Generic placeholder image

Current Rheumatology Reviews

Editor-in-Chief

ISSN (Print): 1573-3971
ISSN (Online): 1875-6360

Review Article

Microsponges: A Neoteric Approach for the Effective Management of Osteoarthritis

Author(s): Shiwani Sen, Anjali Sharma*, Priyanka Kriplani and Kumar Guarve

Volume 19, Issue 4, 2023

Published on: 19 May, 2023

Page: [385 - 399] Pages: 15

DOI: 10.2174/1573397119666230417093138

Price: $65

Abstract

Background: A microsponge delivery system (MDS) is a cutting-edge and distinctive method of structured medication delivery. Regulated drug distribution is now possible with the use of microsponge technology. Techniques for drug release are created specifically to distribute medications to the body's various locations. As a result, pharmacological therapy becomes more effective, and patient compliance significantly affects the health care system.

Main Body: MDS consists of porous microspheres with a substantially porous structure and a very small spherical shape, ranging in size from 5 to 300 microns. MDS is typically used to administer medications through topical channels, but new research has demonstrated the promise of this technique for parenteral, oral, and ocular drug delivery. Topical formulations are an attempt to manage diseases like osteoarthritis, rheumatoid arthritis, psoriasis, etc. While reducing the drug's side effects, MDS can readily change the pharmaceutical release shape and enhance formulation stability. Reaching the highest peak plasma concentration in the blood is the main goal of microsponge medication delivery. The ability of MDS to self-sterilize is by far the most notable quality.

Conclusion: In countless studies, MDS is employed as an anti-allergic, anti-mutagenic, and nonirritant. This review covers the overview of microsponges along with their release mechanism. The article focuses on the marketed formulation of microsponges and patent data of the same. This review will be helpful for researchers working in MDS technology.

Keywords: Microsponges, anti-allergic, patient compliance, patents, quasi-emulsion solvent diffusion method, MDS technology.

Graphical Abstract
[1]
Murphy L, Helmick CG. The impact of osteoarthritis in the United States: A population-health perspective: A population-based review of the fourth most common cause of hospitalization in U.S. adults. Orthop Nurs 2012; 31(2): 85-91.
[http://dx.doi.org/10.1097/NOR.0b013e31824fcd42] [PMID: 22446800]
[2]
Heidari B. Knee osteoarthritis prevalence, risk factors, pathogenesis and features: Part I. Caspian J Intern Med 2011; 2(2): 205-12.
[PMID: 24024017]
[3]
Fang H, Beier F. Mouse models of osteoarthritis: modelling risk factors and assessing outcomes. Nat Rev Rheumatol 2014; 10(7): 413-21.
[http://dx.doi.org/10.1038/nrrheum.2014.46] [PMID: 24662645]
[4]
Glyn-Jones S, Palmer AJ, Agricola R. Carr AJ Osteoarthritis Lancet 2015; 386(9991): 376-87.
[PMID: 25748615]
[5]
Bijlsma JWJ, Berenbaum F, Lafeber FPJG. Osteoarthritis: An update with relevance for clinical practice. Lancet 2011; 377(9783): 2115-26.
[http://dx.doi.org/10.1016/S0140-6736(11)60243-2] [PMID: 21684382]
[6]
Hunziker EB, Lippuner K, Shintani N. How best to preserve and reveal the structural intricacies of cartilaginous tissue. Matrix Biol 2014; 39: 33-43.
[http://dx.doi.org/10.1016/j.matbio.2014.08.010] [PMID: 25173436]
[7]
Bottini M, Bhattacharya K, Fadeel B, Magrini A, Bottini N, Rosato N. Nanodrugs to target articular cartilage: An emerging platform for osteoarthritis therapy. Nanomedicine 2016; 12(2): 255-68.
[http://dx.doi.org/10.1016/j.nano.2015.09.013] [PMID: 26707894]
[8]
Man GS, Mologhianu G. Osteoarthritis pathogenesis - a complex process that involves the entire joint. J Med Life 2014; 7(1): 37-41.
[PMID: 24653755]
[9]
Fosang AJ, Beier F. Emerging Frontiers in cartilage and chondrocyte biology. Best Pract Res Clin Rheumatol 2011; 25(6): 751-66.
[http://dx.doi.org/10.1016/j.berh.2011.11.010] [PMID: 22265258]
[10]
Wang M, Sampson ER, Jin H, et al. MMP13 is a critical target gene during the progression of osteoarthritis. Arthritis Res Ther 2013; 15(1): R5.
[http://dx.doi.org/10.1186/ar4133] [PMID: 23298463]
[11]
Houard X, Goldring MB, Berenbaum F. Homeostatic mechanisms in articular cartilage and role of inflammation in osteoarthritis. Curr Rheumatol Rep 2013; 15(11): 375.
[http://dx.doi.org/10.1007/s11926-013-0375-6] [PMID: 24072604]
[12]
Loeser RF, Goldring SR, Scanzello CR, Goldring MB. Osteoarthritis: A disease of the joint as an organ. Arthritis Rheum 2012; 64(6): 1697-707.
[http://dx.doi.org/10.1002/art.34453] [PMID: 22392533]
[13]
Liu-Bryan R, Terkeltaub R. Emerging regulators of the inflammatory process in osteoarthritis. Nat Rev Rheumatol 2015; 11(1): 35-44.
[http://dx.doi.org/10.1038/nrrheum.2014.162] [PMID: 25266449]
[14]
Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP, Fahmi H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol 2011; 7(1): 33-42.
[http://dx.doi.org/10.1038/nrrheum.2010.196] [PMID: 21119608]
[15]
Marcu B, Otero M, Olivotto E, et al. NF-κB signaling: Multiple angles to target OA. Curr Drug Targets 2010; 11(5): 599-613.
[http://dx.doi.org/10.2174/138945010791011938] [PMID: 20199390]
[16]
Roman-Blas JA, Jimenez SA. NF-κB as a potential therapeutic target in osteoarthritis and rheumatoid arthritis. Osteoarthrit Cartilage 2006; 14(9): 839-48.
[http://dx.doi.org/10.1016/j.joca.2006.04.008] [PMID: 16730463]
[17]
Poulet B, Beier F. Targeting oxidative stress to reduce osteoarthritis. Arthritis Res Ther 2016; 18(1): 32.
[http://dx.doi.org/10.1186/s13075-015-0908-7] [PMID: 26818766]
[18]
Moltedo O, Remondelli P, Amodio G. The mitochondria-endoplasmic reticulum contacts and their critical role in aging and age-associated diseases. Front Cell Dev Biol 2019; 7: 172.
[http://dx.doi.org/10.3389/fcell.2019.00172] [PMID: 31497601]
[19]
Kim J, Xu M, Xo R, et al. Mitochondrial DNA damage is involved in apoptosis caused by pro-inflammatory cytokines in human OA chondrocytes. Osteoarthritis Cartilage 2010; 18(3): 424-32.
[http://dx.doi.org/10.1016/j.joca.2009.09.008] [PMID: 19822235]
[20]
Goodwin W, McCabe D, Sauter E, et al. Rotenone prevents impact-induced chondrocyte death. J Orthop Res 2010; 28(8): 1057-63.
[http://dx.doi.org/10.1002/jor.21091] [PMID: 20108345]
[21]
López-Armada MJ, Caramés B, Lires-Deán M, et al. Cytokines, tumor necrosis factor-α and interleukin-1β differentially regulate apoptosis in osteoarthritis cultured human chondrocytes. Osteoarthritis Cartilage 2006; 14(7): 660-9.
[http://dx.doi.org/10.1016/j.joca.2006.01.005] [PMID: 16492401]
[22]
Caramés B, López-Armada MJ, Cillero-Pastor B, et al. Differential effects of tumor necrosis factor-α and interleukin-1β on cell death in human articular chondrocytes. Osteoarthritis Cartilage 2008; 16(6): 715-22.
[http://dx.doi.org/10.1016/j.joca.2007.10.006] [PMID: 18054255]
[23]
Afonso V, Champy R, Mitrovic D, Collin P, Lomri A. Reactive oxygen species and superoxide dismutases: Role in joint diseases. Joint Bone Spine 2007; 74(4): 324-9.
[http://dx.doi.org/10.1016/j.jbspin.2007.02.002] [PMID: 17590367]
[24]
Bradley JD, Brandt KD, Katz BP, Kalasinski LA, Ryan SI. Comparison of an antiinflammatory dose of ibuprofen, an analgesic dose of ibuprofen, and acetaminophen in the treatment of patients with osteoarthritis of the knee. N Engl J Med 1991; 325(2): 87-91.
[http://dx.doi.org/10.1056/NEJM199107113250203] [PMID: 2052056]
[25]
Kirwan JR. The effect of glucocorticoids on joint destruction in rheumatoid arthritis. N Engl J Med 1995; 333(3): 142-7.
[http://dx.doi.org/10.1056/NEJM199507203330302] [PMID: 7791815]
[26]
Derendorf H, Möllmann H, Grüner A, Haack D, Gyselby G. Pharmacokinetics and pharmacodynamics of glucocorticoid suspensions after intra-articular administration. Clin Pharmacol Ther 1986; 39(3): 313-7.
[http://dx.doi.org/10.1038/clpt.1986.45] [PMID: 3948470]
[27]
Jadhav N, Patel V, Mungekar S, Bhamare G, Karpe M, Kadams V. Microsponge delivery system: An updated review, current status and future prospects. J Sci Innov 2013; 2(6): 1097-110.
[28]
Joshi G, Kaur R, Kaur H. Microsponges: A novel drug delivery system. J Pharm Biosci 2016; 3(1): 1-11.
[29]
Rajab NA, Jawad MS. Formulation and in vitro evaluation of piroxicam microsponge as a tablet. Int J Pharm Pharm Sci 2016; 8(2): 104-4.
[30]
Sharma D, Banik A. Recent advancements: Microsponge drug delivery system - A review.
[31]
Rafat S, Singh LV. Formulation and evaluation of microsponges gel for topical use 2017; Volume 6: 859-886.
[32]
Junqueira MV, Bruschi ML. A review about the drug delivery from microsponges. AAPS PharmSciTech 2018; 19(4): 1501-11.
[http://dx.doi.org/10.1208/s12249-018-0976-5] [PMID: 29484616]
[33]
Khattab A, Nattouf A. Optimization of entrapment efficiency and release of clindamycin in microsponge based gel. Sci Rep 2021; 11(1): 23345.
[http://dx.doi.org/10.1038/s41598-021-02826-7] [PMID: 34857863]
[34]
Bhatia M, Saini M. Formulation and evaluation of curcumin microsponges for oral and topical drug delivery. Prog Biomater 2018; 7(3): 239-48.
[http://dx.doi.org/10.1007/s40204-018-0099-9] [PMID: 30242738]
[35]
Naga Jyothi K, Dinesh Kumar P, Arshad P, Karthik M, Panneerselvam T. Microsponges: A promising novel drug delivery system. J Drug Deliv Ther 2019; 9(5-s): 188-94.
[http://dx.doi.org/10.22270/jddt.v9i5-s.3649]
[36]
Tambe AB, Deshmukh VK. Topical anti-inflammatory gels of naproxen entrapped in eudragit based microsponge delivery system. J Adv Chem Eng 2015; 5(2)
[37]
Salah S, Awad GEA, Makhlouf AIA. Improved vaginal retention and enhanced antifungal activity of miconazole microsponges gel: Formulation development and in vivo therapeutic efficacy in rats. Eur J Pharm Sci 2018; 114: 255-66.
[http://dx.doi.org/10.1016/j.ejps.2017.12.023] [PMID: 29288706]
[38]
Shahzad Y, Saeed S, Ghori MU, et al. Influence of polymer ratio and surfactants on controlled drug release from cellulosic microsponges. Int J Biol Macromol 2018; 109: 963-70.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.089] [PMID: 29154881]
[39]
Osmani R, Aloorkar N, Kulkarni A, et al. Novel cream containing microsponges of anti-acne agent: Formulation development and evaluation. Curr Drug Deliv 2015; 12(5): 504-16.
[http://dx.doi.org/10.2174/1567201812666150212122421] [PMID: 25675339]
[40]
Aldawsari H, Shaimaa MB. Microsponges as promising vehicle for drug delivery and targeting: Preparation, characterization and applications. Afr J Pharm Pharmacol 2013; 7(17): 873-81.
[http://dx.doi.org/10.5897/AJPP12.1329]
[41]
Kumar S, Tyagi LK, Singh D. Microsponge delivery system (MDS): A unique technology for delivery of active ingredients. Int J Pharm Sci Res 2011; 2(12): 3069-80.
[42]
Roy A. Microsponges-A novel drug delivery system - A review. Eur J Mol Clin Med 2020; 7(1): 2429-37.
[43]
Thakur R, Kumar S, Gaba P. A review: Novel method for microsponge drug delivery system. J Pharm Biol Sci 2020; 15(4): 35-44.
[44]
Adki KM, Kulkarni YA. Chemistry, pharmacokinetics, pharmacology and recent novel drug delivery systems of paeonol. Life Sci 2020; 250: 117544.
[http://dx.doi.org/10.1016/j.lfs.2020.117544] [PMID: 32179072]
[45]
Bhuptani RS, Patravale VB. Starch microsponges for enhanced retention and efficacy of topical sunscreen. Mater Sci Eng C 2019; 104: 109882.
[http://dx.doi.org/10.1016/j.msec.2019.109882] [PMID: 31500041]
[46]
D Shruthika Re, Latha K, Shaik NB, et al. Formulation and evalution of gliclazide tablet loaded with nano sponges. International Journal of Pharmaceuticals Research 2021 Apr 13(2): 4002-18.
[47]
Sher M, Bukhari SNA, Sarfaraz RM, et al. Formulation and evaluation of hydroxypropylmethylcellulose-dicyclomine microsponges for colon targeted drug delivery: in vitro and in vivo evaluation. Curr Drug Deliv 2022; 19(6): 686-96.
[http://dx.doi.org/10.2174/1567201818666210805153347] [PMID: 34353263]
[48]
Jain SK, Kaur M, Kalyani P, Mehra A, Kaur N, Panchal N. Microsponges enriched gel for enhanced topical delivery of 5-fluorouracil. J Microencapsul 2019; 36(7): 677-91.
[http://dx.doi.org/10.1080/02652048.2019.1667447] [PMID: 31509035]
[49]
Younis MA, El-Zahry MR, Tallat MA, Tawfeek HM. Sulpiride gastro-retentive floating microsponges; analytical study, in vitro optimization and in vivo characterization. J Drug Target 2020; 28(4): 386-97.
[http://dx.doi.org/10.1080/1061186X.2019.1663526] [PMID: 31478760]
[50]
Gusai T, Dhavalkumar M, Soniwala M, Dudhat K, Vasoya J, Chavda J. Formulation and optimization of microsponge-loaded emulgel to improve the transdermal application of acyclovir—a DOE based approach. Drug Deliv Transl Res 2021; 11(5): 2009-29.
[http://dx.doi.org/10.1007/s13346-020-00862-w] [PMID: 33159290]
[51]
Jafar M, Salahuddin M, Khan MSA, et al. Preparation and in vitro-in vivo evaluation of luteolin loaded gastroretentive microsponge for the eradication of Helicobacter pylori infections. Pharmaceutics 2021; 13(12): 2094.
[http://dx.doi.org/10.3390/pharmaceutics13122094] [PMID: 34959375]
[52]
Pandit AP, Patel SA, Bhanushali VP, Kulkarni VS, Kakad VD. Nebivolol-loaded microsponge gel for healing of diabetic wound. AAPS PharmSciTech 2017; 18(3): 846-54.
[http://dx.doi.org/10.1208/s12249-016-0574-3] [PMID: 27357423]
[53]
Kadnor NA, Pande VV, Kadam R, Upadhye SA. Fabrication and characterization of sertaconazole nitrate microsponge as a topical drug delivery system. Indian J Pharm Sci 2015; 77(6): 675-80.
[http://dx.doi.org/10.4103/0250-474X.174986] [PMID: 26997694]
[54]
Deshmukh K, Poddar SS. Tyrosinase inhibitor-loaded microsponge drug delivery system: New approach for hyperpigmentation disorders. J Microencapsul 2012; 29(6): 559-68.
[http://dx.doi.org/10.3109/02652048.2012.668955] [PMID: 22468629]
[55]
Nair AB, Kumar S, Dalal P, et al. Novel dermal delivery cargos of clobetasol propionate: An update. Pharmaceutics 2022; 14(2): 383.
[http://dx.doi.org/10.3390/pharmaceutics14020383] [PMID: 35214115]
[56]
Osmani RAM, Aloorkar NH, Ingale DJ, et al. Microsponges based novel drug delivery system for augmented arthritis therapy. Saudi Pharm J 2015; 23(5): 562-72.
[http://dx.doi.org/10.1016/j.jsps.2015.02.020] [PMID: 26594124]
[57]
Hussain H, Juyal D, Dhyani A. Microsponges: An overview. Int J Drug Deliv Technol 2014; 4(4): 58-66.
[58]
Tripathi PK, Gorain B, Choudhury H, Srivastava A, Kesharwani P. Dendrimer entrapped microsponge gel of dithranol for effective topical treatment. Heliyon 2019; 5(3): e01343.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01343] [PMID: 30957038]
[59]
Kappor D, Patel M, Vyas RB, Lad C, Tyagi BL. A review on microsponge drug delivery system. J Drug Deliv Ther 2014; 4(5): 29-35.
[http://dx.doi.org/10.22270/jddt.v4i5.978]
[60]
Veer SU, Gadhve MV, Khedkar AN. Microsponge: A drug delivery system. Int J Pharm Clin Res 2014; 6(4): 385-90.
[61]
Deore Mayuri B, Salunkhe KS. Microsponges as a modified drug delivery system. World J Pharm Res 2015; 4(3): 657-67.
[62]
Vitthal P, Anuradha S. A review on microsponges drug delivery system IJRAR- International Journal Research and Analytical Reviews. IJRAR 2020; Vol. 7: pp. 962-74.
[63]
Pawar AP, Gholap AP, Kuchekar AB, Bothiraja C, Mali AJ. Formulation and evaluation of optimized oxybenzone microsponge gel for topical delivery. J Drug Deliv 2015; 2015: 261068.
[http://dx.doi.org/10.1155/2015/261068]
[64]
Kaity S, Maiti S, Ghosh A, Pal D, Ghosh A, Banerjee S. Microsponges: A novel strategy for drug delivery system. J Adv Pharm Technol Res 2010; 1(3): 283-90.
[http://dx.doi.org/10.4103/0110-5558.72416] [PMID: 22247859]
[65]
Gangadharappa HV, Gupta N, Prasad MS, Shivakumar HG. Current trends in microsponge drug delivery system. Curr Drug Deliv 2013; 10(4): 453-65.
[http://dx.doi.org/10.2174/1567201811310040010] [PMID: 22974222]
[66]
Shaha V, Jain H, Krishna J, Patel P. Microsponge drug delivery: A review. Int J Res Pharm Sci 2010; 1(2): 212-8.
[67]
Pradhan SK. Microsponges as the versatile tool for drug delivery system. Int J Res Pharm Chem 2011; 1(2): 243-58.
[68]
Gad S, Elosaily G, Mahrous R, Moustafa Y, Khafagy E. Drug delivery from microsponges: A review article. RPBS 2021; 5(1): 21-7.
[http://dx.doi.org/10.21608/rpbs.2020.23585.1054]
[69]
Mahant S, Kumar S, Nanda S, Rao R. Microsponges for dermatological applications: Perspectives and challenges. Asian J Pharm Sci 2020; 15(3): 273-91.
[http://dx.doi.org/10.1016/j.ajps.2019.05.004]
[70]
Rajeswari S, Swapna V. Microsponges as a neoteric cornucopia for drug delivery systems. Int J Curr Pharm Res 2019; 11(3): 4-12.
[http://dx.doi.org/10.22159/ijcpr.2019v11i3.34099]
[71]
Vyas A, Kumar Sonker A, Gidwani B. Carrier-based drug delivery system for treatment of acne. Sci World J 2014; 2014: 276260.
[http://dx.doi.org/10.1155/2014/276260]
[72]
Khanka PS, Hussain K. Formulation and Evaluation of Antifungal Microsponge loaded gel. Int J Res Eng. Sci Manag 2019; 2: 497-501.
[73]
Osmani RAM, Moin A, Deb TK, Bhosale R, Hani U. Fabrication, characterization, and evaluation of microsponge delivery system for facilitated fungal therapy. J Basic Clin Pharm 2016; 7(2): 39-48.
[http://dx.doi.org/10.4103/0976-0105.177705] [PMID: 27057125]
[74]
Kadhim ZM, Mahmood HS, Alaayedi MA, et al. Formulation of flurbiprofen as microsponge drug delivery system. Int J Pharm Res 2020; 12(3): 748-53.
[75]
Mahaparale PR, Ikam SAN, Chavan MS, et al. Development and evaluation of terbinafine hydrochloride polymeric microsponges for topical drug delivery. Indian J Pharm Sci 2018; 80(6): 1086-92.
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000459]
[76]
Jelvehgari M, Siahi-Shadbad MR, Azarmi S, Martin GP, Nokhodchi A. The microsponge delivery system of benzoyl peroxide: Preparation, characterization and release studies. Int J Pharm 2006; 308(1-2): 124-32.
[http://dx.doi.org/10.1016/j.ijpharm.2005.11.001] [PMID: 16359833]
[77]
Dinesh Mohan S, Gupta VR. Transdermal delivery of fluconazole microsponges: Preparation and in vitro characterization. J Drug Deliv Ther 2016; 6(6): 7-15.
[78]
Dutta D, Goyal N, Kumar Sharma D. Formulation and development of herbal microsponge sunscreen gel. J Cosmet Dermatol 2022; 21(4): 1675-87.
[http://dx.doi.org/10.1111/jocd.14274] [PMID: 34087952]
[79]
He Y, Majid K, Maqbool M, et al. Formulation and characterization of lornoxicam-loaded cellulosic-microsponge gel for possible applications in arthritis. Saudi Pharm J 2020; 28(8): 994-1003.
[http://dx.doi.org/10.1016/j.jsps.2020.06.021] [PMID: 32792844]
[80]
Lalitha SK, Shankar M, Likhitha D, Dastagiri J, Babu MN. A current view on microsponge drug delivery system. Eur J Mol Biol Biochem 2016; 3(2): 88-95.
[81]
Choudhary UM, Mistree RY, Patel DN, et al. Formulation and development of aceclofenac loaded microsponges topical drug delivery system using quality by design approach 2021; 185-192.
[http://dx.doi.org/10.52711/0975-4377.2021.00033]
[82]
Bhavesh Patel M, Shaikh F, Patel VB, Surti N. Application of experiential design for framing gastroretentive microsponges of glipizide: Screening of critical variables by plackett-burman design and optimization by box-behnken design. Indian J Pharm Educ Res 2021; 55(4): 966-78.
[http://dx.doi.org/10.5530/ijper.55.4.197]
[83]
Singhvi G, Manchanda P, Hans N, Dubey SK, Gupta G. Microsponge: An emerging drug delivery strategy. Drug Dev Res 2019; 80(2): 200-8.
[http://dx.doi.org/10.1002/ddr.21492] [PMID: 30456763]
[84]
Shah H, Patel K. Formulation and evaluation of controlled release colon targeted micro sponge of Aceclofenac. Pharma Innov 2014; 3 (10, Part B): 81-7.
[85]
Barde PM, Basarkar GD. Formulation, development and in vitro evaluation of terbinafine HCl microsponge gel. Int J Pharm Sci Rev Res 2015; 32: 310-4.
[86]
Nief R, Hussein A. Preparation and evaluation of meloxicam microsponges: As transdermal delivery system. LAP LAMBERT Academic Publishing 2015.
[87]
Panday P, Shukla N, Sisodiya D, Jain V, Mahajan S. Design and characterization of microsponge loaded controlled release epicutaneous gel of lornoxicam. AMR 2015; 1(1): 16-21.
[http://dx.doi.org/10.5455/amr.20150127052147]
[88]
Vernekar A, Gude R, Ghadi N, Parab S, Shirodker A. Formulation and characterization of controlled release flurbiprofen microsponges loaded in gels. Indian J Pharm Educ Res 2019; 53(2s): s50-7.
[http://dx.doi.org/10.5530/ijper.53.2s.48]
[89]
Rajat S, Kumar MM, Kumar PA, Abhishek S, Krishna K. An insight of non-steroidal anti-inflammatory drug mefenamic acid: A review. GSC Biol Pharm Sci 2019; 7(2): 52-9.
[90]
Shaikh AA, Swami V, Buchade RS, Jadhav PN. Formulation development of celecoxib loaded microsponges using eudragit and ethyl cellulose. Int J Pharm Investig 2021; 11(2): 225-9.
[http://dx.doi.org/10.5530/ijpi.2021.2.40]
[91]
Jakhar S, Kadian V, Rao R. Dapsone-loaded microsponge gel for acne management: preparation, characterization and anti-microbial activity. Micro Nanosyst 2021; 13(2): 211-22.
[http://dx.doi.org/10.2174/1876402912999200630130442]
[92]
Pawar AR, Shete NA, Jadhav PV, Deshmukh VK, Mehetre JS. Enhancement of aqueous solubility, dissolution profile, and oral bioavailability of pentoxifylline by microsponges. Pharmaceut Fronts 2021; 3(4): e200-7.
[http://dx.doi.org/10.1055/s-0041-1740242]
[93]
Abdalla KF, Osman MA, Nouh AT, El Maghraby GM. Microsponges for controlled release and enhanced oral bioavailability of carbamazepine. J Drug Deliv Sci Technol 2021; 65: 102683.
[http://dx.doi.org/10.1016/j.jddst.2021.102683]
[94]
Patil A, Masareddy RS, Patil AS, Dwivedi PSR. Microsponge gel approach to increase the stability and efficacy of Avobenzone as a sun-protective agent. J Pharm Innov 2022; 17(4): 1347-59.
[http://dx.doi.org/10.1007/s12247-021-09616-8]
[95]
TLS. Srinivasan S, Chandrakala V. Formulation and evaluation of micro sponges loaded with acyclovir using an antiviral drug. Systematic Rev Pharm 2022; 13(4): 225-8.
[96]
Alshehry Y, Jafar M. The impact of microsponge and microsphere on improving oral bioavailability of medications: A short review. J Pharm Res Sci Technol 2022; 6(1): 1-7.
[http://dx.doi.org/10.31531/jprst.1000155]
[97]
Copetti PM, Bissacotti BF, da Silva Gündel S, et al. Pharmacokinetic profiles, cytotoxicity, and redox metabolism of free and nanoencapsulated curcumin. J Drug Deliv Sci Technol 2022; 72: 103352.
[http://dx.doi.org/10.1016/j.jddst.2022.103352]
[98]
Shah C, Shah D. Design and optimization of fluconazole microsponges containing ethyl cellulose for topical delivery system using quality by design approach. Pharma Sci Monitor 2014; 5(3): 95-133.
[99]
Mohite PB, Khanage SG, Harishchandre VS, Yogita S. Recent advances in microsponges drug delivery system. J Crit Rev 2016; 3(1): 9-16.
[100]
Kanchana C. Formulation, Characterization and evaluation of Nystatin Nanosponge gel for the treatment of candidiasis. (Doctoral dissertation, College of Pharmacy Madras Medical college, Chennai) 2015-2016; 1-124.
[101]
Priyadharshini M. Sustained delivery of Sertaconazole through microsponge based gel formulations (Doctoral dissertation, PGP College of Pharmaceutical Science and Research Institute, Namakkal) 2017.
[102]
Yao J, Zhang Y, Hu Q, et al. Optimization of paeonol-loaded poly(butyl-2-cyanoacrylate) nanocapsules by central composite design with response surface methodology together with the antibacterial properties. Eur J Pharm Sci 2017; 101: 189-99.
[http://dx.doi.org/10.1016/j.ejps.2017.01.028] [PMID: 28189814]
[103]
Yonashiro Marcelino M, Azevedo Borges F, Martins Costa AF, et al. Antifungal activity of fluconazole-loaded natural rubber latex against Candida albicans. Future Microbiol 2018; 13(3): 359-67.
[http://dx.doi.org/10.2217/fmb-2017-0154] [PMID: 29464962]
[104]
Pawar S, Shende P, Trotta F. Diversity of β-cyclodextrin-based nanosponges for transformation of actives. Int J Pharm 2019; 565: 333-50.
[http://dx.doi.org/10.1016/j.ijpharm.2019.05.015] [PMID: 31082468]
[105]
Nidhi K, Verma S, Kumar S. An advanced drug delivery system. J Clin Sci Res 2021; 10(2): 109.
[106]
a) Othman MH, Zayed GM, Ali UF, Abdellatif AA. Colon-specific tablets containing 5-fluorouracil microsponges for colon cancer targeting. Drug Dev Ind Pharm 2020; 46(12): 2081-8.;
b) Xie Z, Chen X. Healthy benefits and edible delivery systems of resveratrol: A review. Food Rev Int 2021; 1-27.
[107]
Gandhi H, Rathore C, Dua K, Vihal S, Tambuwala MM, Negi P. Efficacy of resveratrol encapsulated microsponges delivered by pectin based matrix tablets in rats with acetic acid-induced ulcerative colitis. Drug Dev Ind Pharm 2020; 46(3): 365-75.
[http://dx.doi.org/10.1080/03639045.2020.1724127] [PMID: 32041433]
[108]
de Saint Victor M, Crake C, Coussios CC, Stride E. Properties, characteristics and applications of microbubbles for sonothrombolysis. Expert Opin Drug Deliv 2014; 11(2): 187-209.
[http://dx.doi.org/10.1517/17425247.2014.868434] [PMID: 24400730]
[109]
Rajurkar V, Gosavi Y. Sustain release microsponge based drug delivery system for the plasmodium treatment: Formulation development and in vitro-in vivo evaluation. Anal Chem Lett 2018; 8(2): 205-16.
[http://dx.doi.org/10.1080/22297928.2018.1429304]
[110]
Mahmoud DBED, Shukr MH, ElMeshad AN. Gastroretentive microsponge as a promising tool for prolonging the release of mitiglinide calcium in type-2 diabetes mellitus: Optimization and pharmacokinetics study. AAPS PharmSciTech 2018; 19(6): 2519-32.
[http://dx.doi.org/10.1208/s12249-018-1081-5] [PMID: 29948984]
[111]
Kar K, Pal RN, Bala NN. Preparation, Characterisation and Evaluation of Ropinirole Hydrochloride loaded controlled release microspheres using solvent evaporation technique. Int J Pharm Pharm Sci 2018; 10(6): 57-67.
[http://dx.doi.org/10.22159/ijpps.2018v10i6.26070]
[112]
Redhu S, Pawar N. Development and characterization of microsponge gel for topical delivery of Oregano oil. Int J Pharm Sci Res 2021; 12(2): 1060-73.
[113]
Desavathu M, Pathuri R, Chunduru M. Design, development and characterization of valsartan microsponges by quasi emulsion technique and the impact of stirring rate on microsponge formation. J Appl Pharm Sci 2017; 7(1): 193-8.
[http://dx.doi.org/10.7324/JAPS.2017.70128]
[114]
Bharathi M, Mullaikodi O, Rajalingam D, Gnanasekar N, Kesavan M. A review on microsponge drug delivery system. International Journal of Review in Life Sciences 2020; 10(2): 53-9.
[115]
Maiti S, Kaity S, Ray S, Sa B. Development and evaluation of xanthan gum-facilitated ethyl cellulose microsponges for controlled percutaneous delivery of diclofenac sodium. Acta Pharm 2011; 61(3): 257-70.
[http://dx.doi.org/10.2478/v10007-011-0022-6] [PMID: 21945905]
[116]
Embil K, Nacht S. The Microsponge® Delivery System (MDS): A topical delivery system with reduced irritancy incorporating multiple triggering mechanisms for the release of actives. J Microencapsul 1996; 13(5): 575-88.
[http://dx.doi.org/10.3109/02652049609026042] [PMID: 8864994]
[117]
Chadawar V, Shaji J. Microsponge delivery system. Curr Drug Deliv 2007; 4(2): 123-9.
[http://dx.doi.org/10.2174/156720107780362320] [PMID: 17456031]
[118]
Ghosh B, Uppalapati Y, Tadimarri VS, Deshpande K. Formulation and evaluation of sitagliptin microsponges using different polymers. Int J Nano Res 2018; 1: 18-22.
[119]
Ali AU, Mortada A, Safwat MA, El-Faham TH. Performance of simvastatin microsponges as a local treatment for chronic periodontitis – Randomized clinical trial. J Drug Deliv Sci Technol 2021; 64: 102583.
[http://dx.doi.org/10.1016/j.jddst.2021.102583]
[120]
Sultan F, Chopra H, Kumar Sharma G. Formulation and evaluation of luliconazole microsponges loaded gel for topical delivery. Res J Pharm Technol 2021; 14(11): 5775-80.
[http://dx.doi.org/10.52711/0974-360X.2021.01004]
[121]
Devi N, Kumar S, Prasad M, Rao R. Eudragit RS100 based microsponges for dermal delivery of clobetasol propionate in psoriasis management. J Drug Deliv Sci Technol 2020; 55: 101347.
[http://dx.doi.org/10.1016/j.jddst.2019.101347]
[122]
Tundisi LL, Mostaço GB, Carricondo PC, Petri DFS. Hydroxypropyl methylcellulose: Physicochemical properties and ocular drug delivery formulations. Eur J Pharm Sci 2021; 159: 105736.
[http://dx.doi.org/10.1016/j.ejps.2021.105736] [PMID: 33516807]
[123]
Gangwar A, Kumar P, Singh R, Kush P. Recent advances in mupirocin delivery strategies for the treatment of bacterial skin and soft tissue infection. Future Pharmacology 2021; 1(1): 80-103.
[http://dx.doi.org/10.3390/futurepharmacol1010007]
[124]
Shetty NP, Prabhakaran M, Srivastava AK. Pleiotropic nature of curcumin in targeting multiple apoptotic‐mediated factors and related strategies to treat gastric cancer: A review. Phytother Res 2021; 35(10): 5397-416.
[http://dx.doi.org/10.1002/ptr.7158] [PMID: 34028111]
[125]
Soni P, Chaudhary GP, Soni LK. Polysaccharides for bacterially triggered system in colon targeting. Curr Res Pharm Sci 2015; 5(3): 65-94.
[126]
Porwal A, Dwivedi H, Pathak K. Decades of research in drug targeting using gastroretentive drug delivery systems for antihypertensive therapy. Braz J Pharm Sci 2017; 53(3): 53.
[http://dx.doi.org/10.1590/s2175-97902017000300173]
[127]
Darekar A, Pawar P, Saudagar RB. A review on microsponge as emerging drug delivery system. J Drug Deliv Ther 2019; 9(3-s): 793-801.
[128]
Muthu Kumar S, Sridevi M, Sankar C, Arul Kumaran KS. Microsponge drug delivery system. Res Dev Pharma Sci 2021; II: 83.
[129]
Shah CN, Shah DP. Microsponges: A revolutionary path breaking modified drug delivery of topical drugs. Int J Pharm Res 2014; 6(2): 1-3.
[130]
Tile MK, Pawar AY. Microsponges: A novel strategy for drug delivery. Int J Pure Appl Biosci 2015; 3(1): 224-35.
[131]
Kumar R, Bhowmick M, Dubey B. Polymeric microsponge technology: An overview on highly cross-linked porous spherical particles for topical delivery. Inventi Impact: NDDS 2012; (2): 1-7.
[132]
Bhatt V, Karakoti R, Singh AK, Sharma DK. Microsponges: A novel approach for drug delivery system. World J Pharm Res 2014; 3(9): 318-34.
[133]
Tiwari A, Mishra MK, Shukla A, Yadav SK. Microsponge: An augmented drug delivery system. Am J Pharm Tech Res 2016; 6(6): 80-95.
[134]
Mishra S, Gaur N, Shaw A, Chatterjee S, Sarkar P. Microsponges-a novel approach for drug targeting. Int J Pharm Res 2020; pp. 2243-9.
[135]
Khattab A, Nattouf A. Microsponge based gel as a simple and valuable strategy for formulating and releasing Tazarotene in a controlled manner. Sci Rep 2022; 12(1): 11414.
[http://dx.doi.org/10.1038/s41598-022-15655-z] [PMID: 35794139]
[136]
Vishvakarma R, Majumdar A, Malviya N. Formulation and evaluation of orlistat loaded microsponges for the treatment of obesity. Res J Pharm Technol 2022; 15(7): 3221-5.
[http://dx.doi.org/10.52711/0974-360X.2022.00540]
[137]
Syed SM, Gaikwad SS, Wagh S. Formulation and evaluation of gel containing fluconazole microsponges. Asian J Pharm Res Dev 2020; 8(4): 231-9.
[138]
Biswas GR, Bhattacharya S, Ghoshal P, Majee SB. Fabrication of microsponge as drug delivery of an antihypertensive drug evaluation 2020; 7(2): 423-430.
[139]
Hari K, Prathyusha SS, Vasavi G. Microsponges: A de novo method for colon targeted oral drug delivery. Int J Pharm Investig 2020; 10(3): 237-45.
[http://dx.doi.org/10.5530/ijpi.2020.3.44]
[140]
Chale GR. Tambe SR,Erande KB, Kulkarni PC,Gawali CH. Microsponges: A novel approach for topical application -A review. 2019; Vol(8), Issue 7,416-431.
[141]
Karthika R, Elango K, Ramesh Kumar K, Rahul K. Formulation and evaluation of lornoxicam microsponge tablets for the treatment of arthritis. Int J Pharm Innov 2013; 3(2): 29.
[142]
Aloorkar NH, Kulkarni AS, Ingale DJ, Patil RA. Microsponges as innovative drug delivery systems. Int J Pharm Sci Nanotechnol 2012; 5(1): 1597-606.
[143]
Jangde R. Microsponges for colon targeted drug delivery system: An overview. Asian J Pharm Technol 2011; 1: 87-93.
[144]
Kalbhare SB, Velhal AB, et al. Pharmaceutical and biotechnological applications of microsponges as novel nano technological drug delivery. System 2021; 6(4): 95-102.
[145]
Borawake PD, Kauslya A, Shinde JV, Chavan RS. Microsponge as an emerging technique in novel drug delivery system. J Drug Deliv Ther 2021; 11(1): 171-82.
[http://dx.doi.org/10.22270/jddt.v11i1.4492]
[146]
Panwar AS, Yadav CS, Yadav P, et al. Microsponge a novel carrier for cosmetics. J Glob Pharma Technol 2011; 3(7): 15-24.
[147]
Vickers ER. Peptides for hair growth. US Patent 16/085,904, 2019.
[148]
Lee H. Acute delivery of a drug or fluid to an ocular surface Patent PCT/US2020/030735, 2020.
[149]
Sajic D, Breslavets M, Sellitto S. Topical dermatologic acne treatment cream composition and method of manufacture Patent US 16/742,595, 2020.
[150]
Francesca C, Antonio R. Nano porous microsponge particles (nmp) of biocompatible polymers as universal carriers for biomolecules delivery. Patent PCT/IB2021/053536, 2021.
[151]
Henrik L. Robertson Adam, Wound debridement systems. Patent PCT/US2020/040865 2022; Feb 17.
[152]
Ofra B, Sharon M, Yelena M. Methods and compositions for preventing skin toxicities caused by biological targeted cancer drugs Patent PCT/IL2020/050887, 2021.
[153]
James W, Law R, Adam Q. Antibodies for binding plasmin Patent PCT/AU2020/051164, 2021.
[154]
Sophie U, Guilhaume D, Guillaume H, Abdelaziz M. Methods and pharmaceutical composition reducing skin inflammation Patent PCT/EP2019/075987, 2020.
[155]
Michael G. Methods for the treatment or prevention of autoimmune or autoinflammatory diseases Patent PCT/AU2019/050492, 2019.
[156]
Praful D. Medical devices including medicaments and methods of making and using same including enhancing comfort, enhancing drug penetration, and treatment of myopia Patent US17/362,203, 2021.
[157]
Arkin M, Cherkez S, Toledano O. Sol Gel Technologies Ltd, assignee Method of acne treatment by concomitant topical administration of benzoyl peroxide and tretinoin Patent US 15/647,331, 2019.
[158]
Greg QG, O’Brien S, Neil M. Antibacterial compositions and methods Patent PCT/AU2016/051037, 2018; May 11.
[159]
Guo P. JasinkiDaniel, Large scale production of RNA particles Patent PCT/US2019/043430, 2020; Jan 30.
[160]
Patel P, Anderson B. Topical administration of therapeutic agents and oligonucleotide formulations Patent US 16/095,134, 2019.
[161]
Kassiou M, Gulliver D, Reekie T, Katte T, Jorgensen W, Werry E. Metabolite inspired selective oxytocin receptor agonists Patent US 16/650,943, 2020.
[162]
Solanki R. Treatment of skin diseases through medicinal plants in different regions of the world. Int J Biomed Res 2011; 2(1): 73.
[http://dx.doi.org/10.7439/ijbr.v2i1.82]
[163]
Robert C. Weighted collagen microsponge for immobilizing bioactive materials Patent US06/932,088, 1989.
[164]
Kumar PM, Ghosh A. Development and evaluation of silver sulfadiazine loaded microsponge based gel for partial thickness (second degree) burn wounds. Eur J Pharm Sci 2017; 96: 243-54.
[http://dx.doi.org/10.1016/j.ejps.2016.09.038] [PMID: 27697504]
[165]
Pandit AP, Pol VV, Kulkarni VS. Xyloglucan based in situ gel of lidocaine HCl for the treatment of periodontosis. J Pharm 2016; 2016: 3054321.
[http://dx.doi.org/10.1155/2016/3054321]
[166]
Li SS, Li GF, Liu L, et al. Evaluation of paeonol skin-target delivery from its microsponge formulation: In vitro skin permeation and in vivo microdialysis. PLoS One 2013; 8(11): e79881.
[http://dx.doi.org/10.1371/journal.pone.0079881] [PMID: 24278204]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy