218]
[20]
Saad FA. Novel insights into the complex architecture of osteoporosis molecular genetics. Ann N Y Acad Sci 2020; 1462(1): 37-52.
[http://dx.doi.org/10.1111/nyas.14231] [PMID: 31556133]
[21]
Shimizu ME, Ishizaki F, Nakamura S. Results of a home exercise program for patients with osteoporosis resulting from neurological disorders. Hiroshima J Med Sci 2002; 51(1): 15-22.
[PMID: 11999456]
[22]
Nascimento C, Pereira J, Andrade L, et al. Physical exercise in MCI elderly promotes reduction of pro-inflammatory cytokines and improvements on cognition and BDNF peripheral levels. Curr Alzheimer Res 2014; 11(8): 799-805.
[http://dx.doi.org/10.2174/156720501108140910122849] [PMID: 25212919]
[23]
Puente-González AS, Sánchez-Sánchez MC, Fernández-Rodríguez EJ, Hernández-Xumet JE, Barbero-Iglesias FJ, Méndez-Sánchez R. Effects of 6-month multimodal physical exercise program on bone mineral density, fall risk, balance, and gait in patients with alzheimer’s disease: A controlled clinical trial. Brain Sci 2021; 11(1): 63.
[http://dx.doi.org/10.3390/brainsci11010063] [PMID: 33419016]
[24]
Arsenis NC, You T, Ogawa EF, Tinsley GM, Zuo L. Physical activity and telomere length: Impact of aging and potential mechanisms of action. Oncotarget 2017; 8(27): 45008-19.
[http://dx.doi.org/10.18632/oncotarget.16726] [PMID: 28410238]
[25]
Sellami M, Bragazzi N, Prince MS, Denham J, Elrayess M. Regular, intense exercise training as a healthy aging lifestyle strategy: Preventing DNA damage, telomere shortening and adverse DNA methylation changes over a lifetime. Front Genet 2021; 12: 652497.
[http://dx.doi.org/10.3389/fgene.2021.652497] [PMID: 34421981]
[26]
Haupt S, Niedrist T, Sourij H, Schwarzinger S, Moser O. The impact of exercise on telomere length, dna methylation and metabolic footprints. Cells 2022; 11(1): 153.
[http://dx.doi.org/10.3390/cells11010153] [PMID: 35011715]
[27]
Poser CM, Ronthal M. Exercise and Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis. Phys Sportsmed 1991; 19(12): 85-92.
[http://dx.doi.org/10.1080/00913847.1991.11710211] [PMID: 27438500]
[28]
Wang Q, Li WX, Dai SX, et al. Meta-Analysis of parkinson’s disease and Alzheimer’s disease revealed commonly impaired pathways and dysregulation of NRF2-dependent genes. J Alzheimers Dis 2017; 56(4): 1525-39.
[http://dx.doi.org/10.3233/JAD-161032] [PMID: 28222515]
[29]
da Costa DTM, de Bruin PFC, de Matos RS, de Bruin GS, Maia CC. Exercise effects on brain and behavior in healthy mice, Alzheimer’s disease and Parkinson’s disease model-A systematic review and meta-analysis. Behav Brain Res 2020; 6(383): 112488.
[30]
Song Y, Li S, Li X, et al. The effect of estrogen replacement therapy on Alzheimer’s disease and parkinson’s disease in postmenopausal women: A meta-analysis. Front Neurosci 2020; 14: 157.
[http://dx.doi.org/10.3389/fnins.2020.00157] [PMID: 32210745]
[31]
Blesch A, Tuszynski MH. Gene therapy and cell transplantation for Alzheimer’s disease and spinal cord injury. Yonsei Med J 2004; 45: S28.
[http://dx.doi.org/10.3349/ymj.2004.45.Suppl.28] [PMID: 15250047]
[32]
Fleifel D, Rahmoon MA, AlOkda A, Nasr M, Elserafy M, El-Khamisy SF. Recent advances in stem cells therapy: A focus on cancer, Parkinson’s and Alzheimer’s. J Genet Eng Biotechnol 2018; 16(2): 427-32.
[http://dx.doi.org/10.1016/j.jgeb.2018.09.002] [PMID: 30733756]
[33]
Politis M, Lindvall O. Clinical application of stem cell therapy in Parkinson’s disease. BMC Med 2012; 10(1): 1.
[http://dx.doi.org/10.1186/1741-7015-10-1] [PMID: 22216957]
[34]
Karvelas N, Bennett S, Politis G, Kouris NI, Kole C. Advances in stem cell therapy in Alzheimer’s disease: a comprehensive clinical trial review. Stem Cell Investig 2022; 9: 2.
[http://dx.doi.org/10.21037/sci-2021-063] [PMID: 35280344]
[35]
Collier TJ, Sortwell CE, Mercado NM, Steece-Collier K. Cell therapy for Parkinson’s disease: Why it doesn’t work every time. Mov Disord 2019; 34(8): 1120-7.
[http://dx.doi.org/10.1002/mds.27742] [PMID: 31234239]
[36]
Ryan NS, Rossor MN. Correlating familial Alzheimer’s disease gene mutations with clinical phenotype. Biomarkers Med 2010; 4(1): 99-112.
[http://dx.doi.org/10.2217/bmm.09.92] [PMID: 20387306]
[37]
Teijido O, Cacabelos R. Pharmacoepigenomic interventions as novel potential treatments for alzheimer’s and parkinson’s diseases. Int J Mol Sci 2018; 19(10): 3199.
[http://dx.doi.org/10.3390/ijms19103199] [PMID: 30332838]
[38]
Aoki Y, Yokota T, Wood MJA. Development of multiexon skipping antisense oligonucleotide therapy for Duchenne muscular dystrophy. BioMed Res Int 2013; 2013: 402369.
[http://dx.doi.org/10.1155/2013/402369] [PMID: 23984357]
[39]
Bodendorf U, Danner S, Fischer F, et al. Expression of human beta-secretase in the mouse brain increases the steady-state level of beta-amyloid. J Neurochem 2002; 80(5): 799-806.
[http://dx.doi.org/10.1046/j.0022-3042.2002.00770.x] [PMID: 11948243]
[40]
Lee JH, Jiang Y, Han DH, Shin SK, Choi WH, Lee MJ. Targeting estrogen receptors for the treatment of Alzheimer’s disease. Mol Neurobiol 2014; 49(1): 39-49.
[http://dx.doi.org/10.1007/s12035-013-8484-9] [PMID: 23771838]
[41]
Bagit A, Hayward GC, MacPherson REK. Exercise and estrogen: Common pathways in Alzheimer’s disease pathology. Am J Physiol Endocrinol Metab 2021; 321(1): E164-8.
[http://dx.doi.org/10.1152/ajpendo.00008.2021] [PMID: 34056921]
[42]
Luo Y, Bolon B, Kahn S, et al. Mice deficient in BACE1, the Alzheimer’s β-secretase, have normal phenotype and abolished β-amyloid generation. Nat Neurosci 2001; 4(3): 231-2.
[http://dx.doi.org/10.1038/85059] [PMID: 11224535]
[43]
Ohno M, Sametsky EA, Younkin LH, et al. BACE1 deficiency rescues memory deficits and cholinergic dysfunction in a mouse model of Alzheimer’s disease. Neuron 2004; 41(1): 27-33.
[http://dx.doi.org/10.1016/S0896-6273(03)00810-9] [PMID: 14715132]
[44]
Rosenberg JB, Kaplitt MG, De BP, et al. AAVrh.10-mediated APOE2 central nervous system gene therapy for APOE4-associated Alzheimer’s disease. Hum Gene Ther Clin Dev 2018; 29(1): 24-47.
[http://dx.doi.org/10.1089/humc.2017.231] [PMID: 29409358]
[45]
Im JY, Bang HS, Seo DY. The effects of 12 weeks of a combined exercise program on physical function and hormonal status in elderly Korean women. Int J Environ Res Public Health 2019; 16(21): 4196.
[http://dx.doi.org/10.3390/ijerph16214196] [PMID: 31671514]
[46]
Kriketos AD, Gan SK, Poynten AM, Furler SM, Chisholm DJ, Campbell LV. Exercise increases adiponectin levels and insulin sensitivity in humans. Diabet Care 2004; 27(2): 629-30.
[http://dx.doi.org/10.2337/diacare.27.2.629] [PMID: 14747265]
[47]
Zhaosheng T, Li Y, Chengying G, Yun L, Lian Z. Effect of exercise on the expression of adiponectin mRNA and GLUT4 mRNA in type 2 diabetic rats. J Huazhong Univ Sci Technolog Med Sci 2005; 25(2): 191-193, 201.
[http://dx.doi.org/10.1007/BF02873574] [PMID: 16116970]
[48]
Aldred S, Mecocci P. Decreased dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEAS) concentrations in plasma of Alzheimer’s disease (AD) patients. Arch Gerontol Geriatr 2010; 51(1): e16-8.
[http://dx.doi.org/10.1016/j.archger.2009.07.001] [PMID: 19665809]
[49]
Ng RCL, Jian M, Yick LW, et al. Adiponectin gene therapy for Alzheimer disease in a mouse model: Abridged secondary publication. Hong Kong Med J 2020; 8(6): 27-33.
[50]
Arora S, Kanekiyo T, Singh J. Functionalized nanoparticles for brain targeted BDNF gene therapy to rescue Alzheimer’s disease pathology in transgenic mouse model. Int J Biol Macromol 2022; 208: 901-11.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.03.203] [PMID: 35378156]
[51]
Griciuc A, Federico AN, Natasan J, et al. Gene therapy for Alzheimer’s disease targeting CD33 reduces amyloid beta accumulation and neuroinflammation. Hum Mol Genet 2020; 29(17): 2920-35.
[http://dx.doi.org/10.1093/hmg/ddaa179] [PMID: 32803224]
[52]
Murphy SR, Chang CCY, Dogbevia G, et al. Acat1 knockdown gene therapy decreases amyloid-β in a mouse model of Alzheimer’s disease. Mol Ther 2013; 21(8): 1497-506.
[http://dx.doi.org/10.1038/mt.2013.118] [PMID: 23774792]
[53]
Hudry E, Van Dam D, Kulik W, et al. Adeno-associated virus gene therapy with cholesterol 24-hydroxylase reduces the amyloid pathology before or after the onset of amyloid plaques in mouse models of Alzheimer’s disease. Mol Ther 2010; 18(1): 44-53.
[http://dx.doi.org/10.1038/mt.2009.175] [PMID: 19654569]
[54]
Bonifati V. LRRK2 low-penetrance mutations (Gly2019Ser) and risk alleles (Gly2385Arg)-linking familial and sporadic Parkinson’s disease. Neurochem Res 2007; 32(10): 1700-8.
[http://dx.doi.org/10.1007/s11064-007-9324-y] [PMID: 17440812]
[55]
Nuytemans K, Theuns J, Cruts M, Van Broeckhoven C. Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: A mutation update. Hum Mutat 2010; 31(7): 763-80.
[http://dx.doi.org/10.1002/humu.21277] [PMID: 20506312]
[56]
Coppedè F. Genetics and epigenetics of Parkinson’s disease. Scienti World J 2012; 2012: 489830.
[http://dx.doi.org/10.1100/2012/489830] [PMID: 22623900]
[57]
Lardenoije R, Iatrou A, Kenis G, et al. The epigenetics of aging and neurodegeneration. Prog Neurobiol 2015; 131: 21-64.
[http://dx.doi.org/10.1016/j.pneurobio.2015.05.002] [PMID: 26072273]
[58]
Lindvall O, Björklund A. Cell therapeutics in Parkinson’s disease. Neurotherapeutics 2011; 8(4): 539-48.
[http://dx.doi.org/10.1007/s13311-011-0069-6] [PMID: 21901584]
[59]
Freed CR, Greene PE, Breeze RE, et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 2001; 344(10): 710-9.
[http://dx.doi.org/10.1056/NEJM200103083441002] [PMID: 11236774]
[60]
Richardson RM, Larson PS, Bankiewicz KS. Gene and cell delivery to the degenerated striatum: status of preclinical efforts in primate models Neurosurgery 2008; 63(4): 629-644, 642-644.
[http://dx.doi.org/10.1227/01.NEU.0000325491.89984.CE] [PMID: 18981876]
[61]
Björklund A, Björklund T, Kirik D. Gene therapy for dopamine replacement in Parkinson’s disease. Sci Transl Med 2009; 1(2): 2ps2.
[http://dx.doi.org/10.1126/scitranslmed.3000350] [PMID: 20368161]
[62]
Nutt JG, Curtze C, Hiller A, et al. Aromatic L-Amino acid decarboxylase gene therapy enhances levodopa response in parkinson’s disease. Mov Disord 2020; 35(5): 851-8.
[http://dx.doi.org/10.1002/mds.27993] [PMID: 32149427]
[63]
Jarraya B, Boulet S, Scott Ralph G, et al. Dopamine gene therapy for Parkinson’s disease in a nonhuman primate without associated dyskinesia. Sci Transl Med 2009; 1(2): 2ra4.
[http://dx.doi.org/10.1126/scitranslmed.3000130] [PMID: 20368163]
[64]
Hwu PWL, Kiening K, Anselm I, et al. Gene therapy in the putamen for curing AADC deficiency and Parkinson’s disease. EMBO Mol Med 2021; 13(9): e14712.
[http://dx.doi.org/10.15252/emmm.202114712] [PMID: 34423905]
[65]
Christine CW, Richardson RM, Van Laar AD, et al. Safety of AADC gene therapy for moderately advanced parkinson disease. Neurology 2022; 98(1): e40-50.
[http://dx.doi.org/10.1212/WNL.0000000000012952] [PMID: 34649873]
[66]
Abeliovich A, Hefti F, Sevigny J. Gene therapy for Parkinson’s Disease associated with GBA1 Mutations. J Parkinsons Dis 2021; 11(s2): S183-8.
[http://dx.doi.org/10.3233/JPD-212739] [PMID: 34151863]
[67]
Diaz-Nido J. NLX-P101, an adeno-associated virus gene therapy encoding glutamic acid decarboxylase, for the potential treatment of Parkinson’s disease. Curr Opin Investig Drugs 2010; 11(7): 813-22.
[PMID: 20571977]
[68]
Lin P, Li F, Zhang YW, et al. Calnuc binds to Alzheimer’s beta-amyloid precursor protein and affects its biogenesis. J Neurochem 2007; 100(6): 1505-14.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04336.x]
[69]
Miura K, Titani K, Kurosawa Y, Kanai Y. Molecular cloning of nucleobindin, a novel DNA-binding protein that contains both a signal peptide and a leucine zipper structure. Biochem Biophys Res Commun 1992; 187(1): 375-80.
[http://dx.doi.org/10.1016/S0006-291X(05)81503-7] [PMID: 1520323]
[70]
Kanuru M, Aradhyam GK. Chaperone-like activity of calnuc prevents amyloid aggregation. Biochemistry 2017; 56(1): 149-59.
[http://dx.doi.org/10.1021/acs.biochem.6b00660] [PMID: 27997158]
[71]
Bonito-Oliva A, Barbash S, Sakmar TP, Graham WV. Nucleobindin 1 binds to multiple types of pre-fibrillar amyloid and inhibits fibrillization. Sci Rep 2017; 7(1): 42880.
[http://dx.doi.org/10.1038/srep42880] [PMID: 28220836]
[72]
Saad FA, Hofstaetter JG. Proteomic analysis of mineralising osteoblasts identifies novel genes related to bone matrix mineralisation. Int Orthop 2011; 35(3): 447-51.
[http://dx.doi.org/10.1007/s00264-010-1076-7] [PMID: 20556378]
[73]
Petersson U, Somogyi E, Reinholt FP, Karlsson T, Sugars RV, Wendel M. Nucleobindin is produced by bone cells and secreted into the osteoid, with a potential role as a modulator of matrix maturation. Bone 2004; 34(6): 949-60.
[http://dx.doi.org/10.1016/j.bone.2004.01.019] [PMID: 15193541]
[74]
Malkki H. NGF gene therapy activates neurons in the AD patient brain. Nat Rev Neurol 2015; 11(10): 548.
[http://dx.doi.org/10.1038/nrneurol.2015.170] [PMID: 26347367]
[75]
Tuszynski MH, Thal L, Pay M, et al. A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med 2005; 11(5): 551-5.
[http://dx.doi.org/10.1038/nm1239] [PMID: 15852017]
[76]
Ebert AD, Svendsen CN. A new tool in the battle against Alzheimer’s disease and aging: Ex vivo gene therapy. Rejuvenation Res 2005; 8(3): 131-4.
[http://dx.doi.org/10.1089/rej.2005.8.131] [PMID: 16144466]
[77]
Revilla S, Ursulet S, Álvarez-López MJ, et al. Lenti-GDNF gene therapy protects against Alzheimer’s disease-like neuropathology in 3xTg-AD mice and MC65 cells. CNS Neurosci Ther 2014; 20(11): 961-72.
[http://dx.doi.org/10.1111/cns.12312] [PMID: 25119316]
[78]
Behl T, Kaur I, Kumar A, Mehta V, Zengin G, Arora S. Gene therapy in the management of parkinson’s disease: Potential of GDNF as a promising therapeutic strategy. Curr Gene Ther 2020; 20(3): 207-22.
[http://dx.doi.org/10.2174/1566523220999200817164051] [PMID: 32811394]
[79]
Bäck S, Peränen J, Galli E, et al. Gene therapy with AAV2-CDNF provides functional benefits in a rat model of Parkinson’s disease. Brain Behav 2013; 3(2): 75-88.
[http://dx.doi.org/10.1002/brb3.117] [PMID: 23532969]
[80]
Kemppainen S, Lindholm P, Galli E, et al. Cerebral dopamine neurotrophic factor improves long-term memory in APP/PS1 transgenic mice modeling Alzheimer’s disease as well as in wild-type mice. Behav Brain Res 2015; 291: 1-11.
[http://dx.doi.org/10.1016/j.bbr.2015.05.002] [PMID: 25975173]
[81]
El-Battari A, Rodriguez L, Chahinian H, et al. Gene Therapy Strategy for Alzheimer’s and Parkinson’s diseases aimed at preventing the formation of neurotoxic oligomers in SH-SY5Y Cells. Int J Mol Sci 2021; 22(21): 11550.
[http://dx.doi.org/10.3390/ijms222111550] [PMID: 34768981]
[82]
Puranik N, Yadav D, Chauhan PS, Kwak M, Jin JO. Exploring the role of gene therapy for neurological disorders. Curr Gene Ther 2021; 21(1): 11-22.
[http://dx.doi.org/10.2174/1566523220999200917114101] [PMID: 32940177]
[83]
Friedmann T, Roblin R. Gene therapy for human genetic disease? Science 1972; 175(4025): 949-55.
[http://dx.doi.org/10.1126/science.175.4025.949] [PMID: 5061866]
[84]
Sudhakar V, Richardson RM. Gene therapy for neurodegenerative diseases. Neurotherapeutics 2019; 16(1): 166-75.
[http://dx.doi.org/10.1007/s13311-018-00694-0] [PMID: 30542906]
[85]
Dunn IF, Black PM. The neurosurgeon as local oncologist: Cellular and molecular neurosurgery in malignant glioma therapy. Neurosurgery 2003; 52(6): 1411-24.
[http://dx.doi.org/10.1227/01.NEU.0000064808.27512.CF] [PMID: 12762886]
[86]
Parambi DGT, Alharbi KS, Kumar R, et al. Gene therapy approach with an emphasis on growth factors: Theoretical and clinical outcomes in neurodegenerative diseases. Mol Neurobiol 2022; 59(1): 191-233.
[http://dx.doi.org/10.1007/s12035-021-02555-y] [PMID: 34655056]
[87]
Gilbert LA, Larson MH, Morsut L, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 2013; 154(2): 442-51.
[http://dx.doi.org/10.1016/j.cell.2013.06.044] [PMID: 23849981]
[88]
Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019; 576(7785): 149-57.
[http://dx.doi.org/10.1038/s41586-019-1711-4] [PMID: 31634902]
[89]
Chen PJ, Hussmann JA, Yan J, et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell 2021; 184(22): 5635-5652.e29.
[http://dx.doi.org/10.1016/j.cell.2021.09.018]
[90]
Ridler C. Alzheimer disease: CRISPR activation reveals hidden γ-secretase defect in fibroblasts from patients with familial AD. Nat Rev Neurol 2018; 14(1): 3.
[PMID: 29192258]
[91]
Peddle CF, Fry LE, McClements ME, MacLaren RE. CRISPR interference–potential application in retinal disease. Int J Mol Sci 2020; 21(7): 2329.
[http://dx.doi.org/10.3390/ijms21072329] [PMID: 32230903]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy