Review Article

褪黑素及其在生殖中的新生理作用:综述与最新进展

卷 24, 期 4, 2024

发表于: 15 May, 2023

页: [449 - 456] 页: 8

弟呕挨: 10.2174/1566524023666230417103201

价格: $65

Open Access Journals Promotions 2
摘要

褪黑素是松果体分泌的一种神经内分泌激素。褪黑素的分泌遵循视交叉上核控制的昼夜节律,其分泌与自然界的昼夜变化同步,夜间分泌量最高。褪黑素是协调外界光刺激和机体细胞反应的关键激素。它将包括昼夜节律和季节节律在内的环境光周期信息传递给体内的相关组织和器官,并伴随其分泌水平的变化,确保其受调节的功能活动适应外界环境的变化。褪黑素主要通过与特定的膜结合受体(MT1和MT2)相互作用发挥有益作用。褪黑素也通过非受体介导的机制作为自由基的清除剂。半个多世纪以来,人们一直认为褪黑素与脊椎动物的繁殖有关,尤其是在季节性繁殖的情况下。尽管现代人类显示出很少的生殖季节性,褪黑素和人类生殖之间的关系继续引起广泛关注。褪黑素在改善线粒体功能、减少自由基损伤、诱导卵母细胞成熟、提高受精率、促进胚胎发育等方面具有重要作用,从而改善体外受精和胚胎移植的效果。本文综述了褪黑素在生殖中的生理作用及其在生殖医学中的潜在临床应用方面的研究进展。

关键词: 褪黑素,生殖,下丘脑-垂体-性腺轴,肿瘤治疗,受精率,神经内分泌激素。

[1]
Ahmad SB, Ali A, Bilal M, et al. Melatonin and health: Insights of melatonin action, biological functions, and associated disorders. Cell Mol Neurobiol 2023; 8: 1-22.
[http://dx.doi.org/10.1007/s10571-023-01324-w] [PMID: 36752886]
[2]
Reiter RJ, Tan DX, Kim SJ, Cruz MHC. Delivery of pineal melatonin to the brain and SCN: role of canaliculi, cerebrospinal fluid, tanycytes and Virchow–Robin perivascular spaces. Brain Struct Funct 2014; 219(6): 1873-87.
[http://dx.doi.org/10.1007/s00429-014-0719-7] [PMID: 24553808]
[3]
Shi L, Li N, Bo L, Xu Z. Melatonin and hypothalamic-pituitary-gonadal axis. Curr Med Chem 2013; 20(15): 2017-31.
[http://dx.doi.org/10.2174/09298673113209990114] [PMID: 23410151]
[4]
Zisapel N. New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. Br J Pharmacol 2018; 175(16): 3190-9.
[http://dx.doi.org/10.1111/bph.14116] [PMID: 29318587]
[5]
Morris CJ, Aeschbach D, Scheer FAJL. Circadian system, sleep and endocrinology. Mol Cell Endocrinol 2012; 349(1): 91-104.
[http://dx.doi.org/10.1016/j.mce.2011.09.003] [PMID: 21939733]
[6]
Claustrat B, Leston J. Melatonin: Physiological effects in humans. Neurochirurgie 2015; 61(2-3): 77-84.
[http://dx.doi.org/10.1016/j.neuchi.2015.03.002] [PMID: 25908646]
[7]
Ostrin LA. Ocular and systemic melatonin and the influence of light exposure. Clin Exp Optom 2019; 102(2): 99-108.
[http://dx.doi.org/10.1111/cxo.12824] [PMID: 30074278]
[8]
Karasek M. Melatonin, human aging, and age-related diseases. Exp Gerontol 2004; 39(11-12): 1723-9.
[http://dx.doi.org/10.1016/j.exger.2004.04.012] [PMID: 15582288]
[9]
Sallinen P, Saarela S, Ilves M, Vakkuri O, Leppäluoto J. The expression of MT1 and MT2 melatonin receptor mRNA in several rat tissues. Life Sci 2005; 76(10): 1123-34.
[http://dx.doi.org/10.1016/j.lfs.2004.08.016] [PMID: 15620576]
[10]
Liu L, Wang Z, Cao J, Dong Y, Chen Y. Effect of melatonin on monochromatic light-induced changes in clock gene circadian expression in the chick liver. J Photochem Photobiol B 2019; 197: 111537.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111537] [PMID: 31247384]
[11]
Bubenik GA. Localization, physiological significance and possible clinical implication of gastrointestinal melatonin. Neurosignals 2001; 10(6): 350-66.
[http://dx.doi.org/10.1159/000046903] [PMID: 11721091]
[12]
Fowler S, Hoedt EC, Talley NJ, Keely S, Burns GL. Circadian rhythms and melatonin metabolism in patients with disorders of gut-brain interactions. Front Neurosci 2022; 16: 825246.
[http://dx.doi.org/10.3389/fnins.2022.825246] [PMID: 35356051]
[13]
Slominski AT, Zmijewski MA, Semak I, et al. Melatonin, mitochondria, and the skin. Cell Mol Life Sci 2017; 74(21): 3913-25.
[http://dx.doi.org/10.1007/s00018-017-2617-7] [PMID: 28803347]
[14]
Menendez-Pelaez A, Reiter RJ. Distribution of melatonin in mammalian tissues: The relative importance of nuclear versus cytosolic localization. J Pineal Res 1993; 15(2): 59-69.
[http://dx.doi.org/10.1111/j.1600-079X.1993.tb00511.x] [PMID: 8283386]
[15]
Isola R, Lai Y, Noli R, Masala C, Isola M, Loy F. Melatonin ultrastructural localization in mitochondria of human salivary glands. J Anat 2023; 242(2): 146-52.
[http://dx.doi.org/10.1111/joa.13775] [PMID: 36176196]
[16]
Klosen P, Lapmanee S, Schuster C, et al. MT1 and MT2 melatonin receptors are expressed in nonoverlapping neuronal populations. J Pineal Res 2019; 67(1): e12575.
[http://dx.doi.org/10.1111/jpi.12575] [PMID: 30937953]
[17]
Emet M, Ozcan H, Ozel L, Yayla M, Halici Z, Hacimuftuoglu A. A review of melatonin, its receptors and drugs. Eurasian J Med 2016; 48(2): 135-41.
[http://dx.doi.org/10.5152/eurasianjmed.2015.0267] [PMID: 27551178]
[18]
Stauch B, Johansson LC, McCorvy JD, et al. Structural basis of ligand recognition at the human MT1 melatonin receptor. Nature 2019; 569(7755): 284-8.
[http://dx.doi.org/10.1038/s41586-019-1141-3] [PMID: 31019306]
[19]
Johansson LC, Stauch B, McCorvy JD, et al. XFEL structures of the human MT2 melatonin receptor reveal the basis of subtype selectivity. Nature 2019; 569(7755): 289-92.
[http://dx.doi.org/10.1038/s41586-019-1144-0] [PMID: 31019305]
[20]
Cecon E, Liu L, Jockers R. Melatonin receptor structures shed new light on melatonin research. J Pineal Res 2019; 67(4): e12606.
[http://dx.doi.org/10.1111/jpi.12606] [PMID: 31442321]
[21]
Pandiperumal S, Trakht I, Srinivasan V, et al. Physiological effects of melatonin: Role of melatonin receptors and signal transduction pathways. Prog Neurobiol 2008; 85(3): 335-53.
[http://dx.doi.org/10.1016/j.pneurobio.2008.04.001] [PMID: 18571301]
[22]
Ng KY, Leong MK, Liang H, Paxinos G. Melatonin receptors: Distribution in mammalian brain and their respective putative functions. Brain Struct Funct 2017; 222(7): 2921-39.
[http://dx.doi.org/10.1007/s00429-017-1439-6] [PMID: 28478550]
[23]
Carpentieri A, de Barboza DG, Areco V, Peralta LM, de Talamoni TN. New perspectives in melatonin uses. Pharmacol Res 2012; 65(4): 437-44.
[http://dx.doi.org/10.1016/j.phrs.2012.01.003] [PMID: 22311380]
[24]
Isola M, Ekström J, Diana M, et al. Subcellular distribution of melatonin receptors in human parotid glands. J Anat 2013; 223(5): 519-24.
[http://dx.doi.org/10.1111/joa.12105] [PMID: 23998562]
[25]
Isola M, Ekstrom J, Lilliu MA, Isola R, Loy F. Dynamics of the melatonin MT1 receptor in the rat parotid gland upon melatonin administration. J Physiol Pharmacol 2016; 67(1): 111-9.
[PMID: 27010900]
[26]
Hill S, Cheng C, Yuan L, et al. Age-related decline in melatonin and its MT1 receptor are associated with decreased sensitivity to melatonin and enhanced mammary tumor growth. Curr Aging Sci 2013; 6(1): 125-33.
[http://dx.doi.org/10.2174/1874609811306010016] [PMID: 23895529]
[27]
Vanecek J. Cellular mechanisms of melatonin action. Physiol Rev 1998; 78(3): 687-721.
[http://dx.doi.org/10.1152/physrev.1998.78.3.687] [PMID: 9674691]
[28]
Choi TY, Kwon JE, Durrance ES, Jo SH, Choi SY, Kim KT. Melatonin inhibits voltage-sensitive Ca2+ channel-mediated neurotransmitter release. Brain Res 2014; 1557: 34-42.
[http://dx.doi.org/10.1016/j.brainres.2014.02.023] [PMID: 24560601]
[29]
Boutin JA, Witt-Enderby PA, Sotriffer C, Zlotos DP. Melatonin receptor ligands: A pharmaco‐chemical perspective. J Pineal Res 2020; 69(3): e12672.
[http://dx.doi.org/10.1111/jpi.12672] [PMID: 32531076]
[30]
Jang H, Na Y, Hong K, et al. Synergistic effect of melatonin and ghrelin in preventing cisplatin-induced ovarian damage via regulation of FOXO3a phosphorylation and binding to the p27Kip1 promoter in primordial follicles. J Pineal Res 2017; 63(3): e12432.
[http://dx.doi.org/10.1111/jpi.12432] [PMID: 28658519]
[31]
Oishi A, Gbahou F, Jockers R. Melatonin receptors, brain functions, and therapies. Handb Clin Neurol 2021; 179: 345-56.
[http://dx.doi.org/10.1016/B978-0-12-819975-6.00022-4] [PMID: 34225974]
[32]
Tamura H, Jozaki M, Tanabe M, et al. Importance of melatonin in assisted reproductive technology and ovarian aging. Int J Mol Sci 2020; 21(3): 1135.
[http://dx.doi.org/10.3390/ijms21031135] [PMID: 32046301]
[33]
Lemley CO, Vonnahme KA. Physiology and endocrinology symposium: Alterations in uteroplacental hemodynamics during melatonin supplementation in sheep and cattle. J Anim Sci 2017; 95(5): 2211-21.
[http://dx.doi.org/10.2527/jas2016.1151] [PMID: 28726984]
[34]
Malpaux B, Thiéry JC, Chemineau P. Melatonin and the seasonal control of reproduction. Reprod Nutr Dev 1999; 39(3): 355-66.
[http://dx.doi.org/10.1051/rnd:19990308] [PMID: 10420438]
[35]
Reiter RJ, Tan DX, Manchester LC, Paredes SD, Mayo JC, Sainz RM. Melatonin and reproduction revisited. Biol Reprod 2009; 81(3): 445-56.
[http://dx.doi.org/10.1095/biolreprod.108.075655] [PMID: 19439728]
[36]
Fenn AM, Fonken LK, Nelson RJ. Sustained melatonin treatment blocks body mass, pelage, reproductive, and fever responses to short day lengths in female Siberian hamsters. J Pineal Res 2011; 51(2): 180-6.
[http://dx.doi.org/10.1111/j.1600-079X.2011.00874.x] [PMID: 21486368]
[37]
Ortavant R, Bocquier F, Pelletier J, Ravault JP, Thimonier J, Volland-Nail P. Seasonality of reproduction in sheep and its control by photoperiod. Aust J Biol Sci 1988; 41(1): 69-85.
[http://dx.doi.org/10.1071/BI9880069] [PMID: 3077741]
[38]
Li C, Zhou X. Melatonin and male reproduction. Clin Chim Acta 2015; 446: 175-80.
[http://dx.doi.org/10.1016/j.cca.2015.04.029] [PMID: 25916694]
[39]
Lee Barron M. Light exposure, melatonin secretion, and menstrual cycle parameters: an integrative review. Biol Res Nurs 2007; 9(1): 49-69.
[http://dx.doi.org/10.1177/1099800407303337] [PMID: 17601857]
[40]
Pitrosky B, Pévet P. The photoperiodic response in Syrian hamsters depends upon a melatonin-driven rhythm of sensitivity to melatonin. Neurosignals 1997; 6(4-6): 264-71.
[http://dx.doi.org/10.1159/000109137] [PMID: 9500665]
[41]
Sun TC, Li HY, Li XY, Yu K, Deng SL, Tian L. Protective effects of melatonin on male fertility preservation and reproductive system. Cryobiology 2020; 95: 1-8.
[http://dx.doi.org/10.1016/j.cryobiol.2020.01.018] [PMID: 32001217]
[42]
Feng TY, Li Q, Ren F, et al. Melatonin protects goat spermatogonial stem clls against oxidative damage during cryopreservation by improving antioxidant capacity and inhibiting mitochondrial apoptosis pathway. Oxid Med Cell Longev 2020; 2020: 1-16.
[http://dx.doi.org/10.1155/2020/5954635] [PMID: 33488926]
[43]
Zhao F, Whiting S, Lambourne S, Aitken RJ, Sun Y. Melatonin alleviates heat stress-induced oxidative stress and apoptosis in human spermatozoa. Free Radic Biol Med 2021; 164: 410-6.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.01.014] [PMID: 33482333]
[44]
Guo Y, Chen H, Wang QJ, et al. Prolonged melatonin treatment promote testicular recovery by enhancing RAC1-mediated apoptotic cell clearance and cell junction-dependent spermatogensis after heat stress. Theriogenology 2021; 162: 22-31.
[http://dx.doi.org/10.1016/j.theriogenology.2020.12.015] [PMID: 33418161]
[45]
Reiter RJ, Tamura H, Tan DX, Xu XY. Melatonin and the circadian system: Contributions to successful female reproduction. Fertil Steril 2014; 102(2): 321-8.
[http://dx.doi.org/10.1016/j.fertnstert.2014.06.014] [PMID: 24996495]
[46]
Abdelnaby EA, Abo El-Maaty AM. Melatonin and CIDR improved the follicular and luteal haemodynamics, uterine and ovarian arteries vascular perfusion, ovarian hormones and nitric oxide in cyclic cows. Reprod Domest Anim 2021; 56(3): 498-510.
[http://dx.doi.org/10.1111/rda.13888] [PMID: 33403762]
[47]
Zhang Z, Mu Y, Ding D, et al. Melatonin improves the effect of cryopreservation on human oocytes by suppressing oxidative stress and maintaining the permeability of the oolemma. J Pineal Res 2021; 70(2): e12707.
[http://dx.doi.org/10.1111/jpi.12707] [PMID: 33274466]
[48]
Zhang J, Zhao C, Shi F, Zhang S, Wang S, Feng X. Melatonin alleviates the deterioration of oocytes and hormonal disorders from mice subjected to glyphosate. Mol Cell Endocrinol 2021; 520: 111073.
[http://dx.doi.org/10.1016/j.mce.2020.111073] [PMID: 33159990]
[49]
Tarocco A, Caroccia N, Morciano G, et al. Melatonin as a master regulator of cell death and inflammation: molecular mechanisms and clinical implications for newborn care. Cell Death Dis 2019; 10(4): 317.
[http://dx.doi.org/10.1038/s41419-019-1556-7] [PMID: 30962427]
[50]
Haghi-Aminjan H, Asghari MH, Farhood B, Rahimifard M, Hashemi Goradel N, Abdollahi M. The role of melatonin on chemotherapy-induced reproductive toxicity. J Pharm Pharmacol 2018; 70(3): 291-306.
[http://dx.doi.org/10.1111/jphp.12855] [PMID: 29168173]
[51]
Pariente R, Pariente JA, Rodríguez AB, Espino J. Melatonin sensitizes human cervical cancer HeLa cells to cisplatin-induced cytotoxicity and apoptosis: Effects on oxidative stress and DNA fragmentation. J Pineal Res 2016; 60(1): 55-64.
[http://dx.doi.org/10.1111/jpi.12288] [PMID: 26462739]
[52]
van Dalum J, Melum VJ, Wood SH, Hazlerigg DG. Maternal photoperiodic programming: Melatonin and seasonal synchronization before birth. Front Endocrinol 2020; 10: 901.
[http://dx.doi.org/10.3389/fendo.2019.00901] [PMID: 31998235]
[53]
Carlomagno G, Minini M, Tilotta M, Unfer V. From implantation to birth: Insight into molecular melatonin functions. Int J Mol Sci 2018; 19(9): 2802.
[http://dx.doi.org/10.3390/ijms19092802] [PMID: 30227688]
[54]
Hsu CN, Huang LT, Tain YL. Perinatal use of melatonin for offspring health: focus on cardiovascular and neurological diseases. Int J Mol Sci 2019; 20(22): 5681.
[http://dx.doi.org/10.3390/ijms20225681] [PMID: 31766163]
[55]
Lowden A, Åkerstedt T, Wibom R. Suppression of sleepiness and melatonin by bright light exposure during breaks in night work. J Sleep Res 2004; 13(1): 37-43.
[http://dx.doi.org/10.1046/j.1365-2869.2003.00381.x] [PMID: 14996033]
[56]
Kennaway DJ. Melatonin rich foods in our diet: Food for thought or wishful thinking? Food Funct 2020; 11(11): 9359-69.
[http://dx.doi.org/10.1039/D0FO02563A] [PMID: 33170194]
[57]
Seko LMD, Moroni RM, Leitao VMS, Teixeira DM, Nastri CO, Martins WP. Melatonin supplementation during controlled ovarian stimulation for women undergoing assisted reproductive technology: Systematic review and meta-analysis of randomized controlled trials. Fertil Steril 2014; 101(1): 154-161.e4.
[http://dx.doi.org/10.1016/j.fertnstert.2013.09.036] [PMID: 24182414]
[58]
Yong W, Ma H, Na M, et al. Roles of melatonin in the field of reproductive medicine. Biomed Pharmacother 2021; 144: 112001.
[http://dx.doi.org/10.1016/j.biopha.2021.112001] [PMID: 34624677]
[59]
Tamura H, Takasaki A, Miwa I, et al. Oxidative stress impairs oocyte quality and melatonin protects oocytes from free radical damage and improves fertilization rate. J Pineal Res 2008; 44(3): 280-7.
[http://dx.doi.org/10.1111/j.1600-079X.2007.00524.x] [PMID: 18339123]
[60]
Hu KL, Ye X, Wang S, Zhang D. Melatonin application in assisted reproductive technology: A systematic review and meta-analysis of randomized trials. Front Endocrinol 2020; 11: 160.
[http://dx.doi.org/10.3389/fendo.2020.00160] [PMID: 32292388]
[61]
Cosme P, Rodríguez AB, Garrido M, Espino J. Coping with oxidative stress in reproductive pathophysiology and assisted reproduction: Melatonin as an emerging therapeutical tool. Antioxidants 2022; 12(1): 86.
[http://dx.doi.org/10.3390/antiox12010086] [PMID: 36670948]
[62]
Espino J, Macedo M, Lozano G, et al. Impact of melatonin supplementation in women with unexplained infertility undergoing fertility treatment. Antioxidants 2019; 8(9): 338.
[http://dx.doi.org/10.3390/antiox8090338] [PMID: 31450726]
[63]
Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W. Isolation of melatonin, the pineal gland factor that lightens melanocytes. J Am Chem Soc 1958; 80(10): 2587.
[http://dx.doi.org/10.1021/ja01543a060]
[64]
Tordjman S, Chokron S, Delorme R, et al. Melatonin: Pharmacology, functions and therapeutic benefits. Curr Neuropharmacol 2017; 15(3): 434-43.
[http://dx.doi.org/10.2174/1570159X14666161228122115] [PMID: 28503116]
[65]
Liu J, Clough SJ, Hutchinson AJ, Adamah-Biassi EB, Popovska-Gorevski M, Dubocovich ML. MT1 and MT2 melatonin receptors: A therapeutic perspective. Annu Rev Pharmacol Toxicol 2016; 56(1): 361-83.
[http://dx.doi.org/10.1146/annurev-pharmtox-010814-124742] [PMID: 26514204]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy