Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Mini-Review Article

癌症自噬分子量及其治疗意义

卷 23, 期 11, 2023

发表于: 17 May, 2023

页: [843 - 857] 页: 15

弟呕挨: 10.2174/1568009623666230412104913

价格: $65

conference banner
摘要

癌症是发展中国家妇女中一种常见的导致死亡的癌症。大多数病例是由高风险人类乳头瘤病毒(HPV16和18)的持续感染引发的。尽管有可用的治疗方法,转移、疾病复发和耐药性在癌症晚期患者中仍然很常见。因此,这种疾病需要新的前瞻性靶点。自噬被认为与宫颈癌症进展和癌症休眠有关。本文综述了自噬在宫颈癌症进展中的作用以及HPV对自噬途径的调节。此外,还讨论了靶向癌症宫颈自噬的各种治疗剂。

关键词: 自噬,宫颈癌症,人乳头瘤病毒,抗细胞凋亡,抗癌治疗,信号通路。

图形摘要
[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[2]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[3]
Pal, A.; Kundu, R. Human Papillomavirus E6 and E7: The cervical cancer hallmarks and targets for therapy. Front. Microbiol., 2020, 10, 3116.
[http://dx.doi.org/10.3389/fmicb.2019.03116] [PMID: 32038557]
[4]
Tingting, C.; Shizhou, Y.; Songfa, Z.; Junfen, X.; Weiguo, L.; Xiaodong, C.; Xing, X. Human papillomavirus 16E6/E7 activates autophagy via Atg9B and LAMP1 in cervical cancer cells. Cancer Med., 2019, 8(9), 4404-4416.
[http://dx.doi.org/10.1002/cam4.2351] [PMID: 31215164]
[5]
Zeng, K.; Zheng, W.; Mo, X.; Liu, F.; Li, M.; Liu, Z.; Zhang, W.; Hu, X. Dysregulated microRNAs involved in the progression of cervical neoplasm. Arch. Gynecol. Obstet., 2015, 292(4), 905-913.
[http://dx.doi.org/10.1007/s00404-015-3702-5] [PMID: 25851497]
[6]
Hakama, M.; Coleman, M.P.; Alexe, D.M.; Auvinen, A. Cancer screening: Evidence and practice in Europe 2008. Eur. J. Cancer, 2008, 44(10), 1404-1413.
[http://dx.doi.org/10.1016/j.ejca.2008.02.013] [PMID: 18343653]
[7]
Thigpen, J.T. Management of recurrent cervical cancer: A review of the literature. Yearb. Oncol., 2012, 2012, 126-127.
[http://dx.doi.org/10.1016/j.yonc.2012.08.038]
[8]
Klionsky, D.J. Autophagy revisited: A conversation with Christian de Duve. Autophagy, 2008, 4(6), 740-743.
[http://dx.doi.org/10.4161/auto.6398] [PMID: 18567941]
[9]
Mizushima, N.; Komatsu, M. Autophagy: Renovation of cells and tissues. Cell, 2011, 147(4), 728-741.
[http://dx.doi.org/10.1016/j.cell.2011.10.026] [PMID: 22078875]
[10]
Stolz, A.; Ernst, A.; Dikic, I. Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol., 2014, 16(6), 495-501.
[http://dx.doi.org/10.1038/ncb2979] [PMID: 24875736]
[11]
Yu, L.; Chen, Y.; Tooze, S.A. Autophagy pathway: Cellular and molecular mechanisms. Autophagy, 2018, 14(2), 207-215.
[http://dx.doi.org/10.1080/15548627.2017.1378838] [PMID: 28933638]
[12]
Kim, J.; Kundu, M.; Viollet, B.; Guan, K.L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol., 2011, 13(2), 132-141.
[http://dx.doi.org/10.1038/ncb2152] [PMID: 21258367]
[13]
Cruz-Gregorio, A.; Aranda-Rivera, A.K. Redox‐sensitive signalling pathways regulated by human papillomavirus in HPV‐related cancers. Rev. Med. Virol., 2021, 31(6), e2230.
[http://dx.doi.org/10.1002/rmv.2230] [PMID: 33709497]
[14]
Ponpuak, M.; Davis, A.S.; Roberts, E.A.; Delgado, M.A.; Dinkins, C.; Zhao, Z.; Virgin, H.W., IV; Kyei, G.B.; Johansen, T.; Vergne, I.; Deretic, V. Delivery of cytosolic components by autophagic adaptor protein p62 endows autophagosomes with unique antimicrobial properties. Immunity, 2010, 32(3), 329-341.
[http://dx.doi.org/10.1016/j.immuni.2010.02.009] [PMID: 20206555]
[15]
Kroemer, G.; Mariño, G.; Levine, B. Autophagy and the integrated stress response. Mol. Cell, 2010, 40(2), 280-293.
[http://dx.doi.org/10.1016/j.molcel.2010.09.023] [PMID: 20965422]
[16]
Romanov, J.; Walczak, M.; Ibiricu, I.; Schüchner, S.; Ogris, E.; Kraft, C.; Martens, S. Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation. EMBO J., 2012, 31(22), 4304-4317.
[http://dx.doi.org/10.1038/emboj.2012.278] [PMID: 23064152]
[17]
Eskelinen, E.L. Maturation of autophagic vacuoles in Mammalian cells. Autophagy, 2005, 1(1), 1-10.
[http://dx.doi.org/10.4161/auto.1.1.1270] [PMID: 16874026]
[18]
Antonioli, M.; Di Rienzo, M.; Piacentini, M.; Fimia, G.M. Emerging mechanisms in initiating and terminating autophagy. Trends Biochem. Sci., 2017, 42(1), 28-41.
[http://dx.doi.org/10.1016/j.tibs.2016.09.008] [PMID: 27765496]
[19]
Lippai, M.; Low, P. The role of the selective adaptor p62 and ubiquitin-like proteins in autophagy. Biomed. Res. Int., 2014, 2014, 832704.
[http://dx.doi.org/10.1155/2014/832704]
[20]
Stroupe, C. This is the end: Regulation of Rab7 nucleotide binding in endolysosomal trafficking and autophagy. Front. Cell Dev. Biol., 2018, 6, 129.
[http://dx.doi.org/10.3389/fcell.2018.00129] [PMID: 30333976]
[21]
Jäger, S.; Bucci, C.; Tanida, I.; Ueno, T.; Kominami, E.; Saftig, P.; Eskelinen, E.L. Role for Rab7 in maturation of late autophagic vacuoles. J. Cell Sci., 2004, 117(20), 4837-4848.
[http://dx.doi.org/10.1242/jcs.01370] [PMID: 15340014]
[22]
Eskelinen, E.L. Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy. Mol. Aspects Med., 2006, 27(5-6), 495-502.
[http://dx.doi.org/10.1016/j.mam.2006.08.005] [PMID: 16973206]
[23]
Mizushima, N.; Levine, B.; Cuervo, A.M.; Klionsky, D.J. Autophagy fights disease through cellular self-digestion. Nature, 2008, 451(7182), 1069-1075.
[http://dx.doi.org/10.1038/nature06639] [PMID: 18305538]
[24]
Tekirdag, K.; Cuervo, A.M. Chaperone-mediated autophagy and endosomal microautophagy: Jointed by a chaperone. J. Biol. Chem., 2018, 293(15), 5414-5424.
[http://dx.doi.org/10.1074/jbc.R117.818237] [PMID: 29247007]
[25]
Levine, B.; Kroemer, G. Autophagy in the pathogenesis of disease. Cell, 2008, 132(1), 27-42.
[http://dx.doi.org/10.1016/j.cell.2007.12.018] [PMID: 18191218]
[26]
Mizushima, N. A brief history of autophagy from cell biology to physiology and disease. Nat. Cell Biol., 2018, 20(5), 521-527.
[http://dx.doi.org/10.1038/s41556-018-0092-5] [PMID: 29686264]
[27]
Crighton, D.; Wilkinson, S.; O’Prey, J.; Syed, N.; Smith, P.; Harrison, P.R.; Gasco, M.; Garrone, O.; Crook, T.; Ryan, K.M. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell, 2006, 126(1), 121-134.
[http://dx.doi.org/10.1016/j.cell.2006.05.034] [PMID: 16839881]
[28]
Rahman, M.A.; Park, M.N.; Rahman, M.D.H.; Rashid, M.M.; Islam, R.; Uddin, M.J.; Hannan, M.A.; Kim, B. p53 modulation of autophagy signaling in cancer therapies: Perspectives mechanism and therapeutic targets. Front. Cell Dev. Biol., 2022, 10, 761080.
[http://dx.doi.org/10.3389/fcell.2022.761080] [PMID: 35155422]
[29]
Mei, Y.; Glover, K.; Su, M.; Sinha, S.C. Conformational flexibility of BECN1: Essential to its key role in autophagy and beyond. Protein Sci., 2016, 25(10), 1767-1785.
[http://dx.doi.org/10.1002/pro.2984] [PMID: 27414988]
[30]
Mulcahy Levy, J.M.; Thorburn, A. Autophagy in cancer: Moving from understanding mechanism to improving therapy responses in patients. Cell Death Differ., 2020, 27(3), 843-857.
[http://dx.doi.org/10.1038/s41418-019-0474-7] [PMID: 31836831]
[31]
Akkoc, Y.; Peker, N.; Akcay, A.; Gozuacik, D. Autophagy and cancer dormancy. Front. Oncol., 2021, 11, 627023.
[http://dx.doi.org/10.3389/fonc.2021.627023] [PMID: 33816262]
[32]
Elfgren, K.; Jacobs, M.; Walboomers, J.M.; Meijer, C.J.; Dillner, J. Rate of human papillomavirus clearance after treatment of cervical intraepithelial neoplasia. Obstet. Gynecol., 2002, 100(5 Pt. 1), 965-971.
[PMID: 12423862]
[33]
Insinga, R.P.; Glass, A.G.; Rush, B.B. Diagnoses and outcomes in cervical cancer screening: A population-based study. Am. J. Obstet. Gynecol., 2004, 191(1), 105-113.
[http://dx.doi.org/10.1016/j.ajog.2004.01.043] [PMID: 15295350]
[34]
Östör, A.G. Natural history of cervical intraepithelial neoplasia: A critical review. Int. J. Gynecol. Pathol., 1993, 12(2), 186-192.
[http://dx.doi.org/10.1097/00004347-199304000-00018] [PMID: 8463044]
[35]
Ghaem-Maghami, S.; Sagi, S.; Majeed, G.; Soutter, W.P. Incomplete excision of cervical intraepithelial neoplasia and risk of treatment failure: A meta-analysis. Lancet Oncol., 2007, 8(11), 985-993.
[http://dx.doi.org/10.1016/S1470-2045(07)70283-8] [PMID: 17928267]
[36]
Da Silva, M.; De Albuquerque, B.; Allyrio, T.; De Almeida, V.; Cobucci, R.; Bezerra, F.; Andrade, V.; Lanza, D.; De Azevedo, J.; De Araújo, J.; Fernandes, J. The role of HPV-induced epigenetic changes in cervical carcinogenesis. Biomed. Rep., 2021, 15(1), 60.
[http://dx.doi.org/10.3892/br.2021.1436] [PMID: 34094536]
[37]
Hu, Y.F.; Lei, X.; Zhang, H.Y.; Ma, J.W.; Yang, W.W.; Chen, M.L.; Cui, J.; Zhao, H. Expressions and clinical significance of autophagy-related markers Beclin-1, LC3, and EGFR in human cervical squamous cell carcinoma. Onco. Targets Ther., 2015, 8, 2243-2249.
[PMID: 26346666]
[38]
Oh, S.T.; Kyo, S.; Laimins, L.A. Telomerase activation by human papillomavirus type 16 E6 protein: Induction of human telomerase reverse transcriptase expression through Myc and GC-rich Sp1 binding sites. J. Virol., 2001, 75(12), 5559-5566.
[http://dx.doi.org/10.1128/JVI.75.12.5559-5566.2001] [PMID: 11356963]
[39]
Moody, C. Mechanisms by which HPV induces a replication competent environment in differentiating keratinocytes. Viruses, 2017, 9(9), 261.
[http://dx.doi.org/10.3390/v9090261] [PMID: 28925973]
[40]
Belleudi, F.; Purpura, V.; Caputo, S.; Torrisi, M.R. FGF7/KGF regulates autophagy in keratinocytes. Autophagy, 2014, 10(5), 803-821.
[http://dx.doi.org/10.4161/auto.28145] [PMID: 24577098]
[41]
Belleudi, F.; Nanni, M.; Raffa, S.; Torrisi, M.R. HPV16 E5 deregulates the autophagic process in human keratinocytes. Oncotarget, 2015, 6(11), 9370-9386.
[http://dx.doi.org/10.18632/oncotarget.3326] [PMID: 25826082]
[42]
Estêvão, D.; Costa, N.R.; Gil da Costa, R.M.; Medeiros, R. Hallmarks of HPV carcinogenesis: The role of E6, E7 and E5 oncoproteins in cellular malignancy. Biochim. Biophys. Acta. Gene Regul. Mech., 2019, 1862(2), 153-162.
[http://dx.doi.org/10.1016/j.bbagrm.2019.01.001] [PMID: 30707946]
[43]
Kenzelmann Broz, D.; Spano Mello, S.; Bieging, K.T.; Jiang, D.; Dusek, R.L.; Brady, C.A.; Sidow, A.; Attardi, L.D. Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes Dev., 2013, 27(9), 1016-1031.
[http://dx.doi.org/10.1101/gad.212282.112] [PMID: 23651856]
[44]
Budanov, A.V.; Karin, M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell, 2008, 134(3), 451-460.
[http://dx.doi.org/10.1016/j.cell.2008.06.028] [PMID: 18692468]
[45]
Mattoscio, D.; Casadio, C.; Miccolo, C.; Maffini, F.; Raimondi, A.; Tacchetti, C.; Gheit, T.; Tagliabue, M.; Galimberti, V.E.; De Lorenzi, F.; Pawlita, M.; Chiesa, F.; Ansarin, M.; Tommasino, M.; Chiocca, S. Autophagy regulates UBC9 levels during viral-mediated tumorigenesis. PLoS Pathog., 2017, 13(3), e1006262.
[http://dx.doi.org/10.1371/journal.ppat.1006262] [PMID: 28253371]
[46]
Cruz-Gregorio, A.; Manzo-Merino, J.; Gonzaléz-García, M.C.; Pedraza-Chaverri, J.; Medina-Campos, O.N.; Valverde, M.; Rojas, E.; Rodríguez-Sastre, M.A.; García-Cuellar, C.M.; Lizano, M. Human Papillomavirus types 16 and 18 early-expressed proteins differentially modulate the cellular redox state and DNA damage. Int. J. Biol. Sci., 2018, 14(1), 21-35.
[http://dx.doi.org/10.7150/ijbs.21547] [PMID: 29483822]
[47]
Williams, V.M.; Filippova, M.; Filippov, V.; Payne, K.J.; Duerksen-Hughes, P. Human papillomavirus type 16 E6* induces oxidative stress and DNA damage. J. Virol., 2014, 88(12), 6751-6761.
[http://dx.doi.org/10.1128/JVI.03355-13] [PMID: 24696478]
[48]
Chen, T.C.; Hung, Y.C.; Lin, T.Y.; Chang, H.W.; Chiang, I.P.; Chen, Y.Y.; Chow, K.C. Human papillomavirus infection and expression of ATPase family AAA domain containing 3A, a novel anti-autophagy factor, in uterine cervical cancer. Int. J. Mol. Med., 2011, 28(5), 689-696.
[PMID: 21743956]
[49]
Hanning, J.E.; Saini, H.K.; Murray, M.J.; Caffarel, M.M.; van Dongen, S.; Ward, D.; Barker, E.M.; Scarpini, C.G.; Groves, I.J.; Stanley, M.A.; Enright, A.J.; Pett, M.R.; Coleman, N. Depletion of HPV16 early genes induces autophagy and senescence in a cervical carcinogenesis model, regardless of viral physical state. J. Pathol., 2013, 231(3), 354-366.
[http://dx.doi.org/10.1002/path.4244] [PMID: 23913724]
[50]
Sun, Y.; Liu, J.H.; Sui, Y.X.; Jin, L.; Yang, Y.; Lin, S.M.; Shi, H. Beclin-1 overexpression inhibitis proliferation, invasion and migration of CaSki cervical cancer cells. Asian Pac. J. Cancer Prev., 2011, 12(5), 1269-1273.
[PMID: 21875280]
[51]
Xu, Y.; Yu, H.; Qin, H.; Kang, J.; Yu, C.; Zhong, J.; Su, J.; Li, H.; Sun, L. Inhibition of autophagy enhances cisplatin cytotoxicity through endoplasmic reticulum stress in human cervical cancer cells. Cancer Lett., 2012, 314(2), 232-243.
[http://dx.doi.org/10.1016/j.canlet.2011.09.034] [PMID: 22019047]
[52]
Li, N.; Zhang, W. Protein kinase C β inhibits autophagy and sensitizes cervical cancer Hela cells to cisplatin. Biosci. Rep., 2017, 37(2), BSR20160445.
[http://dx.doi.org/10.1042/BSR20160445] [PMID: 28246354]
[53]
Zhang, L.; Liu, X.; Song, L.; Zhai, H.; Chang, C. MAP7 promotes migration and invasion and progression of human cervical cancer through modulating the autophagy. Cancer Cell Int., 2020, 20(1), 17.
[http://dx.doi.org/10.1186/s12935-020-1095-4] [PMID: 31956295]
[54]
Seillier, M.; Peuget, S.; Gayet, O.; Gauthier, C.; N’Guessan, P.; Monte, M.; Carrier, A.; Iovanna, J.L.; Dusetti, N.J. TP53INP1, a tumor suppressor, interacts with LC3 and ATG8-family proteins through the LC3-interacting region (LIR) and promotes autophagy-dependent cell death. Cell Death Differ., 2012, 19(9), 1525-1535.
[http://dx.doi.org/10.1038/cdd.2012.30] [PMID: 22421968]
[55]
Zhang, X.; Sun, Y.; Cheng, S.; Yao, Y.; Hua, X.; Shi, Y.; Jin, X.; Pan, J.; Hu, M.G.; Ying, P.; Hou, X.; Xia, D. CDK6 increases glycolysis and suppresses autophagy by mTORC1-HK2 pathway activation in cervical cancer cells. Cell Cycle, 2022, 21(9), 984-1002.
[http://dx.doi.org/10.1080/15384101.2022.2039981] [PMID: 35167417]
[56]
Peng, X.; Gong, F.; Chen, Y.; Jiang, Y.; Liu, J.; Yu, M.; Zhang, S.; Wang, M.; Xiao, G.; Liao, H. Autophagy promotes paclitaxel resistance of cervical cancer cells: Involvement of Warburg effect activated hypoxia-induced factor 1-α-mediated signaling. Cell Death Dis., 2014, 5(8), e1367.
[http://dx.doi.org/10.1038/cddis.2014.297] [PMID: 25118927]
[57]
Jiang, L.; Xia, Y.; Zhong, T.; Zhang, H.; Jin, Q.; Li, F.; Shi, S. HIF2A overexpression reduces cisplatin sensitivity in cervical cancer by inducing excessive autophagy. Transl. Cancer Res., 2020, 9(1), 75-84.
[http://dx.doi.org/10.21037/tcr.2019.11.17] [PMID: 35117160]
[58]
Sun, X.; Shu, Y.; Xu, M.; Jiang, J.; Wang, L.; Wang, J.; Huang, D.; Zhang, J. ANXA6 suppresses the tumorigenesis of cervical cancer through autophagy induction. Clin. Transl. Med., 2020, 10(6), e208.
[http://dx.doi.org/10.1002/ctm2.208] [PMID: 33135350]
[59]
Fan, L.X.; Tao, L.; Lai, Y.C.; Cai, S.Y.; Zhao, Z.Y.; Yang, F.; Su, R.Y.; Wang, Q. Cx32 promotes autophagy and produces resistance to SN-induced apoptosis via activation of AMPK signalling in cervical cancer. Int. J. Oncol., 2022, 60(1), 1-11.
[PMID: 34970699]
[60]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[61]
Hanahan, D. Hallmarks of cancer: New dimensions. Cancer Discov., 2022, 12(1), 31-46.
[http://dx.doi.org/10.1158/2159-8290.CD-21-1059] [PMID: 35022204]
[62]
Shao, Y.; Gao, Z.; Marks, P.A.; Jiang, X. Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc. Natl. Acad. Sci., 2004, 101(52), 18030-18035.
[http://dx.doi.org/10.1073/pnas.0408345102] [PMID: 15596714]
[63]
Wu, G.; Long, Y.; Lu, Y.; Feng, Y.; Yang, X.; Xu, X.; Yao, D. Kindlin-2 suppresses cervical cancer cell migration through AKT/mTOR-mediated autophagy induction. Oncol. Rep., 2020, 44(1), 69-76.
[http://dx.doi.org/10.3892/or.2020.7603] [PMID: 32377753]
[64]
Ma, L.; Cheng, Y.; Zeng, J. MLK 3 silence induces cervical cancer cell apoptosis via the Notch‐1/autophagy network. Clin. Exp. Pharmacol. Physiol., 2019, 46(9), 854-860.
[http://dx.doi.org/10.1111/1440-1681.13123] [PMID: 31192472]
[65]
Hsu, K-F.; Huang, S-C.; Chou, C-Y.; Shiau, A-L.; Wu, C-L. SCC A1 inhibit autophagy activity in uterine cervical cancer. Cancer Res., 2006, 66(8), 964.
[66]
Wu, L.; Shen, B.; Li, J.; Zhang, H.; Zhang, K.; Yang, Y.; Zu, Z.; Shen, D.; Luo, M. STAT3 exerts pro-tumor and anti-autophagy roles in cervical cancer. Diagn. Pathol., 2022, 17(1), 13.
[http://dx.doi.org/10.1186/s13000-021-01182-4] [PMID: 35057825]
[67]
Vidoni, C.; Vallino, L.; Ferraresi, A.; Secomandi, E.; Salwa, A.; Chinthakindi, M.; Galetto, A.; Dhanasekaran, D.N.; Isidoro, C. Epigenetic control of autophagy in women’s tumors: Role of non-coding RNAs. J. Cancer Metastasis Treat., 2021, 2021, 2394-4722.
[http://dx.doi.org/10.20517/2394-4722.2020.95]
[68]
Wang, C.; Zeng, J.; Li, L.J.; Xue, M.; He, S.L. Cdc25A inhibits autophagy-mediated ferroptosis by upregulating ErbB2 through PKM2 dephosphorylation in cervical cancer cells. Cell Death Dis., 2021, 12(11), 1055.
[http://dx.doi.org/10.1038/s41419-021-04342-y] [PMID: 34743185]
[69]
Wang, X.Y.; Mao, H.W.; Guan, X.H.; Huang, Q.M.; Yu, Z.P.; Wu, J.; Tan, H.L.; Zhang, F.; Huang, X.; Deng, K.Y.; Xin, H.B. TRIM65 promotes cervical cancer through selectively degrading p53-mediated inhibition of autophagy and apoptosis. Front. Oncol., 2022, 12, 853935.
[http://dx.doi.org/10.3389/fonc.2022.853935] [PMID: 35402260]
[70]
Shi, H.; Zhong, F.; Yi, X.; Shi, Z.; Ou, F.; Xu, Z.; Zuo, Y. Application of an autophagy-related gene prognostic risk model based on TCGA database in cervical cancer. Front. Genet., 2021, 11, 616998.
[http://dx.doi.org/10.3389/fgene.2020.616998] [PMID: 33633773]
[71]
He, W.; Zhang, A.; Qi, L.; Na, C.; Jiang, R.; Fan, Z.; Chen, J. FOXO1, a potential therapeutic target, regulates autophagic flux, oxidative stress, mitochondrial dysfunction, and apoptosis in Human Cholangiocarcinoma QBC939 cells. Cell. Physiol. Biochem., 2018, 45(4), 1506-1514.
[http://dx.doi.org/10.1159/000487576] [PMID: 29466794]
[72]
Lin, S.L.; Wang, M.; Cao, Q.Q.; Li, Q. Chromatin modified protein 4C (CHMP4C) facilitates the malignant development of cervical cancer cells. FEBS Open Bio, 2020, 10(7), 1295-1303.
[http://dx.doi.org/10.1002/2211-5463.12880] [PMID: 32406588]
[73]
Li, M.; Khambu, B.; Zhang, H.; Kang, J.H.; Chen, X.; Chen, D.; Vollmer, L.; Liu, P.Q.; Vogt, A.; Yin, X.M. Suppression of lysosome function induces autophagy via a feedback down-regulation of MTOR complex 1 (MTORC1) activity. J. Biol. Chem., 2013, 288(50), 35769-35780.
[http://dx.doi.org/10.1074/jbc.M113.511212] [PMID: 24174532]
[74]
Yang, S.L.; Tan, H.X.; Niu, T.T.; Liu, Y.K.; Gu, C.J.; Li, D.J.; Li, M.Q.; Wang, H.Y. The IFN-γ-IDO1-kynureine pathway-induced autophagy in cervical cancer cell promotes phagocytosis of macrophage. Int. J. Biol. Sci., 2021, 17(1), 339-352.
[http://dx.doi.org/10.7150/ijbs.51241] [PMID: 33390854]
[75]
He, P.; Peng, Z.; Luo, Y.; Wang, L.; Yu, P.; Deng, W.; An, Y.; Shi, T.; Ma, D. High-throughput functional screening for autophagy-related genes and identification of TM9SF1 as an autophagosome-inducing gene. Autophagy, 2009, 5(1), 52-60.
[http://dx.doi.org/10.4161/auto.5.1.7247] [PMID: 19029833]
[76]
Chen, H.; Deng, Q.; Wang, W.; Tao, H.; Gao, Y. Identification of an autophagy-related gene signature for survival prediction in patients with cervical cancer. J. Ovarian Res., 2020, 13(1), 131.
[http://dx.doi.org/10.1186/s13048-020-00730-8] [PMID: 33160404]
[77]
Meng, D.; Jin, H.; Zhang, X.; Yan, W.; Xia, Q.; Shen, S.; Xie, S.; Cui, M.; Ding, B.; Gu, Y.; Wang, S. Identification of autophagy-related risk signatures for the prognosis, diagnosis, and targeted therapy in cervical cancer. Cancer Cell Int., 2021, 21(1), 362.
[http://dx.doi.org/10.1186/s12935-021-02073-w] [PMID: 34238288]
[78]
Bhan, A.; Soleimani, M.; Mandal, S.S. Long noncoding RNA and Cancer: A new paradigm. Cancer Res., 2017, 77(15), 3965-3981.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2634] [PMID: 28701486]
[79]
Bayramoglu Tepe, N.; Bozgeyik, E.; Bozdag, Z.; Balat, O.; Ozcan, H.C.; Ugur, M.G. Identification of autophagy-associated miRNA signature for the cervical squamous cell cancer and high-grade cervical intraepithelial lesions. Reprod. Biol., 2021, 21(3), 100536.
[http://dx.doi.org/10.1016/j.repbio.2021.100536] [PMID: 34298410]
[80]
Feng, Q.; Wang, J.; Cui, N.; Liu, X.; Wang, H. Autophagy-related long non-coding RNA signature for potential prognostic biomarkers of patients with cervical cancer: A study based on public databases. Ann. Transl. Med., 2021, 9(22), 1668-1668.
[http://dx.doi.org/10.21037/atm-21-5156] [PMID: 34988177]
[81]
Reddy, K.B. MicroRNA (miRNA) in cancer. Cancer Cell Int., 2015, 15(1), 38.
[http://dx.doi.org/10.1186/s12935-015-0185-1] [PMID: 25960691]
[82]
Zhu, T.; Cen, Y.; Chen, Z.; Zhang, Y.; Zhao, L.; Wang, J.; Lu, W.; Xie, X.; Wang, X. Oncogenic circTICRR suppresses autophagy via binding to HuR protein and stabilizing GLUD1 mRNA in cervical cancer. Cell Death Dis., 2022, 13(5), 479.
[http://dx.doi.org/10.1038/s41419-022-04943-1] [PMID: 35595754]
[83]
Kristensen, L.S.; Hansen, T.B.; Venø, M.T.; Kjems, J. Circular RNAs in cancer: Opportunities and challenges in the field. Oncogene, 2018, 37(5), 555-565.
[http://dx.doi.org/10.1038/onc.2017.361] [PMID: 28991235]
[84]
Huang, E.; Liu, R.; Chu, Y. miRNA-15a/16: As tumor suppressors and more. Future Oncol., 2015, 11(16), 2351-2363.
[http://dx.doi.org/10.2217/fon.15.101] [PMID: 26260813]
[85]
Zhou, Q.; Dong, J.; Luo, R.; Zhou, X.; Wang, J.; Chen, F. MicroRNA-20a regulates cell proliferation, apoptosis and autophagy by targeting thrombospondin 2 in cervical cancer. Eur. J. Pharmacol., 2019, 844, 102-109.
[http://dx.doi.org/10.1016/j.ejphar.2018.11.043] [PMID: 30513279]
[86]
Peralta-Zaragoza, O.; Deas, J.; Meneses-Acosta, A. Relevance of MiR-21 in regulation of tumor suppressor gene PTEN in human cervical cancer cells. BMC Cancer, 2016, 16(1), 1-16.
[87]
Cheng, Y.; Chen, G.; Hu, M.; Huang, J.; Li, B.; Zhou, L.; Hong, L. Has-miR-30a regulates autophagic activity in cervical cancer upon hydroxycamptothecin exposure. Biomed. Pharmacother., 2015, 75, 67-74.
[http://dx.doi.org/10.1016/j.biopha.2015.08.034] [PMID: 26463633]
[88]
Wu, Y.; Ni, Z.; Yan, X.; Dai, X.; Hu, C.; Zheng, Y.; He, F.; Lian, J. Targeting the MIR34C-5p -ATG4B-autophagy axis enhances the sensitivity of cervical cancer cells to pirarubicin. Autophagy, 2016, 12(7), 1105-1117.
[http://dx.doi.org/10.1080/15548627.2016.1173798] [PMID: 27097054]
[89]
Wan, G.; Xie, W.; Liu, Z.; Xu, W.; Lao, Y.; Huang, N.; Cui, K.; Liao, M.; He, J.; Jiang, Y.; Yang, B.B.; Xu, H.; Xu, N.; Zhang, Y. Hypoxia-induced MIR155 is a potent autophagy inducer by targeting multiple players in the MTOR pathway. Autophagy, 2014, 10(1), 70-79.
[http://dx.doi.org/10.4161/auto.26534] [PMID: 24262949]
[90]
Li, N.; Guo, X.; Liu, L.; Wang, L.; Cheng, R. Molecular mechanism of miR-204 regulates proliferation, apoptosis and autophagy of cervical cancer cells by targeting ATF2. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 2529-2535.
[http://dx.doi.org/10.1080/21691401.2019.1628038] [PMID: 31204513]
[91]
Fang, W.; Shu, S.; Yongmei, L.; Endong, Z.; Lirong, Y.; Bei, S. miR-224-3p inhibits autophagy in cervical cancer cells by targeting FIP200. Sci. Rep., 2016, 6(1), 33229.
[http://dx.doi.org/10.1038/srep33229] [PMID: 27615604]
[92]
Lu, R.; Yang, Z.; Xu, G.; Yu, S. miR-338 modulates proliferation and autophagy by PI3K/AKT/mTOR signaling pathway in cervical cancer. Biomed. Pharmacother., 2018, 105(1), 633-644.
[http://dx.doi.org/10.1016/j.biopha.2018.06.024] [PMID: 29898430]
[93]
Guo, J.; Yang, Z.; Yang, X.; Li, T.; Liu, M.; Tang, H. miR-346 functions as a pro-survival factor under ER stress by activating mitophagy. Cancer Lett., 2018, 413, 69-81.
[http://dx.doi.org/10.1016/j.canlet.2017.10.030] [PMID: 29107113]
[94]
Tan, D.; Zhou, C.; Han, S.; Hou, X.; Kang, S.; Zhang, Y. MicroRNA-378 enhances migration and invasion in cervical cancer by directly targeting autophagy-related protein 12. Mol. Med. Rep., 2018, 17(5), 6319-6326.
[http://dx.doi.org/10.3892/mmr.2018.8645] [PMID: 29488616]
[95]
Zhang, L.; Wei, Z.; Wang, Y.; Xu, F.; Cheng, Z. Long noncoding RNA ROR1-AS1 enhances STC2-mediated cell growth and autophagy in cervical cancer through miR-670-3p. J. Recept. Signal Transduct. Res., 2021, 41(6), 582-592.
[http://dx.doi.org/10.1080/10799893.2020.1836495] [PMID: 33081599]
[96]
Yang, Z.; Sun, Q.; Guo, J.; Wang, S.; Song, G.; Liu, W.; Liu, M.; Tang, H. GRSF1 -mediated MIR-G-1 promotes malignant behavior and nuclear autophagy by directly upregulating TMED5 and LMNB1 in cervical cancer cells. Autophagy, 2019, 15(4), 668-685.
[http://dx.doi.org/10.1080/15548627.2018.1539590] [PMID: 30394198]
[97]
Guo, J.; Chen, M.; Ai, G.; Mao, W.; Li, H.; Zhou, J. Hsa_circ_0023404 enhances cervical cancer metastasis and chemoresistance through VEGFA and autophagy signaling by sponging miR-5047. Biomed. Pharmacother., 2019, 115, 108957.
[http://dx.doi.org/10.1016/j.biopha.2019.108957] [PMID: 31082770]
[98]
Zou, S.H.; Du, X.; Lin, H.; Wang, P.C.; Li, M. Paclitaxel inhibits the progression of cervical cancer by inhibiting autophagy via lncRNARP11-381N20.2. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(10), 3010-3017.
[PMID: 29863245]
[99]
Shi, Y.; Liu, M.; Huang, Y.; Zhang, J.; Yin, L. Promotion of cell autophagy and apoptosis in cervical cancer by inhibition of long noncoding RNA LINC00511 via transcription factor RXRA‐regulated PLD1. J. Cell. Physiol., 2020, 235(10), 6592-6604.
[http://dx.doi.org/10.1002/jcp.29529] [PMID: 32067228]
[100]
Yang, Y.; Wang, Q.; Song, D.; Zen, R.; Zhang, L.; Wang, Y.; Yang, H.; Zhang, D.; Jia, J.; Zhang, J.; Wang, J. Lysosomal dysfunction and autophagy blockade contribute to autophagy-related cancer suppressing peptide-induced cytotoxic death of cervical cancer cells through the AMPK/mTOR pathway. J. Exp. Clin. Cancer Res., 2020, 39(1), 197.
[http://dx.doi.org/10.1186/s13046-020-01701-z] [PMID: 32962728]
[101]
Mujtaba, T.; Dou, Q.P. Advances in the understanding of mechanisms and therapeutic use of bortezomib. Discov. Med., 2011, 12(67), 471-480.
[PMID: 22204764]
[102]
Zhang, Y.; Bai, C.; Lu, D.; Wu, X.; Gao, L.; Zhang, W. Endoplasmic reticulum stress and autophagy participate in apoptosis induced by bortezomib in cervical cancer cells. Biotechnol. Lett., 2016, 38(2), 357-365.
[http://dx.doi.org/10.1007/s10529-015-1968-0] [PMID: 26423802]
[103]
Mancuso, C.; Santangelo, R. Ferulic acid: Pharmacological and toxicological aspects. Food Chem. Toxicol., 2014, 65, 185-195.
[http://dx.doi.org/10.1016/j.fct.2013.12.024] [PMID: 24373826]
[104]
Gao, J.; Yu, H.; Guo, W.; Kong, Y. Gu; Li, Q.; Yang, S.; Zhang, Y.; Wang, Y. The anticancer effects of ferulic acid is associated with induction of cell cycle arrest and autophagy in cervical cancer cells. Cancer Cell Int., 2018, 18(1), 102.
[http://dx.doi.org/10.1186/s12935-018-0595-y]
[105]
Shin, B.K.; Kwon, S.W.; Park, J.H. Chemical diversity of ginseng saponins from Panax ginseng. J. Ginseng Res., 2015, 39(4), 287-298.
[http://dx.doi.org/10.1016/j.jgr.2014.12.005] [PMID: 26869820]
[106]
Yin, Q.; Chen, H.; Ma, R.H.; Zhang, Y.Y.; Liu, M.M.; Thakur, K.; Zhang, J.G.; Wei, Z.J. Ginsenoside CK induces apoptosis of human cervical cancer HeLa cells by regulating autophagy and endoplasmic reticulum stress. Food Funct., 2021, 12(12), 5301-5316.
[http://dx.doi.org/10.1039/D1FO00348H] [PMID: 34013944]
[107]
Xu, G.; Yan, X.; Hu, Z.; Zheng, L.; Ding, K.; Zhang, Y.; Qing, Y.; Liu, T.; Cheng, L.; Shi, Z. Glucocappasalin induces G2/M-phase arrest, apoptosis, and autophagy pathways by targeting CDK1 and PLK1 in cervical carcinoma cells. Front. Pharmacol., 2021, 12, 671138.
[http://dx.doi.org/10.3389/fphar.2021.671138] [PMID: 34093198]
[108]
Fan, H.; He, Y.; Xiang, J.; Zhou, J.; Wan, X.; You, J.; Du, K.; Li, Y.; Cui, L.; Wang, Y.; Zhang, C.; Bu, Y.; Lei, Y. ROS generation attenuates the anti-cancer effect of CPX on cervical cancer cells by inducing autophagy and inhibiting glycophagy. Redox Biol., 2022, 53, 102339.
[http://dx.doi.org/10.1016/j.redox.2022.102339] [PMID: 35636017]
[109]
Ma, H.P.; Ming, L.G.; Ge, B.F.; Zhai, Y.K.; Song, P.; Xian, C.J.; Chen, K.M. Icariin is more potent than genistein in promoting osteoblast differentiation and mineralization in vitro. J. Cell. Biochem., 2011, 112(3), 916-923.
[http://dx.doi.org/10.1002/jcb.23007] [PMID: 21328465]
[110]
Huang, S.; Xie, T.; Liu, W. Icariin inhibits the growth of human cervical cancer cells by inducing apoptosis and autophagy by targeting mTOR/PI3K/AKT signalling pathway. J. BUON, 2019, 24(3), 990-996.
[PMID: 31424652]
[111]
Boselli, M.; Lee, B.H.; Robert, J.; Prado, M.A.; Min, S.W.; Cheng, C.; Silva, M.C.; Seong, C.; Elsasser, S.; Hatle, K.M.; Gahman, T.C.; Gygi, S.P.; Haggarty, S.J.; Gan, L.; King, R.W.; Finley, D. An inhibitor of the proteasomal deubiquitinating enzyme USP14 induces tau elimination in cultured neurons. J. Biol. Chem., 2017, 292(47), 19209-19225.
[http://dx.doi.org/10.1074/jbc.M117.815126] [PMID: 28972160]
[112]
Xu, L.; Wang, J.; Yuan, X.; Yang, S.; Xu, X.; Li, K.; He, Y.; Wei, L.; Zhang, J.; Tian, Y. IU1 suppresses proliferation of cervical cancer cells through MDM2 degradation. Int. J. Biol. Sci., 2020, 16(15), 2951-2963.
[http://dx.doi.org/10.7150/ijbs.47999] [PMID: 33061808]
[113]
Kasznicki, J.; Sliwinska, A.; Drzewoski, J. Metformin in cancer prevention and therapy. Ann. Transl. Med., 2014, 2(6), 57.
[PMID: 25333032]
[114]
Xia, C.; He, Z.; Liang, S.; Chen, R.; Xu, W.; Yang, J.; Xiao, G.; Jiang, S. Metformin combined with nelfinavir induces SIRT3/mROS-dependent autophagy in human cervical cancer cells and xenograft in nude mice. Eur. J. Pharmacol., 2019, 848, 62-69.
[http://dx.doi.org/10.1016/j.ejphar.2019.01.045] [PMID: 30695683]
[115]
Lee, G.W.; Ko, Y.B.; Yoo, H.J. Identification of autophagy related antitumor effect in cervical cancer. Gynecol. Oncol., 2019, 154(1), 98.
[http://dx.doi.org/10.1016/j.ygyno.2019.04.231] [PMID: 30995960]
[116]
Knight, D.W. Feverfew: Chemistry and biological activity. Nat. Prod. Rep., 1995, 12(3), 271-276.
[http://dx.doi.org/10.1039/np9951200271] [PMID: 7792073]
[117]
Jeyamohan, S.; Moorthy, R.K.; Kannan, M.K.; Arockiam, A.J.V. Parthenolide induces apoptosis and autophagy through the suppression of PI3K/Akt signaling pathway in cervical cancer. Biotechnol. Lett., 2016, 38(8), 1251-1260.
[http://dx.doi.org/10.1007/s10529-016-2102-7] [PMID: 27099069]
[118]
Wijesekara, I.; Zhang, C.; Van Ta, Q.; Vo, T.S.; Li, Y.X.; Kim, S.K. Physcion from marine-derived fungus Microsporum sp. induces apoptosis in human cervical carcinoma HeLa cells. Microbiol. Res., 2014, 169(4), 255-261.
[http://dx.doi.org/10.1016/j.micres.2013.09.001] [PMID: 24071573]
[119]
Trybus, W.; Król, T.; Trybus, E.; Stachurska, A. Physcion induces potential anticancer effects in cervical cancer cells. Cells, 2021, 10(8), 2029.
[http://dx.doi.org/10.3390/cells10082029] [PMID: 34440797]
[120]
Tsai, J.H.; Hsu, L.S.; Huang, H.C.; Lin, C.L.; Pan, M.H.; Hong, H.M.; Chen, W.J. 1-(2-Hydroxy-5-methylphenyl)-3-phenyl-1,3-propanedione induces G1 cell cycle arrest and autophagy in HeLa cervical cancer cells. Int. J. Mol. Sci., 2016, 17(8), 1274.
[http://dx.doi.org/10.3390/ijms17081274] [PMID: 27527160]
[121]
Salehi, B.; Mishra, A.; Nigam, M.; Sener, B.; Kilic, M.; Sharifi-Rad, M.; Fokou, P.; Martins, N.; Sharifi-Rad, J. Resveratrol: A double-edged sword in health benefits. Biomedicines, 2018, 6(3), 91.
[http://dx.doi.org/10.3390/biomedicines6030091] [PMID: 30205595]
[122]
García-Zepeda, S.P.; García-Villa, E.; Díaz-Chávez, J.; Hernández-Pando, R.; Gariglio, P. Resveratrol induces cell death in cervical cancer cells through apoptosis and autophagy. Eur. J. Cancer Prev., 2013, 22(6), 577-584.
[http://dx.doi.org/10.1097/CEJ.0b013e328360345f] [PMID: 23603746]
[123]
Battaglia, V.; DeStefano Shields, C.; Murray-Stewart, T.; Casero, R.A., Jr Polyamine catabolism in carcinogenesis: Potential targets for chemotherapy and chemoprevention. Amino Acids, 2014, 46(3), 511-519.
[http://dx.doi.org/10.1007/s00726-013-1529-6] [PMID: 23771789]
[124]
Gerner, E.W.; Meyskens, F.L., Jr Polyamines and cancer: Old molecules, new understanding. Nat. Rev. Cancer, 2004, 4(10), 781-792.
[http://dx.doi.org/10.1038/nrc1454] [PMID: 15510159]
[125]
Chen, Y.; Zhuang, H.; Chen, X.; Shi, Z.; Wang, X. Spermidine-induced growth inhibition and apoptosis via autophagic activation in cervical cancer. Oncol. Rep., 2018, 39(6), 2845-2854.
[http://dx.doi.org/10.3892/or.2018.6377] [PMID: 29693131]
[126]
Gutman, J.; Kovacs, S.; Dorsey, G.; Stergachis, A.; ter Kuile, F.O. Safety, tolerability, and efficacy of repeated doses of dihydroartemisinin-piperaquine for prevention and treatment of malaria: A systematic review and meta-analysis. Lancet Infect. Dis., 2017, 17(2), 184-193.
[http://dx.doi.org/10.1016/S1473-3099(16)30378-4] [PMID: 27865890]
[127]
Tang, T.; Xia, Q.J.; Xi, M.R. Dihydroartemisinin and its anticancer activity against endometrial carcinoma and cervical cancer: Involvement of apoptosis, autophagy and transferrin receptor. Singapore Med. J., 2021, 62(2), 96-103.
[http://dx.doi.org/10.11622/smedj.2019138] [PMID: 31680182]
[128]
Rady, I.; Siddiqui, I.A.; Rady, M.; Mukhtar, H. Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy. Cancer Lett., 2017, 402, 16-31.
[http://dx.doi.org/10.1016/j.canlet.2017.05.010] [PMID: 28536009]
[129]
Wang, D.; He, J.; Dong, J.; Wu, S.; Liu, S.; Zhu, H.; Xu, T. UM-6 induces autophagy and apoptosis via the Hippo-YAP signaling pathway in cervical cancer. Cancer Lett., 2021, 519, 2-19.
[http://dx.doi.org/10.1016/j.canlet.2021.05.020] [PMID: 34161791]
[130]
Rezazadeh, D.; Norooznezhad, A.H.; Mansouri, K.; Jahani, M.; Mostafaie, A.; Mohammadi, M.H.; Modarressi, M.H. Rapamycin reduces cervical cancer cells viability in hypoxic condition: Investigation of the role of autophagy and apoptosis. Onco. Targets Ther., 2020, 13, 4239-4247.
[http://dx.doi.org/10.2147/OTT.S249985] [PMID: 32547058]
[131]
Liu, Y.; He, G.; Wang, Y.; Guan, X.; Pang, X.; Zhang, B. MCM-2 is a therapeutic target of Trichostatin A in colon cancer cells. Toxicol. Lett., 2013, 221(1), 23-30.
[http://dx.doi.org/10.1016/j.toxlet.2013.05.643] [PMID: 23770000]
[132]
Hu, G.; Gong, X.; Wang, L.; Liu, M.; Liu, Y.; Fu, X.; Wang, W.; Zhang, T.; Wang, X. Triptolide promotes the clearance of α-synuclein by enhancing autophagy in neuronal cells. Mol. Neurobiol., 2017, 54(3), 2361-2372.
[http://dx.doi.org/10.1007/s12035-016-9808-3] [PMID: 26957304]
[133]
Qin, G.; Li, P.; Xue, Z. Triptolide induces protective autophagy and apoptosis in human cervical cancer cells by downregulating Akt/mTOR activation. Oncol. Lett., 2018, 16(3), 3929-3934.
[http://dx.doi.org/10.3892/ol.2018.9074] [PMID: 30128010]
[134]
Kasai, R.; Miyakoshi, M.; Matsumoto, K.; Nie, R.L.; Zhou, J.; Morita, T.; Tanaka, O. Tubeimoside I, a new cyclic bisdesmoside from chinese cucurbitaceous folk medicine “Tu Bei Mu”, a tuber of Bolbostemma paniculatum. Chem. Pharm. Bull., 1986, 34(9), 3974-3977.
[http://dx.doi.org/10.1248/cpb.34.3974] [PMID: 3815619]
[135]
Feng, X.; Zhou, J.; Li, J.; Hou, X.; Li, L.; Chen, Y.; Fu, S.; Zhou, L.; Li, C.; Lei, Y.; Tubeimoside, I. Tubeimoside I induces accumulation of impaired autophagolysosome against cervical cancer cells by both initiating autophagy and inhibiting lysosomal function. Cell Death Dis., 2018, 9(11), 1117.
[http://dx.doi.org/10.1038/s41419-018-1151-3] [PMID: 30389907]
[136]
Young, R.J.; Coleman, R.E.; Lin, Y.C. Zoledronic acid to prevent and treat cancer metastasis: New prospects for an old drug. Futur. Oncol., 2013, 9(5), 633-643.
[137]
Wang, I.T.; Chou, S.C.; Lin, Y.C. Zoledronic acid induces apoptosis and autophagy in cervical cancer cells. Tumour Biol., 2014, 35(12), 11913-11920.
[http://dx.doi.org/10.1007/s13277-014-2460-5] [PMID: 25142231]
[138]
Apel, A.; Herr, I.; Schwarz, H.; Rodemann, H.P.; Mayer, A. Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy. Cancer Res., 2008, 68(5), 1485-1494.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0562] [PMID: 18316613]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy