Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Panax notoginseng Saponins Alleviate LPS-induced Fibrosis of HK-2 Cells by Inhibiting the Activation of NLRP3 Inflammasome and Pyroptosis

Author(s): Jing Xie, Xin Ma, Xueying Li, Nan Mao, Sichong Ren* and Junming Fan*

Volume 25, Issue 1, 2024

Published on: 19 May, 2023

Page: [113 - 123] Pages: 11

DOI: 10.2174/1389201024666230417084507

Price: $65

conference banner
Abstract

Background: Renal fibrosis is related to impaired kidney function and can eventually lead to end-stage renal disease, for which no effective treatment is available. Panax notoginseng saponins (PNS), as a commonly used traditional Chinese medicine, is considered a possible alternative for the treatment of fibrosis.

Objective: The purpose of the present study was to investigate the effects and possible mechanisms of PNS on renal fibrosis.

Methods: HK-2 cells were used to induce renal fibrosis cell model by lipopolysaccharide (LPS), and the cytotoxicity of PNS on HK-2 cells was investigated. Cell damage, pyroptosis, and fibrosis were analyzed to investigate the effects of PNS on LPS-induced HK-2 cells. NLRP3 agonist Nigericin was used further to explore the inhibitory effect of PNS on LPS-induced pyroptosis so as to clarify the possible mechanism of PNS on renal fibrosis.

Results: PNS had no cytotoxicity on HK-2 cells, and could reduce the apoptosis and the release of lactate dehydrogenase (LDH) and inflammatory cytokines of LPS-induced HK-2 cells, showing an alleviating effect on cell damage. PNS also reduced the expression of pyroptosis proteins NLRP3, IL-1β, IL-18, and Caspase-1, as well as fibrosis proteins α-SMA, collagen Ⅰ and p-Smad3/Smad3, which showed an inhibitory effect on LPS-induced pyroptosis and fibrosis. In addition, LPSinduced cell damage, pyroptosis, and fibrosis were aggravated after Nigericin treatment, while PNS alleviated the aggravation caused by Nigericin.

Conclusion: PNS inhibited pyroptosis by inhibiting the activation of NLRP3 inflammasome in LPS-induced HK-2 cells, which ultimately alleviated renal fibrosis and played a good role in the treatment of kidney diseases.

Keywords: Panax notoginseng, saponins, renal fibrosis, HK-2 cells, NLRP3 inflammasome, pyroptosis.

Graphical Abstract
[1]
Glassock, R.J.; Warnock, D.G.; Delanaye, P. The global burden of chronic kidney disease: Estimates, variability and pitfalls. Nat. Rev. Nephrol., 2017, 13(2), 104-114.
[http://dx.doi.org/10.1038/nrneph.2016.163] [PMID: 27941934]
[2]
Schnaper, H.W. Renal fibrosis. Methods Mol. Med., 2005, 117, 45-68.
[PMID: 16118445]
[3]
Nastase, M.V.; Zeng-Brouwers, J.; Wygrecka, M.; Schaefer, L. Targeting renal fibrosis: Mechanisms and drug delivery systems. Adv. Drug Deliv. Rev., 2018, 129, 295-307.
[http://dx.doi.org/10.1016/j.addr.2017.12.019] [PMID: 29288033]
[4]
Nogueira, A.; Pires, M.J.; Oliveira, P.A. Pathophysiological mechanisms of renal fibrosis: A review of animal models and therapeutic strategies. In Vivo, 2017, 31(1), 1-22.
[http://dx.doi.org/10.21873/invivo.11019] [PMID: 28064215]
[5]
Chen, D.Q.; Feng, Y.L.; Cao, G.; Zhao, Y.Y. Natural products as a source for antifibrosis therapy. Trends Pharmacol. Sci., 2018, 39(11), 937-952.
[http://dx.doi.org/10.1016/j.tips.2018.09.002] [PMID: 30268571]
[6]
Wang, T.; Guo, R.; Zhou, G.; Zhou, X.; Kou, Z.; Sui, F.; Li, C.; Tang, L.; Wang, Z. Traditional uses, botany, phytochemistry, pharmacology and toxicology of Panax notoginseng (Burk.) F.H. Chen: A review. J. Ethnopharmacol., 2016, 188, 234-258.
[http://dx.doi.org/10.1016/j.jep.2016.05.005] [PMID: 27154405]
[7]
Xu, Y.; Tan, H.Y.; Li, S.; Wang, N.; Feng, Y. Panax notoginseng for inflammation-related chronic diseases: A review on the modulations of multiple pathways. Am. J. Chin. Med., 2018, 46(5), 971-996.
[http://dx.doi.org/10.1142/S0192415X18500519] [PMID: 29976083]
[8]
Yao, H.; Li, S.R.; Liu, J.Y.; Li, Z.; Wu, J. Effects of Panax notoginseng on the transdifferentiation of fibroblasts in human hypertrophic scar in vitro. Zhonghua Shao Shang Za Zhi, 2007, 23(3), 188-190.
[9]
Men, S.; Huo, Q.; Shi, L.; Yan, Y.; Yang, C.; Yu, W.; Liu, B. Panax notoginseng saponins promotes cutaneous wound healing and suppresses scar formation in mice. J. Cosmet. Dermatol., 2020, 19(2), 529-534.
[http://dx.doi.org/10.1111/jocd.13042] [PMID: 31267657]
[10]
Peng, X.; Dai, L.; Huang, C.; He, C.; Yang, B.; Chen, L. Relationship between anti-fibrotic effect of Panax notoginseng saponins and serum cytokines in rat hepatic fibrosis. Biochem. Biophys. Res. Commun., 2009, 388(1), 31-34.
[http://dx.doi.org/10.1016/j.bbrc.2009.07.099] [PMID: 19632202]
[11]
Liu, L.; Ning, B.; Cui, J.; Zhang, T.; Chen, Y. miR-29c is implicated in the cardioprotective activity of Panax notoginseng saponins against isoproterenol-induced myocardial fibrogenesis. J. Ethnopharmacol., 2017, 198, 1-4.
[http://dx.doi.org/10.1016/j.jep.2016.12.036] [PMID: 28017695]
[12]
Shi, J.; Gao, W.; Shao, F. Pyroptosis: Gasdermin-mediated programmed necrotic cell death. Trends Biochem. Sci., 2017, 42(4), 245-254.
[http://dx.doi.org/10.1016/j.tibs.2016.10.004] [PMID: 27932073]
[13]
Zhao, Y.; Shi, J.; Shao, F. Inflammatory caspases: Activation and cleavage of gasdermin-D in vitro and during pyroptosis. Methods Mol. Biol., 2018, 1714, 131-148.
[http://dx.doi.org/10.1007/978-1-4939-7519-8_9] [PMID: 29177860]
[14]
Li, Y.; Yuan, Y.; Huang, Z.; Chen, H.; Lan, R.; Wang, Z.; Lai, K.; Chen, H.; Chen, Z.; Zou, Z.; Ma, H.; Lan, H.Y.; Mak, T.W.; Xu, Y. GSDME-mediated pyroptosis promotes inflammation and fibrosis in obstructive nephropathy. Cell Death Differ., 2021, 28(8), 2333-2350.
[http://dx.doi.org/10.1038/s41418-021-00755-6] [PMID: 33664482]
[15]
Lin, J.; Cheng, A.; Cheng, K.; Deng, Q.; Zhang, S.; Lan, Z.; Wang, W.; Chen, J. New insights into the mechanisms of pyroptosis and implications for diabetic kidney disease. Int. J. Mol. Sci., 2020, 21(19), 7057.
[http://dx.doi.org/10.3390/ijms21197057] [PMID: 32992874]
[16]
Rayego-Mateos, S.; Valdivielso, J.M. New therapeutic targets in chronic kidney disease progression and renal fibrosis. Expert Opin. Ther. Targets, 2020, 24(7), 655-670.
[http://dx.doi.org/10.1080/14728222.2020.1762173] [PMID: 32338087]
[17]
Du, Y.; Wang, L.; Qian, J.; Zhang, K.; Chai, K. Panax notoginseng saponins protect kidney from diabetes by up-regulating silent information regulator 1 and activating antioxidant proteins in rats. Chin. J. Integr. Med., 2016, 22(12), 910-917.
[http://dx.doi.org/10.1007/s11655-015-2446-1] [PMID: 26712211]
[18]
Xie, X.; Yang, M.; Liu, H.; Zuo, C.; Li, Z.; Deng, Y.; Fan, J. Influence of ginsenoside Rg1, a panaxatriol saponin from Panax notoginseng, on renal fibrosis in rats with unilateral ureteral obstruction. J. Zhejiang Univ. Sci. B, 2008, 9(11), 885-894.
[http://dx.doi.org/10.1631/jzus.B0820024] [PMID: 18988308]
[19]
Sun, Y.B.; Qu, X.; Caruana, G.; Li, J. The origin of renal fibroblasts/myofibroblasts and the signals that trigger fibrosis. Differentiation, 2016, 92(3), 102-107.
[http://dx.doi.org/10.1016/j.diff.2016.05.008] [PMID: 27262400]
[20]
Mack, M.; Yanagita, M. Origin of myofibroblasts and cellular events triggering fibrosis. Kidney Int., 2015, 87(2), 297-307.
[http://dx.doi.org/10.1038/ki.2014.287] [PMID: 25162398]
[21]
Lovisa, S.; LeBleu, V.S.; Tampe, B.; Sugimoto, H.; Vadnagara, K.; Carstens, J.L.; Wu, C.C.; Hagos, Y.; Burckhardt, B.C.; Pentcheva-Hoang, T.; Nischal, H.; Allison, J.P.; Zeisberg, M.; Kalluri, R. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat. Med., 2015, 21(9), 998-1009.
[http://dx.doi.org/10.1038/nm.3902] [PMID: 26236991]
[22]
Baues, M.; Klinkhammer, B.M.; Ehling, J.; Gremse, F.; van Zandvoort, M.A.M.J.; Reutelingsperger, C.P.M.; Daniel, C.; Amann, K. Bábíčková, J.; Kiessling, F.; Floege, J.; Lammers, T.; Boor, P. A collagen-binding protein enables molecular imaging of kidney fibrosis in vivo. Kidney Int., 2020, 97(3), 609-614.
[http://dx.doi.org/10.1016/j.kint.2019.08.029] [PMID: 31784048]
[23]
Hu, H.H.; Chen, D.Q.; Wang, Y.N.; Feng, Y.L.; Cao, G.; Vaziri, N.D.; Zhao, Y.Y. New insights into TGF-β/Smad signaling in tissue fibrosis. Chem. Biol. Interact., 2018, 292, 76-83.
[http://dx.doi.org/10.1016/j.cbi.2018.07.008] [PMID: 30017632]
[24]
Singh, N.; Siddarth, M.; Ghosh, R.; Tripathi, A.K.; Banerjee, B.D. Heptachlor-induced epithelial to mesenchymal transition in HK-2 cells mediated via TGF-β1/Smad signalling. Hum. Exp. Toxicol., 2019, 38(5), 567-577.
[http://dx.doi.org/10.1177/0960327119828136] [PMID: 30719927]
[25]
Su, J.; Morgani, S.M.; David, C.J.; Wang, Q.; Er, E.E.; Huang, Y.H.; Basnet, H.; Zou, Y.; Shu, W.; Soni, R.K.; Hendrickson, R.C.; Hadjantonakis, A.K.; Massagué, J. TGF-β orchestrates fibrogenic and developmental EMTs via the RAS effector RREB1. Nature, 2020, 577(7791), 566-571.
[http://dx.doi.org/10.1038/s41586-019-1897-5] [PMID: 31915377]
[26]
Chen, L.; Yang, T.; Lu, D.W.; Zhao, H.; Feng, Y.L.; Chen, H.; Chen, D.Q.; Vaziri, N.D.; Zhao, Y.Y. Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment. Biomedecine & pharmacotherapie, 2018, 101, 670-681.
[27]
Leeuwis, J.W.; Nguyen, T.Q.; Dendooven, A.; Kok, R.J.; Goldschmeding, R. Targeting podocyte-associated diseases. Adv. Drug Deliv. Rev., 2010, 62(14), 1325-1336.
[http://dx.doi.org/10.1016/j.addr.2010.08.012] [PMID: 20828590]
[28]
Su, B.H.; Li, Z.; Fan, J.M.; Wang, M.; Tang, R. Effects of Panax notoginseng saponins on the process of renal interstitial fibrosis after unilateral ureteral obstruction in rats. Sichuan Da Xue Xue Bao Yi Xue Ban, 2005, 36(3), 368-371.
[PMID: 15931871]
[29]
Wang, M.; Fan, J.M.; Liu, X.Y. Effect of total saponins of Panax notoginseng on transdifferentiation of rats’ tubular epithelial cell induced by IL-1alpha. Chung Kuo Chung Hsi I Chieh Ho Tsa Chih, 2004, 24(8), 722-725.
[PMID: 15366598]
[30]
Kumar, P.; Nagarajan, A.; Uchil, P.D. Analysis of Cell viability by the Lactate Dehydrogenase Assay. Cold Spring Harb. Protoc., 2018, 2018(6), pdb.prot095497.
[http://dx.doi.org/10.1101/pdb.prot095497] [PMID: 29858337]
[31]
Frank, D.; Vince, J.E. Pyroptosis versus necroptosis: Similarities, differences, and crosstalk. Cell Death Differ., 2019, 26(1), 99-114.
[http://dx.doi.org/10.1038/s41418-018-0212-6] [PMID: 30341423]
[32]
Liu, X.; Zhang, Z.; Ruan, J.; Pan, Y.; Magupalli, V.G.; Wu, H.; Lieberman, J. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature, 2016, 535(7610), 153-158.
[http://dx.doi.org/10.1038/nature18629] [PMID: 27383986]
[33]
He, Y.; Hara, H.; Núñez, G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem. Sci., 2016, 41(12), 1012-1021.
[http://dx.doi.org/10.1016/j.tibs.2016.09.002] [PMID: 27669650]
[34]
Chawla, M.; Roy, P.; Basak, S. Role of the NF-κB system in context-specific tuning of the inflammatory gene response. Curr. Opin. Immunol., 2021, 68, 21-27.
[http://dx.doi.org/10.1016/j.coi.2020.08.005] [PMID: 32898750]
[35]
Jia, C.; Chen, H.; Zhang, J.; Zhou, K.; Zhuge, Y.; Niu, C.; Qiu, J.; Rong, X.; Shi, Z.; Xiao, J.; Shi, Y.; Chu, M. Role of pyroptosis in cardiovascular diseases. Int. Immunopharmacol., 2019, 67, 311-318.
[http://dx.doi.org/10.1016/j.intimp.2018.12.028] [PMID: 30572256]
[36]
Zheng, Z.; Li, G. Mechanisms and therapeutic regulation of pyroptosis in inflammatory diseases and cancer. Int. J. Mol. Sci., 2020, 21(4), 1456.
[http://dx.doi.org/10.3390/ijms21041456] [PMID: 32093389]
[37]
Tan, Y.F.; Wang, M.; Chen, Z.Y.; Wang, L.; Liu, X.H. Inhibition of BRD4 prevents proliferation and epithelial–mesenchymal transition in renal cell carcinoma via NLRP3 inflammasome-induced pyroptosis. Cell Death Dis., 2020, 11(4), 239.
[http://dx.doi.org/10.1038/s41419-020-2431-2] [PMID: 32303673]
[38]
Song, S.; Qiu, D.; Luo, F.; Wei, J.; Wu, M.; Wu, H.; Du, C.; Du, Y.; Ren, Y.; Chen, N.; Duan, H.; Shi, Y. Knockdown of NLRP3 alleviates high glucose or TGFB1-induced EMT in human renal tubular cells. J. Mol. Endocrinol., 2018, 61(3), 101-113.
[http://dx.doi.org/10.1530/JME-18-0069] [PMID: 30307163]
[39]
Zhang, Z.; Shao, X.; Jiang, N.; Mou, S.; Gu, L.; Li, S.; Lin, Q.; He, Y.; Zhang, M.; Zhou, W.; Ni, Z. Caspase-11-mediated tubular epithelial pyroptosis underlies contrast-induced acute kidney injury. Cell Death Dis., 2018, 9(10), 983.
[http://dx.doi.org/10.1038/s41419-018-1023-x] [PMID: 30250284]
[40]
Miao, N.; Yin, F.; Xie, H.; Wang, Y.; Xu, Y.; Shen, Y.; Xu, D.; Yin, J.; Wang, B.; Zhou, Z.; Cheng, Q.; Chen, P.; Xue, H.; Zhou, L.; Liu, J.; Wang, X.; Zhang, W.; Lu, L. The cleavage of gasdermin D by caspase-11 promotes tubular epithelial cell pyroptosis and urinary IL-18 excretion in acute kidney injury. Kidney Int., 2019, 96(5), 1105-1120.
[http://dx.doi.org/10.1016/j.kint.2019.04.035] [PMID: 31405732]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy