Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Mini-Review Article

Molecular Milieu of Autophagy in Cervical Cancer and its Therapeutic Implications

Author(s): Sneha O. Pathak and Sonal M. Manohar*

Volume 23, Issue 11, 2023

Published on: 17 May, 2023

Page: [843 - 857] Pages: 15

DOI: 10.2174/1568009623666230412104913

Price: $65

conference banner
Abstract

Cervical cancer is a common death-causing cancer among women in developing countries. Majority of the cases are triggered by persistent infections with high-risk Human Papillomavirus (HPV16 and 18). Metastasis, disease relapse, and drug resistance are common among patients in advanced stages of cancer despite the available therapies. Consequently, new prospective targets are needed for this disease. Autophagy is professed to have implications in cervical cancer progression as well as cancer dormancy. This article reviews the role of autophagy in cervical cancer progression and the modulation of the autophagy pathway by HPV. Further, various therapeutic agents that target autophagy in cervical cancer are discussed.

Keywords: Autophagy, cervical cancer, human papillomavirus, resistance to apoptosis, anticancer therapy, signaling pathways.

Graphical Abstract
[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[2]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[3]
Pal, A.; Kundu, R. Human Papillomavirus E6 and E7: The cervical cancer hallmarks and targets for therapy. Front. Microbiol., 2020, 10, 3116.
[http://dx.doi.org/10.3389/fmicb.2019.03116] [PMID: 32038557]
[4]
Tingting, C.; Shizhou, Y.; Songfa, Z.; Junfen, X.; Weiguo, L.; Xiaodong, C.; Xing, X. Human papillomavirus 16E6/E7 activates autophagy via Atg9B and LAMP1 in cervical cancer cells. Cancer Med., 2019, 8(9), 4404-4416.
[http://dx.doi.org/10.1002/cam4.2351] [PMID: 31215164]
[5]
Zeng, K.; Zheng, W.; Mo, X.; Liu, F.; Li, M.; Liu, Z.; Zhang, W.; Hu, X. Dysregulated microRNAs involved in the progression of cervical neoplasm. Arch. Gynecol. Obstet., 2015, 292(4), 905-913.
[http://dx.doi.org/10.1007/s00404-015-3702-5] [PMID: 25851497]
[6]
Hakama, M.; Coleman, M.P.; Alexe, D.M.; Auvinen, A. Cancer screening: Evidence and practice in Europe 2008. Eur. J. Cancer, 2008, 44(10), 1404-1413.
[http://dx.doi.org/10.1016/j.ejca.2008.02.013] [PMID: 18343653]
[7]
Thigpen, J.T. Management of recurrent cervical cancer: A review of the literature. Yearb. Oncol., 2012, 2012, 126-127.
[http://dx.doi.org/10.1016/j.yonc.2012.08.038]
[8]
Klionsky, D.J. Autophagy revisited: A conversation with Christian de Duve. Autophagy, 2008, 4(6), 740-743.
[http://dx.doi.org/10.4161/auto.6398] [PMID: 18567941]
[9]
Mizushima, N.; Komatsu, M. Autophagy: Renovation of cells and tissues. Cell, 2011, 147(4), 728-741.
[http://dx.doi.org/10.1016/j.cell.2011.10.026] [PMID: 22078875]
[10]
Stolz, A.; Ernst, A.; Dikic, I. Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol., 2014, 16(6), 495-501.
[http://dx.doi.org/10.1038/ncb2979] [PMID: 24875736]
[11]
Yu, L.; Chen, Y.; Tooze, S.A. Autophagy pathway: Cellular and molecular mechanisms. Autophagy, 2018, 14(2), 207-215.
[http://dx.doi.org/10.1080/15548627.2017.1378838] [PMID: 28933638]
[12]
Kim, J.; Kundu, M.; Viollet, B.; Guan, K.L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol., 2011, 13(2), 132-141.
[http://dx.doi.org/10.1038/ncb2152] [PMID: 21258367]
[13]
Cruz-Gregorio, A.; Aranda-Rivera, A.K. Redox‐sensitive signalling pathways regulated by human papillomavirus in HPV‐related cancers. Rev. Med. Virol., 2021, 31(6), e2230.
[http://dx.doi.org/10.1002/rmv.2230] [PMID: 33709497]
[14]
Ponpuak, M.; Davis, A.S.; Roberts, E.A.; Delgado, M.A.; Dinkins, C.; Zhao, Z.; Virgin, H.W., IV; Kyei, G.B.; Johansen, T.; Vergne, I.; Deretic, V. Delivery of cytosolic components by autophagic adaptor protein p62 endows autophagosomes with unique antimicrobial properties. Immunity, 2010, 32(3), 329-341.
[http://dx.doi.org/10.1016/j.immuni.2010.02.009] [PMID: 20206555]
[15]
Kroemer, G.; Mariño, G.; Levine, B. Autophagy and the integrated stress response. Mol. Cell, 2010, 40(2), 280-293.
[http://dx.doi.org/10.1016/j.molcel.2010.09.023] [PMID: 20965422]
[16]
Romanov, J.; Walczak, M.; Ibiricu, I.; Schüchner, S.; Ogris, E.; Kraft, C.; Martens, S. Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation. EMBO J., 2012, 31(22), 4304-4317.
[http://dx.doi.org/10.1038/emboj.2012.278] [PMID: 23064152]
[17]
Eskelinen, E.L. Maturation of autophagic vacuoles in Mammalian cells. Autophagy, 2005, 1(1), 1-10.
[http://dx.doi.org/10.4161/auto.1.1.1270] [PMID: 16874026]
[18]
Antonioli, M.; Di Rienzo, M.; Piacentini, M.; Fimia, G.M. Emerging mechanisms in initiating and terminating autophagy. Trends Biochem. Sci., 2017, 42(1), 28-41.
[http://dx.doi.org/10.1016/j.tibs.2016.09.008] [PMID: 27765496]
[19]
Lippai, M.; Low, P. The role of the selective adaptor p62 and ubiquitin-like proteins in autophagy. Biomed. Res. Int., 2014, 2014, 832704.
[http://dx.doi.org/10.1155/2014/832704]
[20]
Stroupe, C. This is the end: Regulation of Rab7 nucleotide binding in endolysosomal trafficking and autophagy. Front. Cell Dev. Biol., 2018, 6, 129.
[http://dx.doi.org/10.3389/fcell.2018.00129] [PMID: 30333976]
[21]
Jäger, S.; Bucci, C.; Tanida, I.; Ueno, T.; Kominami, E.; Saftig, P.; Eskelinen, E.L. Role for Rab7 in maturation of late autophagic vacuoles. J. Cell Sci., 2004, 117(20), 4837-4848.
[http://dx.doi.org/10.1242/jcs.01370] [PMID: 15340014]
[22]
Eskelinen, E.L. Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy. Mol. Aspects Med., 2006, 27(5-6), 495-502.
[http://dx.doi.org/10.1016/j.mam.2006.08.005] [PMID: 16973206]
[23]
Mizushima, N.; Levine, B.; Cuervo, A.M.; Klionsky, D.J. Autophagy fights disease through cellular self-digestion. Nature, 2008, 451(7182), 1069-1075.
[http://dx.doi.org/10.1038/nature06639] [PMID: 18305538]
[24]
Tekirdag, K.; Cuervo, A.M. Chaperone-mediated autophagy and endosomal microautophagy: Jointed by a chaperone. J. Biol. Chem., 2018, 293(15), 5414-5424.
[http://dx.doi.org/10.1074/jbc.R117.818237] [PMID: 29247007]
[25]
Levine, B.; Kroemer, G. Autophagy in the pathogenesis of disease. Cell, 2008, 132(1), 27-42.
[http://dx.doi.org/10.1016/j.cell.2007.12.018] [PMID: 18191218]
[26]
Mizushima, N. A brief history of autophagy from cell biology to physiology and disease. Nat. Cell Biol., 2018, 20(5), 521-527.
[http://dx.doi.org/10.1038/s41556-018-0092-5] [PMID: 29686264]
[27]
Crighton, D.; Wilkinson, S.; O’Prey, J.; Syed, N.; Smith, P.; Harrison, P.R.; Gasco, M.; Garrone, O.; Crook, T.; Ryan, K.M. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell, 2006, 126(1), 121-134.
[http://dx.doi.org/10.1016/j.cell.2006.05.034] [PMID: 16839881]
[28]
Rahman, M.A.; Park, M.N.; Rahman, M.D.H.; Rashid, M.M.; Islam, R.; Uddin, M.J.; Hannan, M.A.; Kim, B. p53 modulation of autophagy signaling in cancer therapies: Perspectives mechanism and therapeutic targets. Front. Cell Dev. Biol., 2022, 10, 761080.
[http://dx.doi.org/10.3389/fcell.2022.761080] [PMID: 35155422]
[29]
Mei, Y.; Glover, K.; Su, M.; Sinha, S.C. Conformational flexibility of BECN1: Essential to its key role in autophagy and beyond. Protein Sci., 2016, 25(10), 1767-1785.
[http://dx.doi.org/10.1002/pro.2984] [PMID: 27414988]
[30]
Mulcahy Levy, J.M.; Thorburn, A. Autophagy in cancer: Moving from understanding mechanism to improving therapy responses in patients. Cell Death Differ., 2020, 27(3), 843-857.
[http://dx.doi.org/10.1038/s41418-019-0474-7] [PMID: 31836831]
[31]
Akkoc, Y.; Peker, N.; Akcay, A.; Gozuacik, D. Autophagy and cancer dormancy. Front. Oncol., 2021, 11, 627023.
[http://dx.doi.org/10.3389/fonc.2021.627023] [PMID: 33816262]
[32]
Elfgren, K.; Jacobs, M.; Walboomers, J.M.; Meijer, C.J.; Dillner, J. Rate of human papillomavirus clearance after treatment of cervical intraepithelial neoplasia. Obstet. Gynecol., 2002, 100(5 Pt. 1), 965-971.
[PMID: 12423862]
[33]
Insinga, R.P.; Glass, A.G.; Rush, B.B. Diagnoses and outcomes in cervical cancer screening: A population-based study. Am. J. Obstet. Gynecol., 2004, 191(1), 105-113.
[http://dx.doi.org/10.1016/j.ajog.2004.01.043] [PMID: 15295350]
[34]
Östör, A.G. Natural history of cervical intraepithelial neoplasia: A critical review. Int. J. Gynecol. Pathol., 1993, 12(2), 186-192.
[http://dx.doi.org/10.1097/00004347-199304000-00018] [PMID: 8463044]
[35]
Ghaem-Maghami, S.; Sagi, S.; Majeed, G.; Soutter, W.P. Incomplete excision of cervical intraepithelial neoplasia and risk of treatment failure: A meta-analysis. Lancet Oncol., 2007, 8(11), 985-993.
[http://dx.doi.org/10.1016/S1470-2045(07)70283-8] [PMID: 17928267]
[36]
Da Silva, M.; De Albuquerque, B.; Allyrio, T.; De Almeida, V.; Cobucci, R.; Bezerra, F.; Andrade, V.; Lanza, D.; De Azevedo, J.; De Araújo, J.; Fernandes, J. The role of HPV-induced epigenetic changes in cervical carcinogenesis. Biomed. Rep., 2021, 15(1), 60.
[http://dx.doi.org/10.3892/br.2021.1436] [PMID: 34094536]
[37]
Hu, Y.F.; Lei, X.; Zhang, H.Y.; Ma, J.W.; Yang, W.W.; Chen, M.L.; Cui, J.; Zhao, H. Expressions and clinical significance of autophagy-related markers Beclin-1, LC3, and EGFR in human cervical squamous cell carcinoma. Onco. Targets Ther., 2015, 8, 2243-2249.
[PMID: 26346666]
[38]
Oh, S.T.; Kyo, S.; Laimins, L.A. Telomerase activation by human papillomavirus type 16 E6 protein: Induction of human telomerase reverse transcriptase expression through Myc and GC-rich Sp1 binding sites. J. Virol., 2001, 75(12), 5559-5566.
[http://dx.doi.org/10.1128/JVI.75.12.5559-5566.2001] [PMID: 11356963]
[39]
Moody, C. Mechanisms by which HPV induces a replication competent environment in differentiating keratinocytes. Viruses, 2017, 9(9), 261.
[http://dx.doi.org/10.3390/v9090261] [PMID: 28925973]
[40]
Belleudi, F.; Purpura, V.; Caputo, S.; Torrisi, M.R. FGF7/KGF regulates autophagy in keratinocytes. Autophagy, 2014, 10(5), 803-821.
[http://dx.doi.org/10.4161/auto.28145] [PMID: 24577098]
[41]
Belleudi, F.; Nanni, M.; Raffa, S.; Torrisi, M.R. HPV16 E5 deregulates the autophagic process in human keratinocytes. Oncotarget, 2015, 6(11), 9370-9386.
[http://dx.doi.org/10.18632/oncotarget.3326] [PMID: 25826082]
[42]
Estêvão, D.; Costa, N.R.; Gil da Costa, R.M.; Medeiros, R. Hallmarks of HPV carcinogenesis: The role of E6, E7 and E5 oncoproteins in cellular malignancy. Biochim. Biophys. Acta. Gene Regul. Mech., 2019, 1862(2), 153-162.
[http://dx.doi.org/10.1016/j.bbagrm.2019.01.001] [PMID: 30707946]
[43]
Kenzelmann Broz, D.; Spano Mello, S.; Bieging, K.T.; Jiang, D.; Dusek, R.L.; Brady, C.A.; Sidow, A.; Attardi, L.D. Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes Dev., 2013, 27(9), 1016-1031.
[http://dx.doi.org/10.1101/gad.212282.112] [PMID: 23651856]
[44]
Budanov, A.V.; Karin, M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell, 2008, 134(3), 451-460.
[http://dx.doi.org/10.1016/j.cell.2008.06.028] [PMID: 18692468]
[45]
Mattoscio, D.; Casadio, C.; Miccolo, C.; Maffini, F.; Raimondi, A.; Tacchetti, C.; Gheit, T.; Tagliabue, M.; Galimberti, V.E.; De Lorenzi, F.; Pawlita, M.; Chiesa, F.; Ansarin, M.; Tommasino, M.; Chiocca, S. Autophagy regulates UBC9 levels during viral-mediated tumorigenesis. PLoS Pathog., 2017, 13(3), e1006262.
[http://dx.doi.org/10.1371/journal.ppat.1006262] [PMID: 28253371]
[46]
Cruz-Gregorio, A.; Manzo-Merino, J.; Gonzaléz-García, M.C.; Pedraza-Chaverri, J.; Medina-Campos, O.N.; Valverde, M.; Rojas, E.; Rodríguez-Sastre, M.A.; García-Cuellar, C.M.; Lizano, M. Human Papillomavirus types 16 and 18 early-expressed proteins differentially modulate the cellular redox state and DNA damage. Int. J. Biol. Sci., 2018, 14(1), 21-35.
[http://dx.doi.org/10.7150/ijbs.21547] [PMID: 29483822]
[47]
Williams, V.M.; Filippova, M.; Filippov, V.; Payne, K.J.; Duerksen-Hughes, P. Human papillomavirus type 16 E6* induces oxidative stress and DNA damage. J. Virol., 2014, 88(12), 6751-6761.
[http://dx.doi.org/10.1128/JVI.03355-13] [PMID: 24696478]
[48]
Chen, T.C.; Hung, Y.C.; Lin, T.Y.; Chang, H.W.; Chiang, I.P.; Chen, Y.Y.; Chow, K.C. Human papillomavirus infection and expression of ATPase family AAA domain containing 3A, a novel anti-autophagy factor, in uterine cervical cancer. Int. J. Mol. Med., 2011, 28(5), 689-696.
[PMID: 21743956]
[49]
Hanning, J.E.; Saini, H.K.; Murray, M.J.; Caffarel, M.M.; van Dongen, S.; Ward, D.; Barker, E.M.; Scarpini, C.G.; Groves, I.J.; Stanley, M.A.; Enright, A.J.; Pett, M.R.; Coleman, N. Depletion of HPV16 early genes induces autophagy and senescence in a cervical carcinogenesis model, regardless of viral physical state. J. Pathol., 2013, 231(3), 354-366.
[http://dx.doi.org/10.1002/path.4244] [PMID: 23913724]
[50]
Sun, Y.; Liu, J.H.; Sui, Y.X.; Jin, L.; Yang, Y.; Lin, S.M.; Shi, H. Beclin-1 overexpression inhibitis proliferation, invasion and migration of CaSki cervical cancer cells. Asian Pac. J. Cancer Prev., 2011, 12(5), 1269-1273.
[PMID: 21875280]
[51]
Xu, Y.; Yu, H.; Qin, H.; Kang, J.; Yu, C.; Zhong, J.; Su, J.; Li, H.; Sun, L. Inhibition of autophagy enhances cisplatin cytotoxicity through endoplasmic reticulum stress in human cervical cancer cells. Cancer Lett., 2012, 314(2), 232-243.
[http://dx.doi.org/10.1016/j.canlet.2011.09.034] [PMID: 22019047]
[52]
Li, N.; Zhang, W. Protein kinase C β inhibits autophagy and sensitizes cervical cancer Hela cells to cisplatin. Biosci. Rep., 2017, 37(2), BSR20160445.
[http://dx.doi.org/10.1042/BSR20160445] [PMID: 28246354]
[53]
Zhang, L.; Liu, X.; Song, L.; Zhai, H.; Chang, C. MAP7 promotes migration and invasion and progression of human cervical cancer through modulating the autophagy. Cancer Cell Int., 2020, 20(1), 17.
[http://dx.doi.org/10.1186/s12935-020-1095-4] [PMID: 31956295]
[54]
Seillier, M.; Peuget, S.; Gayet, O.; Gauthier, C.; N’Guessan, P.; Monte, M.; Carrier, A.; Iovanna, J.L.; Dusetti, N.J. TP53INP1, a tumor suppressor, interacts with LC3 and ATG8-family proteins through the LC3-interacting region (LIR) and promotes autophagy-dependent cell death. Cell Death Differ., 2012, 19(9), 1525-1535.
[http://dx.doi.org/10.1038/cdd.2012.30] [PMID: 22421968]
[55]
Zhang, X.; Sun, Y.; Cheng, S.; Yao, Y.; Hua, X.; Shi, Y.; Jin, X.; Pan, J.; Hu, M.G.; Ying, P.; Hou, X.; Xia, D. CDK6 increases glycolysis and suppresses autophagy by mTORC1-HK2 pathway activation in cervical cancer cells. Cell Cycle, 2022, 21(9), 984-1002.
[http://dx.doi.org/10.1080/15384101.2022.2039981] [PMID: 35167417]
[56]
Peng, X.; Gong, F.; Chen, Y.; Jiang, Y.; Liu, J.; Yu, M.; Zhang, S.; Wang, M.; Xiao, G.; Liao, H. Autophagy promotes paclitaxel resistance of cervical cancer cells: Involvement of Warburg effect activated hypoxia-induced factor 1-α-mediated signaling. Cell Death Dis., 2014, 5(8), e1367.
[http://dx.doi.org/10.1038/cddis.2014.297] [PMID: 25118927]
[57]
Jiang, L.; Xia, Y.; Zhong, T.; Zhang, H.; Jin, Q.; Li, F.; Shi, S. HIF2A overexpression reduces cisplatin sensitivity in cervical cancer by inducing excessive autophagy. Transl. Cancer Res., 2020, 9(1), 75-84.
[http://dx.doi.org/10.21037/tcr.2019.11.17] [PMID: 35117160]
[58]
Sun, X.; Shu, Y.; Xu, M.; Jiang, J.; Wang, L.; Wang, J.; Huang, D.; Zhang, J. ANXA6 suppresses the tumorigenesis of cervical cancer through autophagy induction. Clin. Transl. Med., 2020, 10(6), e208.
[http://dx.doi.org/10.1002/ctm2.208] [PMID: 33135350]
[59]
Fan, L.X.; Tao, L.; Lai, Y.C.; Cai, S.Y.; Zhao, Z.Y.; Yang, F.; Su, R.Y.; Wang, Q. Cx32 promotes autophagy and produces resistance to SN-induced apoptosis via activation of AMPK signalling in cervical cancer. Int. J. Oncol., 2022, 60(1), 1-11.
[PMID: 34970699]
[60]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[61]
Hanahan, D. Hallmarks of cancer: New dimensions. Cancer Discov., 2022, 12(1), 31-46.
[http://dx.doi.org/10.1158/2159-8290.CD-21-1059] [PMID: 35022204]
[62]
Shao, Y.; Gao, Z.; Marks, P.A.; Jiang, X. Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc. Natl. Acad. Sci., 2004, 101(52), 18030-18035.
[http://dx.doi.org/10.1073/pnas.0408345102] [PMID: 15596714]
[63]
Wu, G.; Long, Y.; Lu, Y.; Feng, Y.; Yang, X.; Xu, X.; Yao, D. Kindlin-2 suppresses cervical cancer cell migration through AKT/mTOR-mediated autophagy induction. Oncol. Rep., 2020, 44(1), 69-76.
[http://dx.doi.org/10.3892/or.2020.7603] [PMID: 32377753]
[64]
Ma, L.; Cheng, Y.; Zeng, J. MLK 3 silence induces cervical cancer cell apoptosis via the Notch‐1/autophagy network. Clin. Exp. Pharmacol. Physiol., 2019, 46(9), 854-860.
[http://dx.doi.org/10.1111/1440-1681.13123] [PMID: 31192472]
[65]
Hsu, K-F.; Huang, S-C.; Chou, C-Y.; Shiau, A-L.; Wu, C-L. SCC A1 inhibit autophagy activity in uterine cervical cancer. Cancer Res., 2006, 66(8), 964.
[66]
Wu, L.; Shen, B.; Li, J.; Zhang, H.; Zhang, K.; Yang, Y.; Zu, Z.; Shen, D.; Luo, M. STAT3 exerts pro-tumor and anti-autophagy roles in cervical cancer. Diagn. Pathol., 2022, 17(1), 13.
[http://dx.doi.org/10.1186/s13000-021-01182-4] [PMID: 35057825]
[67]
Vidoni, C.; Vallino, L.; Ferraresi, A.; Secomandi, E.; Salwa, A.; Chinthakindi, M.; Galetto, A.; Dhanasekaran, D.N.; Isidoro, C. Epigenetic control of autophagy in women’s tumors: Role of non-coding RNAs. J. Cancer Metastasis Treat., 2021, 2021, 2394-4722.
[http://dx.doi.org/10.20517/2394-4722.2020.95]
[68]
Wang, C.; Zeng, J.; Li, L.J.; Xue, M.; He, S.L. Cdc25A inhibits autophagy-mediated ferroptosis by upregulating ErbB2 through PKM2 dephosphorylation in cervical cancer cells. Cell Death Dis., 2021, 12(11), 1055.
[http://dx.doi.org/10.1038/s41419-021-04342-y] [PMID: 34743185]
[69]
Wang, X.Y.; Mao, H.W.; Guan, X.H.; Huang, Q.M.; Yu, Z.P.; Wu, J.; Tan, H.L.; Zhang, F.; Huang, X.; Deng, K.Y.; Xin, H.B. TRIM65 promotes cervical cancer through selectively degrading p53-mediated inhibition of autophagy and apoptosis. Front. Oncol., 2022, 12, 853935.
[http://dx.doi.org/10.3389/fonc.2022.853935] [PMID: 35402260]
[70]
Shi, H.; Zhong, F.; Yi, X.; Shi, Z.; Ou, F.; Xu, Z.; Zuo, Y. Application of an autophagy-related gene prognostic risk model based on TCGA database in cervical cancer. Front. Genet., 2021, 11, 616998.
[http://dx.doi.org/10.3389/fgene.2020.616998] [PMID: 33633773]
[71]
He, W.; Zhang, A.; Qi, L.; Na, C.; Jiang, R.; Fan, Z.; Chen, J. FOXO1, a potential therapeutic target, regulates autophagic flux, oxidative stress, mitochondrial dysfunction, and apoptosis in Human Cholangiocarcinoma QBC939 cells. Cell. Physiol. Biochem., 2018, 45(4), 1506-1514.
[http://dx.doi.org/10.1159/000487576] [PMID: 29466794]
[72]
Lin, S.L.; Wang, M.; Cao, Q.Q.; Li, Q. Chromatin modified protein 4C (CHMP4C) facilitates the malignant development of cervical cancer cells. FEBS Open Bio, 2020, 10(7), 1295-1303.
[http://dx.doi.org/10.1002/2211-5463.12880] [PMID: 32406588]
[73]
Li, M.; Khambu, B.; Zhang, H.; Kang, J.H.; Chen, X.; Chen, D.; Vollmer, L.; Liu, P.Q.; Vogt, A.; Yin, X.M. Suppression of lysosome function induces autophagy via a feedback down-regulation of MTOR complex 1 (MTORC1) activity. J. Biol. Chem., 2013, 288(50), 35769-35780.
[http://dx.doi.org/10.1074/jbc.M113.511212] [PMID: 24174532]
[74]
Yang, S.L.; Tan, H.X.; Niu, T.T.; Liu, Y.K.; Gu, C.J.; Li, D.J.; Li, M.Q.; Wang, H.Y. The IFN-γ-IDO1-kynureine pathway-induced autophagy in cervical cancer cell promotes phagocytosis of macrophage. Int. J. Biol. Sci., 2021, 17(1), 339-352.
[http://dx.doi.org/10.7150/ijbs.51241] [PMID: 33390854]
[75]
He, P.; Peng, Z.; Luo, Y.; Wang, L.; Yu, P.; Deng, W.; An, Y.; Shi, T.; Ma, D. High-throughput functional screening for autophagy-related genes and identification of TM9SF1 as an autophagosome-inducing gene. Autophagy, 2009, 5(1), 52-60.
[http://dx.doi.org/10.4161/auto.5.1.7247] [PMID: 19029833]
[76]
Chen, H.; Deng, Q.; Wang, W.; Tao, H.; Gao, Y. Identification of an autophagy-related gene signature for survival prediction in patients with cervical cancer. J. Ovarian Res., 2020, 13(1), 131.
[http://dx.doi.org/10.1186/s13048-020-00730-8] [PMID: 33160404]
[77]
Meng, D.; Jin, H.; Zhang, X.; Yan, W.; Xia, Q.; Shen, S.; Xie, S.; Cui, M.; Ding, B.; Gu, Y.; Wang, S. Identification of autophagy-related risk signatures for the prognosis, diagnosis, and targeted therapy in cervical cancer. Cancer Cell Int., 2021, 21(1), 362.
[http://dx.doi.org/10.1186/s12935-021-02073-w] [PMID: 34238288]
[78]
Bhan, A.; Soleimani, M.; Mandal, S.S. Long noncoding RNA and Cancer: A new paradigm. Cancer Res., 2017, 77(15), 3965-3981.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2634] [PMID: 28701486]
[79]
Bayramoglu Tepe, N.; Bozgeyik, E.; Bozdag, Z.; Balat, O.; Ozcan, H.C.; Ugur, M.G. Identification of autophagy-associated miRNA signature for the cervical squamous cell cancer and high-grade cervical intraepithelial lesions. Reprod. Biol., 2021, 21(3), 100536.
[http://dx.doi.org/10.1016/j.repbio.2021.100536] [PMID: 34298410]
[80]
Feng, Q.; Wang, J.; Cui, N.; Liu, X.; Wang, H. Autophagy-related long non-coding RNA signature for potential prognostic biomarkers of patients with cervical cancer: A study based on public databases. Ann. Transl. Med., 2021, 9(22), 1668-1668.
[http://dx.doi.org/10.21037/atm-21-5156] [PMID: 34988177]
[81]
Reddy, K.B. MicroRNA (miRNA) in cancer. Cancer Cell Int., 2015, 15(1), 38.
[http://dx.doi.org/10.1186/s12935-015-0185-1] [PMID: 25960691]
[82]
Zhu, T.; Cen, Y.; Chen, Z.; Zhang, Y.; Zhao, L.; Wang, J.; Lu, W.; Xie, X.; Wang, X. Oncogenic circTICRR suppresses autophagy via binding to HuR protein and stabilizing GLUD1 mRNA in cervical cancer. Cell Death Dis., 2022, 13(5), 479.
[http://dx.doi.org/10.1038/s41419-022-04943-1] [PMID: 35595754]
[83]
Kristensen, L.S.; Hansen, T.B.; Venø, M.T.; Kjems, J. Circular RNAs in cancer: Opportunities and challenges in the field. Oncogene, 2018, 37(5), 555-565.
[http://dx.doi.org/10.1038/onc.2017.361] [PMID: 28991235]
[84]
Huang, E.; Liu, R.; Chu, Y. miRNA-15a/16: As tumor suppressors and more. Future Oncol., 2015, 11(16), 2351-2363.
[http://dx.doi.org/10.2217/fon.15.101] [PMID: 26260813]
[85]
Zhou, Q.; Dong, J.; Luo, R.; Zhou, X.; Wang, J.; Chen, F. MicroRNA-20a regulates cell proliferation, apoptosis and autophagy by targeting thrombospondin 2 in cervical cancer. Eur. J. Pharmacol., 2019, 844, 102-109.
[http://dx.doi.org/10.1016/j.ejphar.2018.11.043] [PMID: 30513279]
[86]
Peralta-Zaragoza, O.; Deas, J.; Meneses-Acosta, A. Relevance of MiR-21 in regulation of tumor suppressor gene PTEN in human cervical cancer cells. BMC Cancer, 2016, 16(1), 1-16.
[87]
Cheng, Y.; Chen, G.; Hu, M.; Huang, J.; Li, B.; Zhou, L.; Hong, L. Has-miR-30a regulates autophagic activity in cervical cancer upon hydroxycamptothecin exposure. Biomed. Pharmacother., 2015, 75, 67-74.
[http://dx.doi.org/10.1016/j.biopha.2015.08.034] [PMID: 26463633]
[88]
Wu, Y.; Ni, Z.; Yan, X.; Dai, X.; Hu, C.; Zheng, Y.; He, F.; Lian, J. Targeting the MIR34C-5p -ATG4B-autophagy axis enhances the sensitivity of cervical cancer cells to pirarubicin. Autophagy, 2016, 12(7), 1105-1117.
[http://dx.doi.org/10.1080/15548627.2016.1173798] [PMID: 27097054]
[89]
Wan, G.; Xie, W.; Liu, Z.; Xu, W.; Lao, Y.; Huang, N.; Cui, K.; Liao, M.; He, J.; Jiang, Y.; Yang, B.B.; Xu, H.; Xu, N.; Zhang, Y. Hypoxia-induced MIR155 is a potent autophagy inducer by targeting multiple players in the MTOR pathway. Autophagy, 2014, 10(1), 70-79.
[http://dx.doi.org/10.4161/auto.26534] [PMID: 24262949]
[90]
Li, N.; Guo, X.; Liu, L.; Wang, L.; Cheng, R. Molecular mechanism of miR-204 regulates proliferation, apoptosis and autophagy of cervical cancer cells by targeting ATF2. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 2529-2535.
[http://dx.doi.org/10.1080/21691401.2019.1628038] [PMID: 31204513]
[91]
Fang, W.; Shu, S.; Yongmei, L.; Endong, Z.; Lirong, Y.; Bei, S. miR-224-3p inhibits autophagy in cervical cancer cells by targeting FIP200. Sci. Rep., 2016, 6(1), 33229.
[http://dx.doi.org/10.1038/srep33229] [PMID: 27615604]
[92]
Lu, R.; Yang, Z.; Xu, G.; Yu, S. miR-338 modulates proliferation and autophagy by PI3K/AKT/mTOR signaling pathway in cervical cancer. Biomed. Pharmacother., 2018, 105(1), 633-644.
[http://dx.doi.org/10.1016/j.biopha.2018.06.024] [PMID: 29898430]
[93]
Guo, J.; Yang, Z.; Yang, X.; Li, T.; Liu, M.; Tang, H. miR-346 functions as a pro-survival factor under ER stress by activating mitophagy. Cancer Lett., 2018, 413, 69-81.
[http://dx.doi.org/10.1016/j.canlet.2017.10.030] [PMID: 29107113]
[94]
Tan, D.; Zhou, C.; Han, S.; Hou, X.; Kang, S.; Zhang, Y. MicroRNA-378 enhances migration and invasion in cervical cancer by directly targeting autophagy-related protein 12. Mol. Med. Rep., 2018, 17(5), 6319-6326.
[http://dx.doi.org/10.3892/mmr.2018.8645] [PMID: 29488616]
[95]
Zhang, L.; Wei, Z.; Wang, Y.; Xu, F.; Cheng, Z. Long noncoding RNA ROR1-AS1 enhances STC2-mediated cell growth and autophagy in cervical cancer through miR-670-3p. J. Recept. Signal Transduct. Res., 2021, 41(6), 582-592.
[http://dx.doi.org/10.1080/10799893.2020.1836495] [PMID: 33081599]
[96]
Yang, Z.; Sun, Q.; Guo, J.; Wang, S.; Song, G.; Liu, W.; Liu, M.; Tang, H. GRSF1 -mediated MIR-G-1 promotes malignant behavior and nuclear autophagy by directly upregulating TMED5 and LMNB1 in cervical cancer cells. Autophagy, 2019, 15(4), 668-685.
[http://dx.doi.org/10.1080/15548627.2018.1539590] [PMID: 30394198]
[97]
Guo, J.; Chen, M.; Ai, G.; Mao, W.; Li, H.; Zhou, J. Hsa_circ_0023404 enhances cervical cancer metastasis and chemoresistance through VEGFA and autophagy signaling by sponging miR-5047. Biomed. Pharmacother., 2019, 115, 108957.
[http://dx.doi.org/10.1016/j.biopha.2019.108957] [PMID: 31082770]
[98]
Zou, S.H.; Du, X.; Lin, H.; Wang, P.C.; Li, M. Paclitaxel inhibits the progression of cervical cancer by inhibiting autophagy via lncRNARP11-381N20.2. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(10), 3010-3017.
[PMID: 29863245]
[99]
Shi, Y.; Liu, M.; Huang, Y.; Zhang, J.; Yin, L. Promotion of cell autophagy and apoptosis in cervical cancer by inhibition of long noncoding RNA LINC00511 via transcription factor RXRA‐regulated PLD1. J. Cell. Physiol., 2020, 235(10), 6592-6604.
[http://dx.doi.org/10.1002/jcp.29529] [PMID: 32067228]
[100]
Yang, Y.; Wang, Q.; Song, D.; Zen, R.; Zhang, L.; Wang, Y.; Yang, H.; Zhang, D.; Jia, J.; Zhang, J.; Wang, J. Lysosomal dysfunction and autophagy blockade contribute to autophagy-related cancer suppressing peptide-induced cytotoxic death of cervical cancer cells through the AMPK/mTOR pathway. J. Exp. Clin. Cancer Res., 2020, 39(1), 197.
[http://dx.doi.org/10.1186/s13046-020-01701-z] [PMID: 32962728]
[101]
Mujtaba, T.; Dou, Q.P. Advances in the understanding of mechanisms and therapeutic use of bortezomib. Discov. Med., 2011, 12(67), 471-480.
[PMID: 22204764]
[102]
Zhang, Y.; Bai, C.; Lu, D.; Wu, X.; Gao, L.; Zhang, W. Endoplasmic reticulum stress and autophagy participate in apoptosis induced by bortezomib in cervical cancer cells. Biotechnol. Lett., 2016, 38(2), 357-365.
[http://dx.doi.org/10.1007/s10529-015-1968-0] [PMID: 26423802]
[103]
Mancuso, C.; Santangelo, R. Ferulic acid: Pharmacological and toxicological aspects. Food Chem. Toxicol., 2014, 65, 185-195.
[http://dx.doi.org/10.1016/j.fct.2013.12.024] [PMID: 24373826]
[104]
Gao, J.; Yu, H.; Guo, W.; Kong, Y. Gu; Li, Q.; Yang, S.; Zhang, Y.; Wang, Y. The anticancer effects of ferulic acid is associated with induction of cell cycle arrest and autophagy in cervical cancer cells. Cancer Cell Int., 2018, 18(1), 102.
[http://dx.doi.org/10.1186/s12935-018-0595-y]
[105]
Shin, B.K.; Kwon, S.W.; Park, J.H. Chemical diversity of ginseng saponins from Panax ginseng. J. Ginseng Res., 2015, 39(4), 287-298.
[http://dx.doi.org/10.1016/j.jgr.2014.12.005] [PMID: 26869820]
[106]
Yin, Q.; Chen, H.; Ma, R.H.; Zhang, Y.Y.; Liu, M.M.; Thakur, K.; Zhang, J.G.; Wei, Z.J. Ginsenoside CK induces apoptosis of human cervical cancer HeLa cells by regulating autophagy and endoplasmic reticulum stress. Food Funct., 2021, 12(12), 5301-5316.
[http://dx.doi.org/10.1039/D1FO00348H] [PMID: 34013944]
[107]
Xu, G.; Yan, X.; Hu, Z.; Zheng, L.; Ding, K.; Zhang, Y.; Qing, Y.; Liu, T.; Cheng, L.; Shi, Z. Glucocappasalin induces G2/M-phase arrest, apoptosis, and autophagy pathways by targeting CDK1 and PLK1 in cervical carcinoma cells. Front. Pharmacol., 2021, 12, 671138.
[http://dx.doi.org/10.3389/fphar.2021.671138] [PMID: 34093198]
[108]
Fan, H.; He, Y.; Xiang, J.; Zhou, J.; Wan, X.; You, J.; Du, K.; Li, Y.; Cui, L.; Wang, Y.; Zhang, C.; Bu, Y.; Lei, Y. ROS generation attenuates the anti-cancer effect of CPX on cervical cancer cells by inducing autophagy and inhibiting glycophagy. Redox Biol., 2022, 53, 102339.
[http://dx.doi.org/10.1016/j.redox.2022.102339] [PMID: 35636017]
[109]
Ma, H.P.; Ming, L.G.; Ge, B.F.; Zhai, Y.K.; Song, P.; Xian, C.J.; Chen, K.M. Icariin is more potent than genistein in promoting osteoblast differentiation and mineralization in vitro. J. Cell. Biochem., 2011, 112(3), 916-923.
[http://dx.doi.org/10.1002/jcb.23007] [PMID: 21328465]
[110]
Huang, S.; Xie, T.; Liu, W. Icariin inhibits the growth of human cervical cancer cells by inducing apoptosis and autophagy by targeting mTOR/PI3K/AKT signalling pathway. J. BUON, 2019, 24(3), 990-996.
[PMID: 31424652]
[111]
Boselli, M.; Lee, B.H.; Robert, J.; Prado, M.A.; Min, S.W.; Cheng, C.; Silva, M.C.; Seong, C.; Elsasser, S.; Hatle, K.M.; Gahman, T.C.; Gygi, S.P.; Haggarty, S.J.; Gan, L.; King, R.W.; Finley, D. An inhibitor of the proteasomal deubiquitinating enzyme USP14 induces tau elimination in cultured neurons. J. Biol. Chem., 2017, 292(47), 19209-19225.
[http://dx.doi.org/10.1074/jbc.M117.815126] [PMID: 28972160]
[112]
Xu, L.; Wang, J.; Yuan, X.; Yang, S.; Xu, X.; Li, K.; He, Y.; Wei, L.; Zhang, J.; Tian, Y. IU1 suppresses proliferation of cervical cancer cells through MDM2 degradation. Int. J. Biol. Sci., 2020, 16(15), 2951-2963.
[http://dx.doi.org/10.7150/ijbs.47999] [PMID: 33061808]
[113]
Kasznicki, J.; Sliwinska, A.; Drzewoski, J. Metformin in cancer prevention and therapy. Ann. Transl. Med., 2014, 2(6), 57.
[PMID: 25333032]
[114]
Xia, C.; He, Z.; Liang, S.; Chen, R.; Xu, W.; Yang, J.; Xiao, G.; Jiang, S. Metformin combined with nelfinavir induces SIRT3/mROS-dependent autophagy in human cervical cancer cells and xenograft in nude mice. Eur. J. Pharmacol., 2019, 848, 62-69.
[http://dx.doi.org/10.1016/j.ejphar.2019.01.045] [PMID: 30695683]
[115]
Lee, G.W.; Ko, Y.B.; Yoo, H.J. Identification of autophagy related antitumor effect in cervical cancer. Gynecol. Oncol., 2019, 154(1), 98.
[http://dx.doi.org/10.1016/j.ygyno.2019.04.231] [PMID: 30995960]
[116]
Knight, D.W. Feverfew: Chemistry and biological activity. Nat. Prod. Rep., 1995, 12(3), 271-276.
[http://dx.doi.org/10.1039/np9951200271] [PMID: 7792073]
[117]
Jeyamohan, S.; Moorthy, R.K.; Kannan, M.K.; Arockiam, A.J.V. Parthenolide induces apoptosis and autophagy through the suppression of PI3K/Akt signaling pathway in cervical cancer. Biotechnol. Lett., 2016, 38(8), 1251-1260.
[http://dx.doi.org/10.1007/s10529-016-2102-7] [PMID: 27099069]
[118]
Wijesekara, I.; Zhang, C.; Van Ta, Q.; Vo, T.S.; Li, Y.X.; Kim, S.K. Physcion from marine-derived fungus Microsporum sp. induces apoptosis in human cervical carcinoma HeLa cells. Microbiol. Res., 2014, 169(4), 255-261.
[http://dx.doi.org/10.1016/j.micres.2013.09.001] [PMID: 24071573]
[119]
Trybus, W.; Król, T.; Trybus, E.; Stachurska, A. Physcion induces potential anticancer effects in cervical cancer cells. Cells, 2021, 10(8), 2029.
[http://dx.doi.org/10.3390/cells10082029] [PMID: 34440797]
[120]
Tsai, J.H.; Hsu, L.S.; Huang, H.C.; Lin, C.L.; Pan, M.H.; Hong, H.M.; Chen, W.J. 1-(2-Hydroxy-5-methylphenyl)-3-phenyl-1,3-propanedione induces G1 cell cycle arrest and autophagy in HeLa cervical cancer cells. Int. J. Mol. Sci., 2016, 17(8), 1274.
[http://dx.doi.org/10.3390/ijms17081274] [PMID: 27527160]
[121]
Salehi, B.; Mishra, A.; Nigam, M.; Sener, B.; Kilic, M.; Sharifi-Rad, M.; Fokou, P.; Martins, N.; Sharifi-Rad, J. Resveratrol: A double-edged sword in health benefits. Biomedicines, 2018, 6(3), 91.
[http://dx.doi.org/10.3390/biomedicines6030091] [PMID: 30205595]
[122]
García-Zepeda, S.P.; García-Villa, E.; Díaz-Chávez, J.; Hernández-Pando, R.; Gariglio, P. Resveratrol induces cell death in cervical cancer cells through apoptosis and autophagy. Eur. J. Cancer Prev., 2013, 22(6), 577-584.
[http://dx.doi.org/10.1097/CEJ.0b013e328360345f] [PMID: 23603746]
[123]
Battaglia, V.; DeStefano Shields, C.; Murray-Stewart, T.; Casero, R.A., Jr Polyamine catabolism in carcinogenesis: Potential targets for chemotherapy and chemoprevention. Amino Acids, 2014, 46(3), 511-519.
[http://dx.doi.org/10.1007/s00726-013-1529-6] [PMID: 23771789]
[124]
Gerner, E.W.; Meyskens, F.L., Jr Polyamines and cancer: Old molecules, new understanding. Nat. Rev. Cancer, 2004, 4(10), 781-792.
[http://dx.doi.org/10.1038/nrc1454] [PMID: 15510159]
[125]
Chen, Y.; Zhuang, H.; Chen, X.; Shi, Z.; Wang, X. Spermidine-induced growth inhibition and apoptosis via autophagic activation in cervical cancer. Oncol. Rep., 2018, 39(6), 2845-2854.
[http://dx.doi.org/10.3892/or.2018.6377] [PMID: 29693131]
[126]
Gutman, J.; Kovacs, S.; Dorsey, G.; Stergachis, A.; ter Kuile, F.O. Safety, tolerability, and efficacy of repeated doses of dihydroartemisinin-piperaquine for prevention and treatment of malaria: A systematic review and meta-analysis. Lancet Infect. Dis., 2017, 17(2), 184-193.
[http://dx.doi.org/10.1016/S1473-3099(16)30378-4] [PMID: 27865890]
[127]
Tang, T.; Xia, Q.J.; Xi, M.R. Dihydroartemisinin and its anticancer activity against endometrial carcinoma and cervical cancer: Involvement of apoptosis, autophagy and transferrin receptor. Singapore Med. J., 2021, 62(2), 96-103.
[http://dx.doi.org/10.11622/smedj.2019138] [PMID: 31680182]
[128]
Rady, I.; Siddiqui, I.A.; Rady, M.; Mukhtar, H. Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy. Cancer Lett., 2017, 402, 16-31.
[http://dx.doi.org/10.1016/j.canlet.2017.05.010] [PMID: 28536009]
[129]
Wang, D.; He, J.; Dong, J.; Wu, S.; Liu, S.; Zhu, H.; Xu, T. UM-6 induces autophagy and apoptosis via the Hippo-YAP signaling pathway in cervical cancer. Cancer Lett., 2021, 519, 2-19.
[http://dx.doi.org/10.1016/j.canlet.2021.05.020] [PMID: 34161791]
[130]
Rezazadeh, D.; Norooznezhad, A.H.; Mansouri, K.; Jahani, M.; Mostafaie, A.; Mohammadi, M.H.; Modarressi, M.H. Rapamycin reduces cervical cancer cells viability in hypoxic condition: Investigation of the role of autophagy and apoptosis. Onco. Targets Ther., 2020, 13, 4239-4247.
[http://dx.doi.org/10.2147/OTT.S249985] [PMID: 32547058]
[131]
Liu, Y.; He, G.; Wang, Y.; Guan, X.; Pang, X.; Zhang, B. MCM-2 is a therapeutic target of Trichostatin A in colon cancer cells. Toxicol. Lett., 2013, 221(1), 23-30.
[http://dx.doi.org/10.1016/j.toxlet.2013.05.643] [PMID: 23770000]
[132]
Hu, G.; Gong, X.; Wang, L.; Liu, M.; Liu, Y.; Fu, X.; Wang, W.; Zhang, T.; Wang, X. Triptolide promotes the clearance of α-synuclein by enhancing autophagy in neuronal cells. Mol. Neurobiol., 2017, 54(3), 2361-2372.
[http://dx.doi.org/10.1007/s12035-016-9808-3] [PMID: 26957304]
[133]
Qin, G.; Li, P.; Xue, Z. Triptolide induces protective autophagy and apoptosis in human cervical cancer cells by downregulating Akt/mTOR activation. Oncol. Lett., 2018, 16(3), 3929-3934.
[http://dx.doi.org/10.3892/ol.2018.9074] [PMID: 30128010]
[134]
Kasai, R.; Miyakoshi, M.; Matsumoto, K.; Nie, R.L.; Zhou, J.; Morita, T.; Tanaka, O. Tubeimoside I, a new cyclic bisdesmoside from chinese cucurbitaceous folk medicine “Tu Bei Mu”, a tuber of Bolbostemma paniculatum. Chem. Pharm. Bull., 1986, 34(9), 3974-3977.
[http://dx.doi.org/10.1248/cpb.34.3974] [PMID: 3815619]
[135]
Feng, X.; Zhou, J.; Li, J.; Hou, X.; Li, L.; Chen, Y.; Fu, S.; Zhou, L.; Li, C.; Lei, Y.; Tubeimoside, I. Tubeimoside I induces accumulation of impaired autophagolysosome against cervical cancer cells by both initiating autophagy and inhibiting lysosomal function. Cell Death Dis., 2018, 9(11), 1117.
[http://dx.doi.org/10.1038/s41419-018-1151-3] [PMID: 30389907]
[136]
Young, R.J.; Coleman, R.E.; Lin, Y.C. Zoledronic acid to prevent and treat cancer metastasis: New prospects for an old drug. Futur. Oncol., 2013, 9(5), 633-643.
[137]
Wang, I.T.; Chou, S.C.; Lin, Y.C. Zoledronic acid induces apoptosis and autophagy in cervical cancer cells. Tumour Biol., 2014, 35(12), 11913-11920.
[http://dx.doi.org/10.1007/s13277-014-2460-5] [PMID: 25142231]
[138]
Apel, A.; Herr, I.; Schwarz, H.; Rodemann, H.P.; Mayer, A. Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy. Cancer Res., 2008, 68(5), 1485-1494.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0562] [PMID: 18316613]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy