Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Synthetic and Mechanistic Investigations in cis-3-(Substituted acetoxy) azetidin-2-ones from cis-3-Hydroxyazetidin-2-ones: Potential Synthons for Pharmacophoric Hybridized Molecules

Author(s): Aman Bhalla*, Garima Modi, Jaswinder Kaur, Pankaj Kumar and Shamsher S. Bari

Volume 20, Issue 9, 2023

Published on: 17 May, 2023

Page: [883 - 891] Pages: 9

DOI: 10.2174/1570178620666230417084129

Price: $65

Abstract

The present work describes the synthesis of cis-3-(substituted acetoxy)azetidin-2-ones from cis-3-hydroxyazetidin-2-ones. Two different routes have been investigated for the substitution at the C-3 position of the azetidin-2-ones. Method A involves the use of acetyl chloride XCOCl in the presence of pyridine and method B consists of using appropriate acid XCOOH in a catalytic amount of DMAP which was found to be the best to furnish the target azetidin-2-one. All the newly synthesized compounds were characterized on the basis of various spectroscopic techniques (FT-IR, 1H NMR, 13C NMR, and elemental analysis). Two different routes have been investigated for the substitution at the C-3 position of the azetidin-2-ones.

Keywords: Acetyl chloride, esterification, azetidin-2-one, microorganism, acetyl chloride, pharmacokinetics, FT-IR, monobactams.

« Previous
Graphical Abstract
[1]
Bhattacharya, P.; Dutta, S.; Chandra, K.; Basak, A. In: In Beta-Lactams; Banik, B.K. Springer: Chem, 2017, p. 373-419.
[http://dx.doi.org/10.1007/978-3-319-55621-5_12]
[2]
Lima, L.M.; Silva, B.N.M.; Barbosa, G.; Barreiro, E.J. Eur. J. Med. Chem., 2020, 208, 112829.
[http://dx.doi.org/10.1016/j.ejmech.2020.112829] [PMID: 33002736]
[3]
Ombito, J.O.; Singh, G.S. Mini Rev. Org. Chem., 2019, 16(6), 544-567.
[http://dx.doi.org/10.2174/1570193X15666180914165303]
[4]
Ojima, I.; Zuniga, E.S.; Seitz, J.D. Top. Heterocycl. Chem., 2012, 30, 1-63.
[http://dx.doi.org/10.1007/7081_2012_86]
[5]
a) Kamath, A.; Ojima, I. Tetrahedron, 2012, 68, 10640-10664.
[http://dx.doi.org/10.1016/j.tet.2012.07.090];
b) Wei, C.; Zhu, J.F.; Zhang, J.Q.; Deng, Q.; Mo, D.L. Adv. Synth. Catal., 2019, 361, 3965-3973.
[http://dx.doi.org/10.1002/adsc.201900523];
c) Zhang, J.Q.; Qiu, P.W.; Liang, C.; Mo, D.L. Org. Lett., 2022, 24, 7801-7805.
[http://dx.doi.org/10.1021/acs.orglett.2c03156]
[6]
King, D.T.; Sobhanifar, S.; Strynadka, N.C.J. In: Handbook of Antimicrobial Resistance; Springer: New York, 2017, pp. 177-201.
[http://dx.doi.org/10.1007/978-1-4939-0694-9_10]
[7]
Walsh, C.T.; Wencewicz, T.A. J. Antibiot., 2014, 67(1), 7-22.
[http://dx.doi.org/10.1038/ja.2013.49] [PMID: 23756684]
[8]
Rosa, M.D.; Verdino, A.; Soriente, A.; Marabotti, A. Int. J. Mol. Sci., 2021, 22, 617.
[http://dx.doi.org/10.3390/ijms22020617] [PMID: 33435500]
[9]
Szumilak, M.; Wiktorowska-Owczarek, A.; Stanczak, A. Molecules, 2021, 26(9), 2601.
[http://dx.doi.org/10.3390/molecules26092601] [PMID: 33946916]
[10]
Kumar, H.M.S.; Hermann, L.; Tsogoeva, S.B. Bioorg. Med. Chem. Lett., 2020, 30, 127514.
[http://dx.doi.org/10.1016/j.bmcl.2020.127514] [PMID: 32860980]
[11]
Domalaon, R.; Idowu, T.; Zhanel, G.G.; Schweizer, F. Clin. Microbiol. Rev., 2018, 31(2), e00077-e17.
[http://dx.doi.org/10.1128/CMR.00077-17] [PMID: 29540434]
[12]
Kumar, K.; Singh, P.; Kremer, L.; Guérardel, Y.; Biot, C.; Kumar, V. Dalton Trans., 2012, 41(19), 5778-5781.
[http://dx.doi.org/10.1039/c2dt30514c] [PMID: 22473422]
[13]
Singh, P.; Raj, R.; Kumar, V.; Mahajan, M.P.; Bedi, P.M.S.; Kaur, T.; Saxena, A.K. Eur. J. Med. Chem., 2012, 47(1), 594-600.
[http://dx.doi.org/10.1016/j.ejmech.2011.10.033] [PMID: 22071256]
[14]
Vandekerckhove, S.; D’hooghe, M. Bioorg. Med. Chem., 2013, 21(13), 3643-3647.
[http://dx.doi.org/10.1016/j.bmc.2013.04.033] [PMID: 23684232]
[15]
Jarrahpour, A.; Shirvani, P.; Sinou, V.; Latour, C.; Brunel, J.M. Med. Chem. Res., 2016, 25(1), 149-162.
[http://dx.doi.org/10.1007/s00044-015-1474-x]
[16]
Brandão, P.; López, Ó.; Leitzbach, L.; Stark, H.; Fernández-Bolaños, J.G.; Burke, A.J.; Pineiro, M. ACS Med. Chem. Lett., 2021, 12(11), 1718-1725.
[http://dx.doi.org/10.1021/acsmedchemlett.1c00344] [PMID: 34795859]
[17]
Borazjani, N.; Sepehri, S.; Behzadi, M.; Jarrahpour, A.; Rad, J.A.; Sasanipour, M.; Mohkam, M.; Ghasemi, Y.; Akbarizadeh, A.R.; Digiorgio, C.; Brunel, J.M.; Ghanbari, M.M.; Batta, G.; Turos, E. Eur. J. Med. Chem., 2019, 179, 389-403.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.036] [PMID: 31260892]
[18]
Mohamadzadeh, M.; Zarei, M.; Vessal, M. Bioorg. Chem., 2020, 95, 103515.
[http://dx.doi.org/10.1016/j.bioorg.2019.103515] [PMID: 31884134]
[19]
Heiran, R.; Jarrahpour, A.; Riazimontazer, E.; Gholami, A.; Troudi, A.; Digiorgio, C.; Brunel, J.M.; Turos, E. ChemistrySelect, 2021, 6(21), 5313-5319.
[http://dx.doi.org/10.1002/slct.202101194]
[20]
a) Singh, G.S.; Pheko, T. Indian J. Chem., 2008, 47B, 159-162.;
b) Adlington, R.M.; Baldwin, J.E.; Chen, B.; Cooper, S.L.; McCoull, W.; Pritchard, G.J.; Howe, T.J.; Becker, G.W.; Hermann, R.B.; McNulty, A.M.; Neubauer, B.L. Bioorg. Med. Chem. Lett., 1997, 7(13), 1689-1694.
[http://dx.doi.org/10.1016/S0960-894X(97)00285-0];
c) Bittermann, H.; Gmeiner, P. J. Org. Chem., 2006, 71(1), 97-102.
[http://dx.doi.org/10.1021/jo0517287] [PMID: 16388623];
d) Veeraraghavan, B.; Bakthavatchalam, Y.D.; Sahni, R.D. Infect. Dis. Ther., 2021, 10(4), 1815-1835.
[http://dx.doi.org/10.1007/s40121-021-00509-4] [PMID: 34357517];
e) Klimberg, I.W.; Malek, G.H.; Cox, C.E.; Patterson, A.L.; Whalen, E.; Kowalsky, S.F.; Echols, R.M. J. Antimicrob. Chemother., 1999, 43(Suppl. 1), 77-84.
[http://dx.doi.org/10.1093/jac/43.suppl_1.77] [PMID: 10225576];
f) Markley, J.L.; Morse, T.L.; Rath, N.P.; Wencewicz, T.A. Tetrahedron, 2018, 74(22), 2743-2753.
[http://dx.doi.org/10.1016/j.tet.2018.04.040]
[21]
a) Bhalla, J.; Bari, S.S.; Chaudhary, G.R.; Kumar, A.; Rathee, A.; Sharma, R.; Bhalla, A. Synth. Commun., 2021, 51(24), 3758-3767.
[http://dx.doi.org/10.1080/00397911.2021.1992441];
b) Berry, S.; Bari, S.S.; Yadav, P.; Garg, A.; Khullar, S.; Mandal, S.K.; Bhalla, A. Synth. Commun., 2020, 50(19), 2969-2980.
[http://dx.doi.org/10.1080/00397911.2020.1788599]
[22]
a) Song, C.E.; Lee, S.W.; Roh, E.J.; Lee, S.; Lee, W.K. Tetrahedron Asymmetry, 1998, 9(6), 983-992.
[http://dx.doi.org/10.1016/S0957-4166(98)00049-4];
b) Buttero, P.D.; Molteni, G.; Pilati, T. Tetrahedron Asymmetry, 2010, 21(21-22), 2607-2611.
[http://dx.doi.org/10.1016/j.tetasy.2010.10.018];
c) Moyna, G.; Williams, H.J.; Scott, A.I. Synth. Commun., 1997, 27(9), 1561-1567.
[http://dx.doi.org/10.1080/00397919708006094]
[23]
Brieva, R.; Crich, J.Z.; Sih, C.J. J. Org. Chem., 1993, 58(5), 1068-1075.
[http://dx.doi.org/10.1021/jo00057a018]
[24]
Lutjen, A.B.; Quirk, M.A.; Barbera, A.M.; Kolonko, E.M. Bioorg. Med. Chem., 2018, 26(19), 5291-5298.
[http://dx.doi.org/10.1016/j.bmc.2018.04.007] [PMID: 29703423]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy