Generic placeholder image

New Emirates Medical Journal

Editor-in-Chief
ISSN (Online): 0250-6882

Review Article

Bacterial Infection in Head and Neck Space Regions: A Narrative Review

Author(s): Smarita Lenka, Shakti Rath*, Santosh Kumar Swain and Debasmita Dubey

Volume 4, Issue 2, 2023

Published on: 13 June, 2023

Article ID: e170423215843 Pages: 9

DOI: 10.2174/0250688204666230417083058

open_access

Abstract

Head and neck infection (HNI) is more complicated, as most of the sites of infection in this regions are very complex. Bacterial head and neck infections can usually originate through the upper airway, sinusitis, and dental or oral cavity and then extend deeper into other head and neck compartment sites. Both aerobic and anaerobic bacteria induce bacterial head and neck infections. This narrative review discusses the bacterial association, sites of infection, host-pathogen interaction, and secondary complications of head and neck bacterial infection. Staphylococcus aureus, Klebsiella spp, Escherichia coli, Peptostreptococcus spp., Pseudomonas putida, Pseudomonas aeruginosa, Fusobacterium spp, Citrobacter freundii, Streptococcus gordonii, Enterobacter spp, Gemella haemolysans, Haemophilus influenzae, and Enterococcus spp., Fusobacterium Spp are commonly responsible bacteria behind the bacterial head and neck infection (BHNI). Immunosuppression, alcohol consumption, and smoking risk factors are associated with it. The immune cell maintains a defense mechanism in host-pathogen interaction. Antibiotic-resistant genes in mucoid biofilm raise multidrug resistance against pathogenic bacteria. Inflammatory condition of the complete head and neck region can be demonstrated by computed tomography (CT) scan. The secondary complication may lead to induce cancer. Microbial invasions can be bacterial, fungal, or viral.

Keywords: Head and neck space, Bacterial infection, Drug resistance, Host bacteria interaction, CT scan, Microbial invasions.

[1]
Heim N, Faron A, Wiedemeyer V, Reich R, Martini M. Microbiology and antibiotic sensitivity of head and neck space infections of odontogenic origin. Differences in inpatient and outpatient management. J Craniomaxillofac Surg 2017; 45(10): 1731-5.
[http://dx.doi.org/10.1016/j.jcms.2017.07.013] [PMID: 28838838]
[2]
Walia IS, Borle RM, Mehendiratta D, Yadav AO. Microbiology and antibiotic sensitivity of head and neck space infections of odontogenic origin. J Maxillofac Oral Surg 2014; 13(1): 16-21.
[http://dx.doi.org/10.1007/s12663-012-0455-6] [PMID: 24644391]
[3]
Akhtar N, Saleem M, Mian FA, Shareef MJ, Hussain F. Head and neck infections. Prof Med J 2015; 22(6): 787-92.
[http://dx.doi.org/10.29309/TPMJ/2015.22.06.1250]
[4]
Raj LV, Sachdeva K, Shukla A, Kabade MV, Tom SM. Current scenario of suppurative head and neck infections in patients of tertiary care centre in COVID era. Int J Otorhinolaryngol Head and Neck Surg 2022; 8(4): 314-20.
[http://dx.doi.org/10.18203/issn.2454-5929.ijohns20220797]
[5]
Brook I. Anaerobic bacteria in upper respiratory tract and head and neck infections: Microbiology and treatment. Anaerobe 2012; 18(2): 214-20.
[http://dx.doi.org/10.1016/j.anaerobe.2011.12.014] [PMID: 22197951]
[6]
Atkinson H, Wallis S, Coatesworth AP. Otitis media with effusion. Postgrad Med 2015; 127(4): 381-5.
[http://dx.doi.org/10.1080/00325481.2015.1028317] [PMID: 25913597]
[7]
Hasturk H, Kantarci A, Van Dyke TE. Oral inflammatory diseases and systemic inflammation: role of the macrophage. Front Immunol 2012; 3: 118.
[http://dx.doi.org/10.3389/fimmu.2012.00118] [PMID: 22623923]
[8]
Kushkevych I, Coufalová M, Vítězová M, Rittmann SKMR. Sulfate-reducing bacteria of the oral cavity and their relation with periodontitis-recent advances. J Clin Med 2020; 9(8): 2347.
[http://dx.doi.org/10.3390/jcm9082347] [PMID: 32717883]
[9]
Reynolds-Campbell G, Nicholson A, Thoms-Rodriguez CA. Oral bacterial infections: Diagnosis and management. Dent Clin North Am 2017; 61(2): 305-18.
[http://dx.doi.org/10.1016/j.cden.2016.12.003] [PMID: 28317568]
[10]
Naples J, Parham K. Oropharyngeal and tonsillar infections. Head, Neck, and Orofacial Infections 2016; p. 271.
[11]
Edwin B, Prasanna V, Kannan I, Katiyar V, Dhanapal E. Incidence of bacterial colonization in the oropharynx of patients with ear, nose and throat infections. Int J Med Sci Public Health 2014; 3(8): 931-4.
[http://dx.doi.org/10.5455/ijmsph.2014.220420142]
[12]
Suárez-Quintanilla J, Cabrera AF, Sharma S. Anatomy, head and neck, larynx. Stat Pearls 2021.
[13]
El Ayoubi F, Chariba I, El Ayoubi A, Chariba S, Essakalli L. Primary tuberculosis of the larynx. Eur Ann Otorhinolaryngol Head Neck Dis 2014; 131(6): 361-4.
[http://dx.doi.org/10.1016/j.anorl.2013.10.005] [PMID: 25443690]
[14]
Cardesa A, Alos L, Nadal A, Franchi A. Nasal cavity and paranasal sinuses. Head Neck Pathol 2016; 49-127.
[15]
Ogle OE, Weinstock RJ, Friedman E. Surgical anatomy of the nasal cavity and paranasal sinuses. Oral Maxillofac Surg Clin North Am 2012; 24(2): 155-166, vii.
[http://dx.doi.org/10.1016/j.coms.2012.01.011] [PMID: 22386856]
[16]
Edizer DT, Karaman E, Mercan H, Alimoglu Y, Esen T, Cansiz H. Primary tuberculosis involving epiglottis: A rare case report. Dysphagia 2010; 25(3): 258-60.
[http://dx.doi.org/10.1007/s00455-009-9256-6] [PMID: 19784701]
[17]
Georgakopoulos CD, Eliopoulou MI, Stasinos S, Exarchou A, Pharmakakis N, Varvarigou A. Periorbital and orbital cellulitis: A 10-year review of hospitalized children. Eur J Ophthalmol 2010; 20(6): 1066-72.
[http://dx.doi.org/10.1177/112067211002000607] [PMID: 20544674]
[18]
Chason HM, Downs BW. Anatomy, head and neck, parotid gland. Stat Pearls 2020.
[19]
Ugga L, Ravanelli M, Pallottino AA, Farina D, Leone C. Diagnostic work-up in obstructive and inflammatory salivary gland disorders. Acta Otorhinolaryngol Ital 2017; 37(2): 83-93.
[http://dx.doi.org/10.14639/0392-100X-1597] [PMID: 28516970]
[20]
Wakefield RJ, D’Agostino MA. Essential Applications of Musculoskeletal Ultrasound in Rheumatology E-Book: Expert Consult Premium Edition. Elsevier Health Sciences 2010.
[21]
Wilson KF, Meier JD, Ward PD. Salivary gland disorders. Am Fam Physician 2014; 89(11): 882-8.
[PMID: 25077394]
[22]
Ito K, Muraoka H, Hirahara N, Sawada E, Okada S, Kaneda T. Quantitative assessment of normal submandibular glands and submandibular sialadenitis using CT texture analysis: A retrospective study. Oral Surg Oral Med Oral Pathol Oral Radiol 2021; 132(1): 112-7.
[http://dx.doi.org/10.1016/j.oooo.2020.10.007] [PMID: 33214092]
[23]
Cordesmeyer R, Kauffmann P, Markus T, et al. Bacterial and histopathological findings in deep head and neck infections: A retrospective analysis. Oral Surg Oral Med Oral Pathol Oral Radiol 2017; 124(1): 11-5.
[http://dx.doi.org/10.1016/j.oooo.2017.02.003] [PMID: 28411005]
[24]
Celakovsky P, Kalfert D, Smatanova K, et al. Bacteriology of deep neck infections: Analysis of 634 patients. Aust Dent J 2015; 60(2): 212-5.
[http://dx.doi.org/10.1111/adj.12325] [PMID: 25988277]
[25]
Hasegawa J, Hidaka H, Tateda M, et al. An analysis of clinical risk factors of deep neck infection. Auris Nasus Larynx 2011; 38(1): 101-7.
[http://dx.doi.org/10.1016/j.anl.2010.06.001] [PMID: 20609540]
[26]
Lam OLT, McGrath C, Li LSW, Samaranayake LP. Effectiveness of oral hygiene interventions against oral and oropharyngeal reservoirs of aerobic and facultatively anaerobic gram-negative bacilli. Am J Infect Control 2012; 40(2): 175-82.
[http://dx.doi.org/10.1016/j.ajic.2011.03.004] [PMID: 21719150]
[27]
Campoccia D, Mirzaei R, Montanaro L, Arciola CR. Hijacking of immune defences by biofilms: A multifront strategy. Biofouling 2019; 35(10): 1055-74.
[http://dx.doi.org/10.1080/08927014.2019.1689964] [PMID: 31762334]
[28]
Mirzaei R, Mohammadzadeh R, Alikhani MY, et al. The biofilm‐associated bacterial infections unrelated to indwelling devices. IUBMB Life 2020; 72(7): 1271-85.
[http://dx.doi.org/10.1002/iub.2266] [PMID: 32150327]
[29]
Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol 2010; 8(9): 623-33.
[http://dx.doi.org/10.1038/nrmicro2415] [PMID: 20676145]
[30]
Arpaia N, Godec J, Lau L, et al. TLR signaling is required for Salmonella typhimurium virulence. Cell 2011; 144(5): 675-88.
[http://dx.doi.org/10.1016/j.cell.2011.01.031] [PMID: 21376231]
[31]
Zanoni I, Ostuni R, Marek LR, et al. CD14 controls the LPS-induced endocytosis of Toll-like receptor 4. Cell 2011; 147(4): 868-80.
[http://dx.doi.org/10.1016/j.cell.2011.09.051] [PMID: 22078883]
[32]
Baglam T, Binnetoglu A, Yumusakhuylu AC, Gerin F, Demir B, Sari M. Predictive value of the neutrophil-to-lymphocyte ratio in patients with deep neck space infection secondary to acute bacterial tonsillitis. Int J Pediatr Otorhinolaryngol 2015; 79(9): 1421-4.
[http://dx.doi.org/10.1016/j.ijporl.2015.06.016] [PMID: 26123298]
[33]
Isaradisaikul S, Navacharoen N, Hanprasertpong C, Kangsanarak J, Panyathong R. Causes and time-course of vertigo in an ear, nose, and throat clinic. Eur Arch Otorhinolaryngol 2010; 267(12): 1837-41.
[http://dx.doi.org/10.1007/s00405-010-1309-9] [PMID: 20567978]
[34]
Doğan M, Akyel A, Bilgin M, et al. Can admission neutrophil to lymphocyte ratio predict infarct-related artery patency in ST-segment elevation myocardial infarction? Clin Appl Thromb Hemost 2015; 21(2): 172-6.
[http://dx.doi.org/10.1177/1076029613515071] [PMID: 24322278]
[35]
Ebersole JL, Dawson DR III, Morford LA, Peyyala R, Miller CS, Gonzaléz OA. Periodontal disease immunology: ‘double indemnity’ in protecting the host. Periodontol 2000 2013; 62(1): 163-202.
[http://dx.doi.org/10.1111/prd.12005] [PMID: 23574466]
[36]
Zhang I, Pletcher SD, Goldberg AN, Barker BM, Cope EK. Fungal microbiota in chronic airway inflammatory disease and emerging relationships with the host immune response. Front Microbiol 2017; 8: 2477.
[http://dx.doi.org/10.3389/fmicb.2017.02477] [PMID: 29312187]
[37]
Hupp JR, Ferneini EM. Head, neck, and orofacial infections: An interdisciplinary approach. Elsevier Health Sciences 2015.
[38]
Pasich E, Walczewska M, Pasich A, Marcinkiewicz J. Mechanizm i czynniki ryzyka powstawania biofilmu bakteryjnego jamy ustnej. PostHigMed 2013; 67: 736-41.
[39]
Berger D, Rakhamimova A, Pollack A, Loewy Z. Oral biofilms: Development, control, and analysis. High Throughput 2018; 7(3): 24.
[PMID: 30200379]
[40]
Singh S, Singh SK, Chowdhury I, Singh R. Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open Microbiol J 2017; 11(1): 53-62.
[http://dx.doi.org/10.2174/1874285801711010053] [PMID: 28553416]
[41]
Stewart PS. Antimicrobial tolerance in biofilms. Microbiol Spectr 2015; 3(3): 3.3.07.
[http://dx.doi.org/10.1128/microbiolspec.MB-0010-2014] [PMID: 26185072]
[42]
Soto SM. Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence 2013; 4(3): 223-9.
[http://dx.doi.org/10.4161/viru.23724] [PMID: 23380871]
[43]
Roberts AP, Mullany P. Oral biofilms: A reservoir of transferable, bacterial, antimicrobial resistance. Expert Rev Anti Infect Ther 2010; 8(12): 1441-50.
[http://dx.doi.org/10.1586/eri.10.106] [PMID: 21133668]
[44]
Taj MK, Wei YL, Samreen Z, Taj I, Hassani TM, Ji XL. Quorum sensing and its different signals systems in bacteria. Impact Ijranss 2014; 2: 117-24.
[45]
Rath S, Bal SCB, Dubey D. Oral Biofilm: Development Mechanism, Multidrug Resistance, and Their Effective Management with Novel Techniques. Rambam Maimonides Med J 2021; 12(1): e0004.
[http://dx.doi.org/10.5041/RMMJ.10428] [PMID: 33478627]
[46]
Perera M, Al-hebshi NN, Speicher DJ, Perera I, Johnson NW. Emerging role of bacteria in oral carcinogenesis: A review with special reference to perio-pathogenic bacteria. J Oral Microbiol 2016; 8(1): 32762.
[http://dx.doi.org/10.3402/jom.v8.32762] [PMID: 27677454]
[47]
Lin YY, Hsu CH, Lee JC, et al. Head and neck cancers manifested as deep neck infection. Eur Arch Otorhinolaryngol 2012; 269(2): 585-90.
[http://dx.doi.org/10.1007/s00405-011-1622-y] [PMID: 21547387]
[48]
Jiao Y, Tay FR, Niu L, Chen J. Advancing antimicrobial strategies for managing oral biofilm infections. Int J Oral Sci 2019; 11(3): 28.
[http://dx.doi.org/10.1038/s41368-019-0062-1] [PMID: 31570700]
[49]
Padovani GC, Feitosa VP, Sauro S, et al. Advances in dental materials through nanotechnology: facts, perspectives, and toxicological aspects. Trends Biotechnol 2015; 33(11): 621-36.
[http://dx.doi.org/10.1016/j.tibtech.2015.09.005] [PMID: 26493710]
[50]
Li WX, Dong Y, Zhang A, et al. Management of deep neck infections from cervical esophageal perforation caused by foreign body: A case series study. Am J Otolaryngol 2021; 42(2): 102870.
[http://dx.doi.org/10.1016/j.amjoto.2020.102870] [PMID: 33418175]
[51]
Sikora M, Wróbel K, Stąpor A, Sielski M, Chlubek D. Odontogenic orbital cellulitis in a young man with complete vision loss – a case report. Pomeranian J Life Sci 2020; 66(4): 41-5.
[http://dx.doi.org/10.21164/pomjlifesci.746]
[52]
Wake N, Asahi Y, Noiri Y, et al. Temporal dynamics of bacterial microbiota in the human oral cavity determined using an in situ model of dental biofilms. NPJ Biofilms Microbiomes 2016; 2(1): 16018.
[http://dx.doi.org/10.1038/npjbiofilms.2016.18] [PMID: 28721251]
[53]
Brook I. Microbiology of chronic rhinosinusitis. Eur J Clin Microbiol Infect Dis 2016; 35(7): 1059-68.
[http://dx.doi.org/10.1007/s10096-016-2640-x] [PMID: 27086363]
[54]
Verity DH, Hamed-Azzam S, AlHashash I, Briscoe D, Rose GE. Common orbital infections ~ state of the art ~ part I. J Ophthalmic Vis Res 2018; 13(2): 175-82.
[http://dx.doi.org/10.4103/jovr.jovr_199_17] [PMID: 29719647]

© 2024 Bentham Science Publishers | Privacy Policy