Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Advances in the Therapeutic Potential of Inhibitors Targeting Glycogen Synthase Kinase 3 in Inflammatory Diseases

Author(s): Yifan Zhu, Hui Wang, Yueyue Guo, Jie Cao* and Huanqiu Li*

Volume 23, Issue 19, 2023

Published on: 10 May, 2023

Page: [1893 - 1904] Pages: 12

DOI: 10.2174/1389557523666230412083123

Abstract

Glycogen synthase kinase-3 (GSK3) is one of the important serine/threonine protein kinases and has two isoforms, namely, GSK3α and GSK3β. GSK3 inhibits glycogen synthase activity through phosphorylation. It plays a key role in various pathophysiological processes, such as differentiation, immunity, metabolism, cell death, and cell survival. Therefore, GSK3 has evolved as an important therapeutic target for treating neurological diseases, inflammatory diseases, and cancer. In addition, GSK3 regulates inflammatory processes through NF-κB-induced expression of various cytokines, including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6. Moreover, GSK3 is reported to participate in many signaling pathways related to disease pathology, including PI3K/Akt, Wnt, Hedgehog, cyclic adenosine monophosphate, mitogen-activated protein kinase, and transforming growth factor-β (TGF-β). GSK3 has become a therapeutic target against some inflammatory diseases, including the inclusion body myositis, sepsis, and inflammatory bowel disease. Hence, several GSK3 inhibitors have been under evaluation as new therapeutic strategies in recent years. Two drugs targeting GSK3 have already entered clinical studies, including tideglusib and lithium carbonate. In this study, we analyzed nearly 30 different small-molecule GSK3 inhibitors reported in the past 4 years and classified them into four categories (thiazole, pyridine, F-substituted benzene, and others) according to their structure to conduct further literature research. Moreover, we summarized the optimal compounds and described the process of transformation from the lead compound to the optimal compound. In addition, we aimed to summarize the role of GSK3 in the pathogenesis of inflammatory diseases, with insights into the recent progress in the discovery of GSK3 inhibitors.

Keywords: Glycogen synthase kinase-3, inflammatory diseases, GSK3α, GSK3β, inhibitors, small-molecule compound, structure- activity relationship.

Graphical Abstract
[1]
Saraswati, A.P.; Ali Hussaini, S.M.; Krishna, N.H.; Babu, B.N.; Kamal, A. Glycogen synthase kinase-3 and its inhibitors: Potential target for various therapeutic conditions. Eur. J. Med. Chem., 2018, 144, 843-858.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.103] [PMID: 29306837]
[2]
Wadhwa, P.; Jain, P.; Jadhav, H.R. Glycogen Synthase Kinase 3 (GSK3): Its role and inhibitors. Curr. Top. Med. Chem., 2020, 20(17), 1522-1534.
[http://dx.doi.org/10.2174/1568026620666200516153136] [PMID: 32416693]
[3]
Dajani, R.; Fraser, E.; Roe, S.M.; Young, N.; Good, V.; Dale, T.C.; Pearl, L.H. Crystal structure of glycogen synthase kinase 3 beta: Structural basis for phosphate-primed substrate specificity and autoinhibition. Cell, 2001, 105(6), 721-732.
[http://dx.doi.org/10.1016/S0092-8674(01)00374-9] [PMID: 11440715]
[4]
ter Haar, E.; Coll, J.T.; Austen, D.A.; Hsiao, H.M.; Swenson, L.; Jain, J. Structure of GSK3beta reveals a primed phosphorylation mechanism. Nat. Struct. Biol., 2001, 8(7), 593-596.
[http://dx.doi.org/10.1038/89624] [PMID: 11427888]
[5]
Hoeflich, K.P.; Luo, J.; Rubie, E.A.; Tsao, M.S.; Jin, O.; Woodgett, J.R. Requirement for glycogen synthase kinase-3β in cell survival and NF-κB activation. Nature, 2000, 406(6791), 86-90.
[http://dx.doi.org/10.1038/35017574] [PMID: 10894547]
[6]
Woodgett, J.R. Judging a protein by more than its name: GSK-3. Sci. STKE, 2001, 2001(100), re12.
[http://dx.doi.org/10.1126/stke.2001.100.re12] [PMID: 11579232]
[7]
Beurel, E.; Grieco, S.F.; Jope, R.S. Glycogen synthase kinase-3 (GSK3): Regulation, actions, and diseases. Pharmacol. Ther., 2015, 148, 114-131.
[http://dx.doi.org/10.1016/j.pharmthera.2014.11.016] [PMID: 25435019]
[8]
Silva-García, O.; Cortés-Vieyra, R.; Mendoza-Ambrosio, F.N.; Ramírez-Galicia, G.; Baizabal-Aguirre, V.M. GSK3α An important paralog in neurodegenerative disorders and cancer. Biomolecules, 2020, 10(12), 1683.
[http://dx.doi.org/10.3390/biom10121683] [PMID: 33339170]
[9]
Linding, R.; Jensen, L.J.; Ostheimer, G.J.; van Vugt, M.A.T.M.; Jørgensen, C.; Miron, I.M.; Diella, F.; Colwill, K.; Taylor, L.; Elder, K.; Metalnikov, P.; Nguyen, V.; Pasculescu, A.; Jin, J.; Park, J.G.; Samson, L.D.; Woodgett, J.R.; Russell, R.B.; Bork, P.; Yaffe, M.B.; Pawson, T. Systematic discovery of in vivo phosphorylation networks. Cell, 2007, 129(7), 1415-1426.
[http://dx.doi.org/10.1016/j.cell.2007.05.052] [PMID: 17570479]
[10]
Sutherland, C. What Are the bona fide GSK3 Substrates? Int. J. Alzheimers Dis., 2011, 2011, 1-23.
[http://dx.doi.org/10.4061/2011/505607] [PMID: 21629754]
[11]
Henriksen, E.; Dokken, B. Role of glycogen synthase kinase-3 in insulin resistance and type 2 diabetes. Curr. Drug Targets, 2006, 7(11), 1435-1441.
[http://dx.doi.org/10.2174/1389450110607011435] [PMID: 17100583]
[12]
Manoukian, A.S.; Woodgett, J.R. Role of glycogen synthase kinase-3 in cancer: Regulation by Wnts and other signaling pathways. Adv. Cancer Res., 2002, 84, 203-229.
[http://dx.doi.org/10.1016/S0065-230X(02)84007-6] [PMID: 11883528]
[13]
Hooper, C.; Killick, R.; Lovestone, S. The GSK3 hypothesis of Alzheimer’s disease. J. Neurochem., 2008, 104(6), 1433-1439.
[http://dx.doi.org/10.1111/j.1471-4159.2007.05194.x] [PMID: 18088381]
[14]
Giese, K.P. GSK-3: A key player in neurodegeneration and memory. IUBMB Life, 2009, 61(5), 516-521.
[http://dx.doi.org/10.1002/iub.187] [PMID: 19391164]
[15]
Ho, L.; Qin, W.; Pompl, P.N.; Xiang, Z.; Wang, J.; Zhao, Z.; Peng, Y.; Cambareri, G.; Rocher, A.; Mobbs, C.V.; Hof, P.R.; Pasinetti, G.M. Diet‐induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer’s disease. FASEB J., 2004, 18(7), 902-904.
[http://dx.doi.org/10.1096/fj.03-0978fje] [PMID: 15033922]
[16]
Maqbool, M.; Hoda, N. GSK3 inhibitors in the therapeutic development of diabetes, cancer and neurodegeneration: Past, present and future. Curr. Pharm. Des., 2017, 23(29), 4332-4350.
[PMID: 28714403]
[17]
Llorach-Pares, L.; Nonell-Canals, A.; Avila, C.; Sanchez-Martinez, M. Kororamides, convolutamines, and indole derivatives as possible tau and dual-specificity kinase inhibitors for Alzheimer’s Disease: A computational study. Mar. Drugs, 2018, 16(10), 386.
[http://dx.doi.org/10.3390/md16100386] [PMID: 30332805]
[18]
Beurel, E.; Michalek, S.M.; Jope, R.S. Innate and adaptive immune responses regulated by glycogen synthase kinase-3 (GSK3). Trends Immunol., 2010, 31(1), 24-31.
[http://dx.doi.org/10.1016/j.it.2009.09.007] [PMID: 19836308]
[19]
McCubrey, J.A.; Rakus, D.; Gizak, A.; Steelman, L.S.; Abrams, S.L.; Lertpiriyapong, K.; Fitzgerald, T.L.; Yang, L.V.; Montalto, G.; Cervello, M.; Libra, M.; Nicoletti, F.; Scalisi, A.; Torino, F.; Fenga, C.; Neri, L.M.; Marmiroli, S.; Cocco, L.; Martelli, A.M. Effects of mutations in Wnt/β-catenin, hedgehog, Notch and PI3K pathways on GSK-3 activity-Diverse effects on cell growth, metabolism and cancer. Biochim. Biophys. Acta Mol. Cell Res., 2016, 1863(12), 2942-2976.
[http://dx.doi.org/10.1016/j.bbamcr.2016.09.004] [PMID: 27612668]
[20]
Leo, E.; Simonetti, G.; Mancini, M.; Veljkovic, N.; Campi, V.; Castagnetti, F.; Gugliotta, G.; De Benedittis, C.; Santucci, M.A.; Martinelli, G. FOXM1 transcription factor is a component of beta catenin signaling in hematopoietic progenitors of chronic myeloid leukemia. Blood, 2014, 124(21), 3125.
[http://dx.doi.org/10.1182/blood.V124.21.3125.3125]
[21]
Kitazawa, M.; Trinh, D.N.; LaFerla, F.M. Inflammation induces tau pathology in inclusion body myositis model via glycogen synthase kinase-3β. Ann. Neurol., 2008, 64(1), 15-24.
[http://dx.doi.org/10.1002/ana.21325] [PMID: 18318434]
[22]
Schulte, W.; Bernhagen, J.; Bucala, R. Cytokines in sepsis: Potent immunoregulators and potential therapeutic targets-an updated view. Mediat. Inflamm., 2013, 2013, 1-16.
[http://dx.doi.org/10.1155/2013/165974] [PMID: 23853427]
[23]
Schmitt, M.; Schewe, M.; Sacchetti, A.; Feijtel, D.; van de Geer, W.S.; Teeuwssen, M.; Sleddens, H.F.; Joosten, R.; van Royen, M.E.; van de Werken, H.J.G.; van Es, J.; Clevers, H.; Fodde, R. Paneth cells respond to inflammation and contribute to tissue regeneration by acquiring stem-like features through SCF/c-Kit signaling. Cell Rep., 2018, 24(9), 2312-2328.e7.
[http://dx.doi.org/10.1016/j.celrep.2018.07.085] [PMID: 30157426]
[24]
Bach, J.H.; Chae, H.S.; Rah, J.C.; Lee, M.W.; Park, C.H.; Choi, S.H.; Choi, J.K.; Lee, S.H.; Kim, Y.S.; Kim, K.Y.; Lee, W.B.; Suh, Y.H.; Kim, S.S. C-terminal fragment of amyloid precursor protein induces astrocytosis. J. Neurochem., 2001, 78(1), 109-120.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00370.x] [PMID: 11432978]
[25]
Arumugam, S.; Qin, Y.; Liang, Z.; Han, S.N.; Boodapati, S.L.T.; Li, J.; Lu, Q.; Flavell, R.A.; Mehal, W.Z.; Ouyang, X. GSK3β mediates the spatiotemporal dynamics of NLRP3 inflammasome activation. Cell Death Differ., 2022, 29(10), 2060-2069.
[http://dx.doi.org/10.1038/s41418-022-00997-y] [PMID: 35477991]
[26]
Cormier, K.W.; Woodgett, J.R. Recent advances in understanding the cellular roles of GSK-3. F1000 Res., 2017, 6, 167.
[http://dx.doi.org/10.12688/f1000research.10557.1] [PMID: 28299185]
[27]
Cohen, P.; Goedert, M. GSK3 inhibitors: Development and therapeutic potential. Nat. Rev. Drug Discov., 2004, 3(6), 479-487.
[http://dx.doi.org/10.1038/nrd1415] [PMID: 15173837]
[28]
Streck, E.L.; Comim, C.M.; Barichello, T.; Quevedo, J. The septic brain. Neurochem. Res., 2008, 33(11), 2171-2177.
[http://dx.doi.org/10.1007/s11064-008-9671-3] [PMID: 18461451]
[29]
Cheng, Y.L.; Wang, C.Y.; Huang, W.C.; Tsai, C.C.; Chen, C.L.; Shen, C.F.; Chi, C.Y.; Lin, C.F. Staphylococcus aureus induces microglial inflammation via a glycogen synthase kinase 3beta-regulated pathway. Infect. Immun., 2009, 77(9), 4002-4008.
[http://dx.doi.org/10.1128/IAI.00176-09] [PMID: 19596777]
[30]
Jope, R.S.; Cheng, Y.; Lowell, J.A.; Worthen, R.J.; Sitbon, Y.H.; Beurel, E. Stressed and inflamed, can GSK3 be blamed? Trends Biochem. Sci., 2017, 42(3), 180-192.
[http://dx.doi.org/10.1016/j.tibs.2016.10.009] [PMID: 27876551]
[31]
Citron, M. Alzheimer’s disease: Strategies for disease modification. Nat. Rev. Drug Discov., 2010, 9(5), 387-398.
[http://dx.doi.org/10.1038/nrd2896] [PMID: 20431570]
[32]
Ghosh, S.; Wu, M.D.; Shaftel, S.S.; Kyrkanides, S.; LaFerla, F.M.; Olschowka, J.A.; O’Banion, M.K. Sustained interleukin-1β overexpression exacerbates tau pathology despite reduced amyloid burden in an Alzheimer’s mouse model. J. Neurosci., 2013, 33(11), 5053-5064.
[http://dx.doi.org/10.1523/JNEUROSCI.4361-12.2013] [PMID: 23486975]
[33]
Piazzi, M.; Bavelloni, A.; Cenni, V.; Faenza, I.; Blalock, W.L. Revisiting the role of GSK3, a modulator of innate immunity, in idiopathic inclusion body myositis. Cells, 2021, 10(11), 3255.
[http://dx.doi.org/10.3390/cells10113255] [PMID: 34831477]
[34]
Greenberg, S.A. Inclusion body myositis: Clinical features and pathogenesis. Nat. Rev. Rheumatol., 2019, 15(5), 257-272.
[http://dx.doi.org/10.1038/s41584-019-0186-x] [PMID: 30837708]
[35]
Hornbeck, P.V.; Zhang, B.; Murray, B.; Kornhauser, J.M.; Latham, V.; Skrzypek, E. PhosphoSitePlus, 2014: Mutations, PTMs and recalibrations. Nucleic Acids Res., 2015, 43(D1), D512-D520.
[http://dx.doi.org/10.1093/nar/gku1267] [PMID: 25514926]
[36]
Reimer, L.; Betzer, C.; Kofoed, R.H.; Volbracht, C.; Fog, K.; Kurhade, C.; Nilsson, E.; Överby, A.K.; Jensen, P.H. PKR kinase directly regulates tau expression and Alzheimer’s disease‐related tau phosphorylation. Brain Pathol., 2021, 31(1), 103-119.
[http://dx.doi.org/10.1111/bpa.12883] [PMID: 32716602]
[37]
Park, S.A.; Ahn, S.I.; Gallo, J.M. Tau mis-splicing in the pathogenesis of neurodegenerative disorders. BMB Rep., 2016, 49(8), 405-413.
[http://dx.doi.org/10.5483/BMBRep.2016.49.8.084] [PMID: 27222125]
[38]
Chaudhry, H.; Zhou, J.; Zhong, Y.; Ali, M.M.; McGuire, F.; Nagarkatti, P.S.; Nagarkatti, M. Role of cytokines as a double-edged sword in sepsis. In vivo, 2013, 27(6), 669-684.
[PMID: 24292568]
[39]
Xavier, R.J.; Podolsky, D.K. Unravelling the pathogenesis of inflammatory bowel disease. Nature, 2007, 448(7152), 427-434.
[http://dx.doi.org/10.1038/nature06005] [PMID: 17653185]
[40]
Hofmann, C.; Dunger, N.; Schölmerich, J.; Falk, W.; Obermeier, F. Glycogen synthase kinase 3-β: A master regulator of toll-like receptor-mediated chronic intestinal inflammation. Inflamm. Bowel Dis., 2010, 16(11), 1850-1858.
[http://dx.doi.org/10.1002/ibd.21294] [PMID: 20848477]
[41]
del Ser, T.; Steinwachs, K.C.; Gertz, H.J.; Andrés, M.V.; Gómez-Carrillo, B.; Medina, M.; Vericat, J.A.; Redondo, P.; Fleet, D.; León, T. Treatment of Alzheimer’s disease with the GSK-3 inhibitor tideglusib: A pilot study. J. Alzheimers Dis., 2012, 33(1), 205-215.
[http://dx.doi.org/10.3233/JAD-2012-120805] [PMID: 22936007]
[42]
Saute, J.A.M.; de Castilhos, R.M.; Monte, T.L.; Schumacher-Schuh, A.F.; Donis, K.C.; D’Ávila, R.; Souza, G.N.; Russo, A.D.; Furtado, G.V.; Gheno, T.C.; de Souza, D.O.G.; Portela, L.V.C.; Saraiva-Pereira, M.L.; Camey, S.A.; Torman, V.B.L.; de Mello Rieder, C.R.; Jardim, L.B. A randomized, phase 2 clinical trial of lithium carbonate in Machado-Joseph disease. Mov. Disord., 2014, 29(4), 568-573.
[http://dx.doi.org/10.1002/mds.25803] [PMID: 24399647]
[43]
Hampel, H.; Ewers, M.; Bürger, K.; Annas, P.; Mörtberg, A.; Bogstedt, A.; Frölich, L.; Schröder, J.; Schönknecht, P.; Riepe, M.W.; Kraft, I.; Gasser, T.; Leyhe, T.; Möller, H.J.; Kurz, A.; Basun, H. Lithium trial in Alzheimer’s disease: A randomized, single-blind, placebo-controlled, multicenter 10-week study. J. Clin. Psychiatry, 2009, 70(6), 922-931.
[http://dx.doi.org/10.4088/JCP.08m04606] [PMID: 19573486]
[44]
Pardhi, T.; Vasu, K. Identification of dual kinase inhibitors of CK2 and GSK3β: Combined qualitative and quantitative pharmacophore modeling approach. J. Biomol. Struct. Dyn., 2018, 36(1), 177-194.
[http://dx.doi.org/10.1080/07391102.2016.1270856] [PMID: 27960601]
[45]
Pardhi, T.R.; Patel, M.S.; Sudarsanam, V.; Vasu, K.K. Design, synthesis, and evaluation of 4,5,6,7-tetrahydrobenzo[ d]thiazole-based novel dual kinase inhibitors of CK2 and GSK3β. MedChemComm, 2018, 9(9), 1472-1490.
[http://dx.doi.org/10.1039/C8MD00321A] [PMID: 30288222]
[46]
Lu, K.; Wang, X.; Chen, Y.; Liang, D.; Luo, H.; Long, L.; Hu, Z.; Bao, J. Identification of two potential glycogen synthase kinase 3β inhibitors for the treatment of osteosarcoma. Acta Biochim. Biophys. Sin., 2018, 50(5), 456-464.
[http://dx.doi.org/10.1093/abbs/gmx142] [PMID: 29546355]
[47]
Thomas, N.E.; Thamkachy, R.; Sivakumar, K.C.; Sreedevi, K.J.; Louis, X.L.; Thomas, S.A.; Kumar, R.; Rajasekharan, K.N.; Cassimeris, L.; Sengupta, S. Reversible action of diaminothiazoles in cancer cells is implicated by the induction of a fast conformational change of tubulin and suppression of microtubule dynamics. Mol. Cancer Ther., 2014, 13(1), 179-189.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0479] [PMID: 24194566]
[48]
Vasudevan, S.; Thomas, S.A.; Sivakumar, K.C.; Komalam, R.J.; Sreerekha, K.V.; Rajasekharan, K.N.; Sengupta, S. Diaminothiazoles evade multidrug resistance in cancer cells and xenograft tumour models and develop transient specific resistance: Understanding the basis of broad-spectrum versus specific resistance. Carcinogenesis, 2015, 36(8), 883-893.
[http://dx.doi.org/10.1093/carcin/bgv072] [PMID: 26014355]
[49]
Schrecengost, R.S.; Green, C.L.; Zhuang, Y.; Keller, S.N.; Smith, R.A.; Maines, L.W.; Smith, C.D. In vitro and in vivo antitumor and anti-inflammatory capabilities of the novel GSK3 and CDK9 inhibitor ABC1183. J. Pharmacol. Exp. Ther., 2018, 365(1), 107-116.
[http://dx.doi.org/10.1124/jpet.117.245738] [PMID: 29434052]
[50]
Noori, M.S.; Bhatt, P.M.; Courreges, M.C.; Ghazanfari, D.; Cuckler, C.; Orac, C.M.; McMills, M.C.; Schwartz, F.L.; Deosarkar, S.P.; Bergmeier, S.C.; McCall, K.D.; Goetz, D.J. Identification of a novel selective and potent inhibitor of glycogen synthase kinase-3. Am. J. Physiol. Cell Physiol., 2019, 317(6), C1289-C1303.
[http://dx.doi.org/10.1152/ajpcell.00061.2019] [PMID: 31553649]
[51]
Noori, M.S.; Courreges, M.C.; Bergmeier, S.C.; McCall, K.D.; Goetz, D.J. Modulation of LPS-induced inflammatory cytokine production by a novel glycogen synthase kinase-3 inhibitor. Eur. J. Pharmacol., 2020, 883, 173340.
[http://dx.doi.org/10.1016/j.ejphar.2020.173340] [PMID: 32634441]
[52]
Ghazanfari, D.; Noori, M.S.; Bergmeier, S.C.; Hines, J.V.; McCall, K.D.; Goetz, D.J. A novel GSK-3 inhibitor binds to GSK-3β via a reversible, time and Cys-199-dependent mechanism. Bioorg. Med. Chem., 2021, 40, 116179.
[http://dx.doi.org/10.1016/j.bmc.2021.116179] [PMID: 33991821]
[53]
Lassagne, F.; Duguépéroux, C.; Roca, C.; Perez, C.; Martinez, A.; Baratte, B.; Robert, T.; Ruchaud, S.; Bach, S.; Erb, W.; Roisnel, T.; Mongin, F. From simple quinoxalines to potent oxazolo[5,4- f]quinoxaline inhibitors of glycogen-synthase kinase 3 (GSK3). Org. Biomol. Chem., 2020, 18(1), 154-162.
[http://dx.doi.org/10.1039/C9OB02002K] [PMID: 31803883]
[54]
Mokhtari Brikci-Nigassa, N.; Nauton, L.; Moreau, P.; Mongin, O.; Duval, R.E.; Picot, L.; Thiéry, V.; Souab, M.; Baratte, B.; Ruchaud, S.; Bach, S.; Le Guevel, R.; Bentabed-Ababsa, G.; Erb, W.; Roisnel, T.; Dorcet, V.; Mongin, F. Functionalization of 9-thioxanthone at the 1-position: From arylamino derivatives to [1]benzo(thio)pyrano[4,3,2-de]benzothieno[2,3-b]quinolines of biological interest. Bioorg. Chem., 2020, 94, 103347.
[http://dx.doi.org/10.1016/j.bioorg.2019.103347] [PMID: 31810757]
[55]
Ali, T.F.S.; Ciftci, H.I.; Radwan, M.O.; Roshdy, E.; Shawky, A.M.; Abourehab, M.A.S.; Tateishi, H.; Otsuka, M.; Fujita, M. Discovery of Azaindolin-2-One as a dual inhibitor of GSK3β and tau aggregation with potential neuroprotective activity. Pharmaceuticals, 2022, 15(4), 426.
[http://dx.doi.org/10.3390/ph15040426] [PMID: 35455423]
[56]
Tong, Y.; Stewart, K.D.; Florjancic, A.S.; Harlan, J.E.; Merta, P.J.; Przytulinska, M.; Soni, N.; Swinger, K.K.; Zhu, H.; Johnson, E.F.; Shoemaker, A.R.; Penning, T.D. Azaindole-based inhibitors of Cdc7 kinase: Impact of the pre-DFG residue, Val 195. ACS Med. Chem. Lett., 2013, 4(2), 211-215.
[http://dx.doi.org/10.1021/ml300348c] [PMID: 24900653]
[57]
Lozinskaya, N.A.; Babkov, D.A.; Zaryanova, E.V.; Bezsonova, E.N.; Efremov, A.M.; Tsymlyakov, M.D.; Anikina, L.V.; Zakharyascheva, O.Y.; Borisov, A.V.; Perfilova, V.N.; Tyurenkov, I.N.; Proskurnina, M.V.; Spasov, A.A. Synthesis and biological evaluation of 3-substituted 2-oxindole derivatives as new glycogen synthase kinase 3β inhibitors. Bioorg. Med. Chem., 2019, 27(9), 1804-1817.
[http://dx.doi.org/10.1016/j.bmc.2019.03.028] [PMID: 30902399]
[58]
Bourahla, K.; Guihéneuf, S.; Limanton, E.; Paquin, L.; Le Guével, R.; Charlier, T.; Rahmouni, M.; Durieu, E.; Lozach, O.; Carreaux, F.; Meijer, L.; Bazureau, J.P. Design and microwave synthesis of new (5Z) 5-Arylidene-2-thioxo-1,3-thiazolinidin-4-one and (5Z) 2-Amino-5-arylidene-1,3-thiazol-4(5H)-one as new inhibitors of protein kinase DYRK1A. Pharmaceuticals, 2021, 14(11), 1086.
[http://dx.doi.org/10.3390/ph14111086] [PMID: 34832868]
[59]
Mokgautsi, N.; Wen, Y.T.; Lawal, B.; Khedkar, H.; Sumitra, M.; Wu, A.; Huang, H.S. An integrated bioinformatics study of a novel niclosamide derivative, NSC765689, a potential GSK3β/β-Catenin/STAT3/CD44 suppressor with anti-glioblastoma properties. Int. J. Mol. Sci., 2021, 22(5), 2464.
[http://dx.doi.org/10.3390/ijms22052464] [PMID: 33671112]
[60]
Barbosa, E.J.; Löbenberg, R.; de Araujo, G.L.B.; Bou-Chacra, N.A. Niclosamide repositioning for treating cancer: Challenges and nano-based drug delivery opportunities. Eur. J. Pharm. Biopharm., 2019, 141, 58-69.
[http://dx.doi.org/10.1016/j.ejpb.2019.05.004] [PMID: 31078739]
[61]
Zhang, P.; Min, Z.; Gao, Y.; Bian, J.; Lin, X.; He, J.; Ye, D.; Li, Y.; Peng, C.; Cheng, Y.; Chu, Y. Discovery of novel benzothiazepinones as irreversible covalent glycogen synthase kinase 3β inhibitors for the treatment of acute promyelocytic leukemia. J. Med. Chem., 2021, 64(11), 7341-7358.
[http://dx.doi.org/10.1021/acs.jmedchem.0c02254] [PMID: 34027661]
[62]
Ansideri, F.; Andreev, S.; Kuhn, A.; Albrecht, W.; Laufer, S.; Koch, P. A Diverse and versatile regiospecific synthesis of tetrasubstituted alkylsulfanylimidazoles as p38α mitogen-activated protein kinase inhibitors. Molecules, 2018, 23(1), 221.
[http://dx.doi.org/10.3390/molecules23010221] [PMID: 29361698]
[63]
Halekotte, J.; Witt, L.; Ianes, C.; Krüger, M.; Bührmann, M.; Rauh, D.; Pichlo, C.; Brunstein, E.; Luxenburger, A.; Baumann, U.; Knippschild, U.; Bischof, J.; Peifer, C. Optimized 4,5-Diarylimidazoles as potent/selective inhibitors of protein kinase ck1δ and their structural relation to p38α MAPK. Molecules, 2017, 22(4), 522.
[http://dx.doi.org/10.3390/molecules22040522] [PMID: 28338621]
[64]
Muth, F.; Günther, M.; Bauer, S.M.; Döring, E.; Fischer, S.; Maier, J.; Drückes, P.; Köppler, J.; Trappe, J.; Rothbauer, U.; Koch, P.; Laufer, S.A. Tetra-substituted pyridinylimidazoles as dual inhibitors of p38α mitogen-activated protein kinase and c-Jun N-terminal kinase 3 for potential treatment of neurodegenerative diseases. J. Med. Chem., 2015, 58(1), 443-456.
[http://dx.doi.org/10.1021/jm501557a] [PMID: 25475894]
[65]
Muth, F.; El-Gokha, A.; Ansideri, F.; Eitel, M.; Döring, E.; Sievers-Engler, A.; Lange, A.; Boeckler, F.M.; Lämmerhofer, M.; Koch, P.; Laufer, S.A. Tri- and tetrasubstituted pyridinylimidazoles as covalent inhibitors of c-Jun N-terminal kinase 3. J. Med. Chem., 2017, 60(2), 594-607.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01180] [PMID: 27977190]
[66]
Heider, F.; Ansideri, F.; Tesch, R.; Pantsar, T.; Haun, U.; Döring, E.; Kudolo, M.; Poso, A.; Albrecht, W.; Laufer, S.A.; Koch, P. Pyridinylimidazoles as dual glycogen synthase kinase 3β/p38α mitogen-activated protein kinase inhibitors. Eur. J. Med. Chem., 2019, 175, 309-329.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.035] [PMID: 31096153]
[67]
Golkowski, M.; Perera, G.K.; Vidadala, V.N.; Ojo, K.K.; Van Voorhis, W.C.; Maly, D.J.; Ong, S.E. Kinome chemoproteomics characterization of pyrrolo[3,4- c]pyrazoles as potent and selective inhibitors of glycogen synthase kinase 3. Mol. Omics, 2018, 14(1), 26-36.
[http://dx.doi.org/10.1039/C7MO00006E] [PMID: 29725679]
[68]
Kunick, C.; Lauenroth, K.; Leost, M.; Meijer, L.; Lemcke, T. 1-Azakenpaullone is a selective inhibitor of glycogen synthase kinase-3β. Bioorg. Med. Chem. Lett., 2004, 14(2), 413-416.
[http://dx.doi.org/10.1016/j.bmcl.2003.10.062] [PMID: 14698171]
[69]
Bhat, R.; Xue, Y.; Berg, S.; Hellberg, S.; Ormö, M.; Nilsson, Y.; Radesäter, A.C.; Jerning, E.; Markgren, P.O.; Borgegård, T.; Nylöf, M.; Giménez-Cassina, A.; Hernández, F.; Lucas, J.J.; Díaz-Nido, J.; Avila, J. Structural insights and biological effects of glycogen synthase kinase 3-specific inhibitor AR-A014418. J. Biol. Chem., 2003, 278(46), 45937-45945.
[http://dx.doi.org/10.1074/jbc.M306268200] [PMID: 12928438]
[70]
Zhou, Y.; Zhang, L.; Fu, X.; Jiang, Z.; Tong, R.; Shi, J.; Li, J.; Zhong, L. Design, synthesis and in vitro tumor cytotoxicity evaluation of 3,5‐Diamino‐N‐substituted benzamide derivatives as novel GSK‐3 β small molecule inhibitors. Chem. Biodivers., 2019, 16(9), e1900304.
[http://dx.doi.org/10.1002/cbdv.201900304] [PMID: 31338947]
[71]
Balasubramaniam, M.; Mainali, N.; Bowroju, S.K.; Atluri, P.; Penthala, N.R.; Ayyadevera, S.; Crooks, P.A.; Shmookler Reis, R.J. Structural modeling of GSK3β implicates the inactive (DFG-out) conformation as the target bound by TDZD analogs. Sci. Rep., 2020, 10(1), 18326.
[http://dx.doi.org/10.1038/s41598-020-75020-w] [PMID: 33110096]
[72]
Vijayan, R.S.K.; He, P.; Modi, V.; Duong-Ly, K.C.; Ma, H.; Peterson, J.R.; Dunbrack, R.L., Jr; Levy, R.M. Conformational analysis of the DFG-out kinase motif and biochemical profiling of structurally validated type II inhibitors. J. Med. Chem., 2015, 58(1), 466-479.
[http://dx.doi.org/10.1021/jm501603h] [PMID: 25478866]
[73]
Davies, M.P.; Benitez, R.; Perez, C.; Jakupovic, S.; Welsby, P.; Rzepecka, K.; Alder, J.; Davidson, C.; Martinez, A.; Hayes, J.M. Structure-based design of potent selective nanomolar Type-II inhibitors of glycogen synthase kinase-3β. J. Med. Chem., 2021, 64(3), 1497-1509.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01568] [PMID: 33499592]
[74]
Wang, Y.; Dou, X.; Jiang, L.; Jin, H.; Zhang, L.; Zhang, L.; Liu, Z. Discovery of novel glycogen synthase kinase-3α inhibitors: Structure-based virtual screening, preliminary SAR and biological evaluation for treatment of acute myeloid leukemia. Eur. J. Med. Chem., 2019, 171, 221-234.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.039] [PMID: 30925338]

© 2024 Bentham Science Publishers | Privacy Policy