Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Review Article

Quinoline-based Anti-oncogenic Molecules: Synthesis and Biological Evaluation

Author(s): Shivangi Sharma, Shivendra Singh* and Dhananjay Yadav*

Volume 19, Issue 9, 2023

Published on: 10 May, 2023

Page: [848 - 858] Pages: 11

DOI: 10.2174/1573406419666230411110025

Price: $65

Abstract

Quinoline and its analogues are found in various natural products, many of which are active pharmacophores with significant bioactivities. This article discussed the plethora of quinoline derivatives and their analogues that have anti-cancer properties. The review will be helpful for the scientific community since several possible anticancer drugs based on quinolines are discussed here. In addition to this, the synthetic aspect of many such quinoline derivatives showing anti-cancer activities is also revealed in this article. These quinoline-based anti-oncogenic molecules can be synthesized using several acids, bases, and azides or with the help of reagents like Jone’s reagent and Lawesson’s reagent.

Keywords: Quinoline, anti-cancer, heterocycle, synthesis, cytotoxic, hydrazone.

Graphical Abstract
[1]
Rashid, H.; Xu, Y.; Muhammad, Y.; Wang, L.; Jiang, J. Research advances on anticancer activities of matrine and its derivatives: An updated overview. Eur. J. Med. Chem., 2019, 161, 205-238.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.037] [PMID: 30359819]
[2]
Counihan, J.L.; Grossman, E.A.; Nomura, D.K. Cancer metabolism: Current understanding and therapies. Chem. Rev., 2018, 118(14), 6893-6923.
[http://dx.doi.org/10.1021/acs.chemrev.7b00775] [PMID: 29939018]
[3]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[4]
Wang, L.J.; Wang, S.Y.; Jiang, B.; Wu, N.; Li, X.Q.; Wang, B.C.; Luo, J.; Yang, M.; Jin, S.H.; Shi, D.Y. Design, synthesis and biological evaluation of novel bromophenol derivatives incorporating indolin-2-one moiety as potential anticancer agents. Mar. Drugs, 2015, 13(2), 806-823.
[http://dx.doi.org/10.3390/md13020806] [PMID: 25648512]
[5]
Sharma, S.; Singh, S. Molecular docking study for binding affinity of 2H-thiopyrano [2, 3-b] quinoline derivatives against CB1a. Interdiscip. Perspect. Infect. Dis., 2023, 2023, 1618082.
[http://dx.doi.org/10.1155/2023/1618082]
[6]
Ćaleta, I.; Kralj, M.; Marjanović, M.; Bertoša, B.; Tomić, S.; Pavlović, G.; Pavelić, K.; Karminski-Zamola, G. Novel cyano- and amidinobenzothiazole derivatives: Synthesis, antitumor evaluation, and X-ray and quantitative structure-activity relationship (QSAR) analysis. J. Med. Chem., 2009, 52(6), 1744-1756.
[http://dx.doi.org/10.1021/jm801566q] [PMID: 19265399]
[7]
Anttila, S.; Boffetta, P. Eds. ; Occupational cancers; Springer Nature, 2020.
[http://dx.doi.org/10.1007/978-3-030-30766-0]
[8]
Arbyn, M.; Weiderpass, E.; Bruni, L.; de Sanjosé, S.; Saraiya, M.; Ferlay, J.; Bray, F. Estimates of incidence and mortality of cervical cancer in 2018: A worldwide analysis. Lancet Glob. Health, 2020, 8(2), e191-e203.
[http://dx.doi.org/10.1016/S2214-109X(19)30482-6] [PMID: 31812369]
[9]
Ordikhani, F.; Erdem Arslan, M.; Marcelo, R.; Sahin, I.; Grigsby, P.; Schwarz, J.; Azab, A. Drug delivery approaches for the treatment of cervical cancer. Pharmaceutics, 2016, 8(3), 23.
[http://dx.doi.org/10.3390/pharmaceutics8030023] [PMID: 27447664]
[10]
Chrysostomou, A.; Stylianou, D.; Constantinidou, A.; Kostrikis, L. Cervical cancer screening programs in Europe: The transition towards HPV vaccination and population-based HPV testing. Viruses, 2018, 10(12), 729.
[http://dx.doi.org/10.3390/v10120729] [PMID: 30572620]
[11]
Gatumo, M.; Gacheri, S.; Sayed, A.R.; Scheibe, A. Women’s knowledge and attitudes related to cervical cancer and cervical cancer screening in Isiolo and Tharaka Nithi counties, Kenya: A cross-sectional study. BMC Cancer, 2018, 18(1), 745.
[http://dx.doi.org/10.1186/s12885-018-4642-9] [PMID: 30021564]
[12]
DeBerardinis, R.J.; Lum, J.J.; Hatzivassiliou, G.; Thompson, C.B. The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metab., 2008, 7(1), 11-20.
[http://dx.doi.org/10.1016/j.cmet.2007.10.002] [PMID: 18177721]
[13]
Xu, H.; Tang, H.; Feng, H.; Li, Y. Design, synthesis and anticancer activity evaluation of novel C14 heterocycle substituted epi-triptolide. Eur. J. Med. Chem., 2014, 73, 46-55.
[http://dx.doi.org/10.1016/j.ejmech.2013.11.044] [PMID: 24378709]
[14]
Singh, S.; Sharma, S. Synthetic routes to quinoline-based derivatives having potential anti-bacterial and anti-fungal properties. Curr. Org. Chem., 2022, 26(15), 1453-1469.
[http://dx.doi.org/10.2174/1385272827666221021140934]
[15]
Sebolt-Leopold, J.S.; Herrera, R. Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat. Rev. Cancer, 2004, 4(12), 937-947.
[http://dx.doi.org/10.1038/nrc1503] [PMID: 15573115]
[16]
Villanueva, J.; Vultur, A.; Herlyn, M. Resistance to BRAF inhibitors: Unraveling mechanisms and future treatment options. Cancer Res., 2011, 71(23), 7137-7140.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1243] [PMID: 22131348]
[17]
Elsayed, H.E.; Ebrahim, H.Y.; Haggag, E.G.; Kamal, A.M.; El Sayed, K.A. Rationally designed hecogenin thiosemicarbazone analogs as novel MEK inhibitors for the control of breast malignancies. Bioorg. Med. Chem., 2017, 25(24), 6297-6312.
[http://dx.doi.org/10.1016/j.bmc.2017.09.033] [PMID: 29066046]
[18]
Redwan, I.N.; Dyrager, C.; Solano, C.; Fernández de Trocóniz, G.; Voisin, L.; Bliman, D.; Meloche, S.; Grøtli, M. Towards the development of chromone-based MEK1/2 modulators. Eur. J. Med. Chem., 2014, 85, 127-138.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.018] [PMID: 25078316]
[19]
Sanchez, J.N.; Wang, T.; Cohen, M.S. BRAF and MEK inhibitors: Use and resistance in BRAF-mutated cancers. Drugs, 2018, 78(5), 549-566.
[http://dx.doi.org/10.1007/s40265-018-0884-8] [PMID: 29488071]
[20]
Mandewale, M.C.; Patil, U.C.; Shedge, S.V.; Dappadwad, U.R.; Yamgar, R.S. A review on quinoline hydrazone derivatives as a new class of potent antitubercular and anticancer agents. Beni. Suef Univ. J. Basic Appl. Sci., 2017, 6(4), 354-361.
[http://dx.doi.org/10.1016/j.bjbas.2017.07.005]
[21]
Malpathak, N.; Baikar, S. Secondary metabolites as DNA topoisomerase inhibitors: A new era towards designing of anticancer drugs. Pharmacogn. Rev., 2010, 4(7), 12-26.
[http://dx.doi.org/10.4103/0973-7847.65320] [PMID: 22228937]
[22]
Gao, C; Li, B; Zhang, B; Sun, Q; Li, L; Li, X; Chen, C; Tan, C; Liu, H; Jiang, Y Synthesis and biological evaluation of benzimidazole acridine derivatives as potential DNA-binding and apoptosis-inducing agents. Bioorg. Med. Chem., 2015, 23(8), 1800-1807.
[23]
Canel, C.; Moraes, R.M.; Dayan, F.E.; Ferreira, D. Podophyllotoxin. Phytochemistry, 2000, 54(2), 115-120.
[http://dx.doi.org/10.1016/S0031-9422(00)00094-7] [PMID: 10872202]
[24]
Wang, Y.; Zhang, L.T.; Feng, Y.X.; Zhang, D.; Guo, S.S.; Pang, X.; Geng, Z.F.; Xi, C.; Du, S.S. Comparative evaluation of the chemical composition and bioactivities of essential oils from four spice plants (Lauraceae) against stored-product insects. Ind. Crops Prod., 2019, 140, 111640.
[http://dx.doi.org/10.1016/j.indcrop.2019.111640]
[25]
Xu, M.; Wagerle, T.; Long, J.K.; Lahm, G.P.; Barry, J.D.; Smith, R.M. Insecticidal quinoline and isoquinoline isoxazolines. Bioorg. Med. Chem. Lett., 2014, 24(16), 4026-4030.
[http://dx.doi.org/10.1016/j.bmcl.2014.06.004] [PMID: 24998379]
[26]
Eswaran, S.; Adhikari, A.V.; Shetty, N.S. Synthesis and antimicrobial activities of novel quinoline derivatives carrying 1,2,4-triazole moiety. Eur. J. Med. Chem., 2009, 44(11), 4637-4647.
[http://dx.doi.org/10.1016/j.ejmech.2009.06.031] [PMID: 19647905]
[27]
Foley, M.; Tilley, L. Quinoline antimalarials: Mechanisms of action and resistance and prospects for new agents. Pharmacol. Ther., 1998, 79(1), 55-87.
[http://dx.doi.org/10.1016/S0163-7258(98)00012-6] [PMID: 9719345]
[28]
Hayat, F.; Salahuddin, A.; Umar, S.; Azam, A. Synthesis, characterization, antiamoebic activity and cytotoxicity of novel series of pyrazoline derivatives bearing quinoline tail. Eur. J. Med. Chem., 2010, 45(10), 4669-4675.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.028] [PMID: 20696501]
[29]
Kumar, G.S.; Mishra, A. Synthesis, characterization & screening for anti-inflammatory & analgesic activity of quinoline derivatives bearing azetidinones scaffolds. Antiinflamm. Antiallergy Agents Med. Chem., 2016, 15(1), 31-43.
[http://dx.doi.org/10.2174/1871523015666160210124545]
[30]
Ferlin, M.G.; Chiarelotto, G.; Antonucci, F.; Caparrotta, L.; Froldi, G. Mannich bases of 3H-pyrrolo[3,2-f]quinoline having vasorelaxing activity. Eur. J. Med. Chem., 2002, 37(5), 427-434.
[http://dx.doi.org/10.1016/S0223-5234(02)01355-7] [PMID: 12008057]
[31]
Nikookar, H.; Mohammadi-Khanaposhtani, M.; Imanparast, S.; Faramarzi, M.A.; Ranjbar, P.R.; Mahdavi, M.; Larijani, B. Design, synthesis and in vitro α-glucosidase inhibition of novel dihydropyrano[3,2-c]quinoline derivatives as potential anti-diabetic agents. Bioorg. Chem., 2018, 77, 280-286.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.025] [PMID: 29421703]
[32]
Upadhayaya, R.S.; Vandavasi, J.K.; Vasireddy, N.R.; Sharma, V.; Dixit, S.S.; Chattopadhyaya, J. Design, synthesis, biological evaluation and molecular modelling studies of novel quinoline derivatives against Mycobacterium tuberculosis. Bioorg. Med. Chem., 2009, 17(7), 2830-2841.
[http://dx.doi.org/10.1016/j.bmc.2009.02.026] [PMID: 19285414]
[33]
Afzal, O.; Kumar, S.; Haider, M.R.; Ali, M.R.; Kumar, R.; Jaggi, M.; Bawa, S. A review on anticancer potential of bioactive heterocycle quinoline. Eur. J. Med. Chem., 2015, 97, 871-910.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.044] [PMID: 25073919]
[34]
Tseng, C.H.; Tung, C.W.; Wu, C.H.; Tzeng, C.C.; Chen, Y.H.; Hwang, T.L.; Chen, Y.L. Discovery of indeno [1,2-c] quinoline derivatives as potent dual antituberculosis and anti-inflammatory agents. Molecules, 2017, 22(6), 1001.
[http://dx.doi.org/10.3390/molecules22061001] [PMID: 28621733]
[35]
Muruganantham, N.; Sivakumar, R.; Anbalagan, N.; Gunasekaran, V.; Leonard, J.T. Synthesis, anticonvulsant and antihypertensive activities of 8-substituted quinoline derivatives. Biol. Pharm. Bull., 2004, 27(10), 1683-1687.
[http://dx.doi.org/10.1248/bpb.27.1683] [PMID: 15467220]
[36]
Sashidhara, K.V.; Avula, S.R.; Mishra, V.; Palnati, G.R.; Singh, L.R.; Singh, N.; Chhonker, Y.S.; Swami, P.; Bhatta, R.S. palit, G. Identification of quinoline-chalcone hybrids as potential antiulcer agents. Eur. J. Med. Chem., 2015, 89, 638-653.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.068] [PMID: 25462272]
[37]
Ahmed, N.; Brahmbhatt, K.G.; Sabde, S.; Mitra, D.; Singh, I.P.; Bhutani, K.K. Synthesis and anti-HIV activity of alkylated quinoline 2,4-diols. Bioorg. Med. Chem., 2010, 18(8), 2872-2879.
[http://dx.doi.org/10.1016/j.bmc.2010.03.015] [PMID: 20350812]
[38]
Khan, S.A.; Asiri, A.M.; Basisi, H.M.; Asad, M.; Zayed, M.E.M.; Sharma, K.; Wani, M.Y. Synthesis and evaluation of Quinoline-3-carbonitrile derivatives as potential antibacterial agents. Bioorg. Chem., 2019, 88, 102968.
[http://dx.doi.org/10.1016/j.bioorg.2019.102968] [PMID: 31075745]
[39]
Khan, S.A.; Razvi, M.A.N.; Bakry, A.H.; Afzal, S.M.; Asiri, A.M.; El-Daly, S.A. Microwave assisted synthesis, spectroscopic studies and non linear optical properties of bis-chromophores. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 137, 1100-1105.
[http://dx.doi.org/10.1016/j.saa.2014.08.065] [PMID: 25300042]
[40]
Khan, S.A. Green synthesis, spectrofluorometric characterization and antibacterial activity of heterocyclic compound from chalcone on the basis of in vitro and quantum chemistry calculation. J. Fluoresc., 2017, 27(3), 929-937.
[http://dx.doi.org/10.1007/s10895-017-2028-z] [PMID: 28176260]
[41]
Khan, S.A.; Ullah, Q.; Syed, S. Alimuddin,; Almalki, A.S.A.; Kumar, S.; Obaid, R.J.; Alsharif, M.A.; Alfaifi, S.Y.; Parveen, H. Microwave assisted one-pot synthesis, photophysical and physicochemical studies of novel biologically active heterocyclic Donor (D)-π-Acceptor (A) chromophore. Bioorg. Chem., 2021, 112, 104964.
[http://dx.doi.org/10.1016/j.bioorg.2021.104964] [PMID: 34020241]
[42]
Pommier, Y. Topoisomerase I inhibitors: Camptothecins and beyond. Nat. Rev. Cancer, 2006, 6(10), 789-802.
[http://dx.doi.org/10.1038/nrc1977] [PMID: 16990856]
[43]
Alqasoumi, S.I.; Al-Taweel, A.M.; Alafeefy, A.M.; Hamed, M.M.; Noaman, E.; Ghorab, M.M. Synthesis and biological evaluation of 2-amino-7,7-dimethyl 4-substituted-5-oxo-1-(3,4,5-trimethoxy)-1,4,5,6,7,8-hexahydro-quinoline-3-carbonitrile derivatives as potential cytotoxic agents. Bioorg. Med. Chem. Lett., 2009, 19(24), 6939-6942.
[http://dx.doi.org/10.1016/j.bmcl.2009.10.065] [PMID: 19879135]
[44]
Singh, S.; Kaur, G.; Mangla, V.; Gupta, M.K. Quinoline and quinolones: Promising scaffolds for future antimycobacterial agents. J. Enzyme Inhib. Med. Chem., 2015, 30(3), 492-504.
[http://dx.doi.org/10.3109/14756366.2014.930454] [PMID: 25032745]
[45]
Ghorab, M.M.; Ragab, F.A.; Heiba, H.I.; Ghorab, W.M. Design and synthesis of some novel quinoline derivatives as anticancer and radiosensitizing agents targeting VEGFR tyrosine kinase. J. Heterocycl. Chem., 2011, 48(6), 1269-1279.
[http://dx.doi.org/10.1002/jhet.749]
[46]
Katariya, K.D.; Shah, S.R.; Reddy, D. Anticancer, antimicrobial activities of quinoline based hydrazone analogues: Synthesis, characterization and molecular docking. Bioorg. Chem., 2020, 94, 103406.
[http://dx.doi.org/10.1016/j.bioorg.2019.103406] [PMID: 31718889]
[47]
Abbas, S.H.; Abd El-Hafeez, A.A.; Shoman, M.E.; Montano, M.M.; Hassan, H.A. New quinoline/chalcone hybrids as anti-cancer agents: Design, synthesis, and evaluations of cytotoxicity and PI3K inhibitory activity. Bioorg. Chem., 2019, 82, 360-377.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.064] [PMID: 30428415]
[48]
Altıntop, M.D.; Sever, B.; Akalın Çiftçi, G.; Turan-Zitouni, G.; Kaplancıklı, Z.A.; Özdemir, A. Design, synthesis, in vitro and in silico evaluation of a new series of oxadiazole-based anticancer agents as potential Akt and FAK inhibitors. Eur. J. Med. Chem., 2018, 155, 905-924.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.049] [PMID: 29966916]
[49]
Bajaj, S.; Roy, P.P.; Singh, J. Synthesis, thymidine phosphorylase inhibitory and computational study of novel 1,3,4-oxadiazole-2-thione derivatives as potential anticancer agents. Comput. Biol. Chem., 2018, 76, 151-160.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.05.013] [PMID: 30015176]
[50]
Hu, Y.; Li, C.Y.; Wang, X.M.; Yang, Y.H.; Zhu, H.L. 1,3,4-Thiadiazole: Synthesis, reactions, and applications in medicinal, agricultural, and materials chemistry. Chem. Rev., 2014, 114(10), 5572-5610.
[http://dx.doi.org/10.1021/cr400131u] [PMID: 24716666]
[51]
Jakovljević, K.; Joksović, M.D.; Matić, I.Z.; Petrović, N.; Stanojković, T.; Sladić, D.; Vujčić, M.; Janović, B.; Joksović, L.; Trifunović, S.; Marković, V. Novel 1,3,4-thiadiazole–chalcone hybrids containing catechol moiety: Synthesis, antioxidant activity, cytotoxicity and DNA interaction studies. Med. Chem. Comm, 2018, 9(10), 1679-1697.
[http://dx.doi.org/10.1039/C8MD00316E] [PMID: 30429973]
[52]
Kamath, P.R.; Sunil, D.; Joseph, M.M.; Abdul Salam, A.A. T T, S. Indole-coumarin-thiadiazole hybrids: An appraisal of their MCF-7 cell growth inhibition, apoptotic, antimetastatic and computational Bcl-2 binding potential. Eur. J. Med. Chem., 2017, 136, 442-451.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.032] [PMID: 28525842]
[53]
Gu, W.; Jin, X.Y.; Li, D.D.; Wang, S.F.; Tao, X.B.; Chen, H. Design, synthesis and in vitro anticancer activity of novel quinoline and oxadiazole derivatives of ursolic acid. Bioorg. Med. Chem. Lett., 2017, 27(17), 4128-4132.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.033] [PMID: 28733083]
[54]
Thurston, DE.; Pysz, I. Chemistry and pharmacology of anticancer drugs; CRC press, 2021.
[http://dx.doi.org/10.1201/9781315374727]
[55]
Prescott, T.A.K.; Sadler, I.H.; Kiapranis, R.; Maciver, S.K. Lunacridine from Lunasia amara is a DNA intercalating topoisomerase II inhibitor. J. Ethnopharmacol., 2007, 109(2), 289-294.
[http://dx.doi.org/10.1016/j.jep.2006.07.036] [PMID: 16963212]
[56]
Caprio, V.; Guyen, B.; Opoku-Boahen, Y.; Mann, J.; Gowan, S.M.; Kelland, L.M.; Read, M.A.; Neidle, S. A novel inhibitor of human telomerase derived from 10H-indolo[3,2-b]quinoline. Bioorg. Med. Chem. Lett., 2000, 10(18), 2063-2066.
[http://dx.doi.org/10.1016/S0960-894X(00)00378-4] [PMID: 10999471]
[57]
Mikata, Y.; Yokoyama, M.; Ogura, S.; Okura, I.; Kawasaki, M.; Maeda, M.; Yano, S. Effect of side chain location in (2-aminoethyl)aminomethyl-2-phenylquinolines as antitumor agents. Bioorg. Med. Chem. Lett., 1998, 8(10), 1243-1248.
[http://dx.doi.org/10.1016/S0960-894X(98)00192-9] [PMID: 9871743]
[58]
Sharples, D.; Spengler, G.; Molnár, J.; Antal, Z.; Molnár, A.; Kiss, J.T.; Szabó, J.A.; Hilgeroth, A.; Gallo, S.; Mahamoud, A.; Barbe, J. The interaction between resistance modifiers such as pyrido[3,2-g]quinoline, aza-oxafluorene and pregnane derivatives with DNA, plasmid DNA and tRNA. Eur. J. Med. Chem., 2005, 40(2), 195-202.
[http://dx.doi.org/10.1016/j.ejmech.2004.10.011] [PMID: 15694654]
[59]
Wolin, R.; Wang, D.; Kelly, J.; Afonso, A.; James, L.; Kirschmeier, P.; McPhail, A.T. Synthesis and evaluation of pyrazolo[3,4-b]quinoline ribofuranosides and their derivatives as inhibitors of oncogenic Ras. Bioorg. Med. Chem. Lett., 1996, 6(2), 195-200.
[http://dx.doi.org/10.1016/0960-894X(95)00574-D]
[60]
Ding, C.Z.; Hunt, J.T.; Ricca, C.; Manne, V. 3-Imidazolylmethylaminophenylsulfonyltetrahydroquinolines, a novel series of farnesyltransferase inhibitors. Bioorg. Med. Chem. Lett., 2000, 10(3), 273-275.
[http://dx.doi.org/10.1016/S0960-894X(99)00686-1] [PMID: 10698452]
[61]
Wang, Y.D.; Miller, K.; Boschelli, D.H.; Ye, F.; Wu, B.; Floyd, M.B.; Powell, D.W.; Wissner, A.; Weber, J.M.; Boschelli, F. Inhibitors of Src tyrosine kinase: The preparation and structure–activity relationship of 4-anilino-3-cyanoquinolines and 4-anilinoquinazolines. Bioorg. Med. Chem. Lett., 2000, 10(21), 2477-2480.
[http://dx.doi.org/10.1016/S0960-894X(00)00493-5] [PMID: 11078204]
[62]
Mettey, Y.; Vierfond, J-M.; Baudry, M.; Cochet, C.; Sarrouilhe, D. Benzo[c]quinoliziniums: A new family of inhibitors for protein kinase CK II. Bioorg. Med. Chem. Lett., 1997, 7(8), 961-964.
[http://dx.doi.org/10.1016/S0960-894X(97)00127-3]
[63]
Via, L.D.; Gia, O.; Gasparotto, V.; Ferlin, M.G. Discovery of a new anilino-3H-pyrrolo[3,2-f]quinoline derivative as potential anti-cancer agent. Eur. J. Med. Chem., 2008, 43(2), 429-434.
[http://dx.doi.org/10.1016/j.ejmech.2007.04.008] [PMID: 17573162]
[64]
Kohn, L.K.; Pavam, C.H.; Veronese, D.; Coelho, F.; De Carvalho, J.E.; Almeida, W.P. Antiproliferative effect of Baylis–Hillman adducts and a new phthalide derivative on human tumor cell lines. Eur. J. Med. Chem., 2006, 41(6), 738-744.
[http://dx.doi.org/10.1016/j.ejmech.2006.03.006] [PMID: 16647163]
[65]
Kemnitzer, W.; Kuemmerle, J.; Jiang, S.; Sirisoma, N.; Kasibhatla, S.; Crogan-Grundy, C.; Tseng, B.; Drewe, J.; Cai, S.X. Discovery of 1-benzoyl-3-cyanopyrrolo[1,2-a]quinolines as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 2: Structure–activity relationships of the 4-, 5-, 6-, 7- and 8-positions. Bioorg. Med. Chem. Lett., 2009, 19(13), 3481-3484.
[http://dx.doi.org/10.1016/j.bmcl.2009.05.012] [PMID: 19467598]
[66]
Catoen-Chackal, S.; Facompré, M.; Houssin, R.; Pommery, N.; Goossens, J.F.; Colson, P.; Bailly, C.; Hénichart, J.P. DNA binding to guide the development of tetrahydroindeno[1,2-b]pyrido[4,3,2-de]quinoline derivatives as cytotoxic agents. J. Med. Chem., 2004, 47(14), 3665-3673.
[http://dx.doi.org/10.1021/jm0400193] [PMID: 15214793]
[67]
Liu, Z.C.; Wang, B.D.; Yang, Z.Y.; Li, Y.; Qin, D.D.; Li, T.R. Synthesis, crystal structure, DNA interaction and antioxidant activities of two novel water-soluble Cu(2+) complexes derivated from 2-oxo-quinoline-3-carbaldehyde Schiff-bases. Eur. J. Med. Chem., 2009, 44(11), 4477-4484.
[http://dx.doi.org/10.1016/j.ejmech.2009.06.009] [PMID: 19577824]
[68]
Gligorijević, N.; Todorović, T.; Radulović, S.; Sladić, D.; Filipović, N.; Gođevac, D.; Jeremić, D.; Anđelković, K. Synthesis and characterization of new Pt(II) and Pd(II) complexes with 2-quinolinecarboxaldehyde selenosemicarbazone: Cytotoxic activity evaluation of Cd(II), Zn(II), Ni(II), Pt(II) and Pd(II) complexes with heteroaromatic selenosemicarbazones. Eur. J. Med. Chem., 2009, 44(4), 1623-1629.
[http://dx.doi.org/10.1016/j.ejmech.2008.07.033] [PMID: 18789831]
[69]
Serda, M.; Kalinowski, D.S.; Mrozek-Wilczkiewicz, A.; Musiol, R.; Szurko, A.; Ratuszna, A.; Pantarat, N.; Kovacevic, Z.; Merlot, A.M.; Richardson, D.R.; Polanski, J. Synthesis and characterization of quinoline-based thiosemicarbazones and correlation of cellular iron-binding efficacy to anti-tumor efficacy. Bioorg. Med. Chem. Lett., 2012, 22(17), 5527-5531.
[http://dx.doi.org/10.1016/j.bmcl.2012.07.030] [PMID: 22858101]
[70]
Ghorab, M.M.; Ragab, F.A.; Hamed, M.M. Design, synthesis and anticancer evaluation of novel tetrahydroquinoline derivatives containing sulfonamide moiety. Eur. J. Med. Chem., 2009, 44(10), 4211-4217.
[http://dx.doi.org/10.1016/j.ejmech.2009.05.017] [PMID: 19540022]
[71]
Ghorab, M.M.; Ragab, F.A.; Heiba, H.I.; Arafa, R.K.; El-Hossary, E.M. Docking study, in vitro anticancer screening and radiosensitizing evaluation of some new fluorine-containing quinoline and pyrimidoquinoline derivatives bearing a sulfonamide moiety. Med. Chem. Res., 2011, 20(3), 388-400.
[http://dx.doi.org/10.1007/s00044-010-9332-3]
[72]
Makawana, J.A.; Sangani, C.B.; Lin, L.; Zhu, H.L. Schiff’s base derivatives bearing nitroimidazole and quinoline nuclei: New class of anticancer agents and potential EGFR tyrosine kinase inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(7), 1734-1736.
[http://dx.doi.org/10.1016/j.bmcl.2014.02.041] [PMID: 24630412]
[73]
Adsule, S.; Barve, V.; Chen, D.; Ahmed, F.; Dou, Q.P.; Padhye, S.; Sarkar, F.H. Novel Schiff base copper complexes of quinoline-2 carboxaldehyde as proteasome inhibitors in human prostate cancer cells. J. Med. Chem., 2006, 49(24), 7242-7246.
[http://dx.doi.org/10.1021/jm060712l] [PMID: 17125278]
[74]
Chen, Y.; Chen, I.; Wang, T.; Han, C.; Tzeng, C. Synthesis and anticancer evaluation of certain 4-anilinofuro[2,3-]quinoline and 4-anilinofuro[3,2-]quinoline derivatives. Eur. J. Med. Chem., 2005, 40(9), 928-934.
[http://dx.doi.org/10.1016/j.ejmech.2005.04.003] [PMID: 15913847]
[75]
Chen, Y.L.; Zhao, Y.L.; Lu, C.M.; Tzeng, C.C.; Wang, J.P. Synthesis, cytotoxicity, and anti-inflammatory evaluation of 2-(furan-2-yl)-4-(phenoxy)quinoline derivatives. Part 4. Bioorg. Med. Chem., 2006, 14(13), 4373-4378.
[http://dx.doi.org/10.1016/j.bmc.2006.02.039] [PMID: 16524734]
[76]
Creaven, B.S.; Duff, B.; Egan, D.A.; Kavanagh, K.; Rosair, G.; Thangella, V.R.; Walsh, M. Anticancer and antifungal activity of copper(II) complexes of quinolin-2(1H)-one-derived Schiff bases. Inorg. Chim. Acta, 2010, 363(14), 4048-4058.
[http://dx.doi.org/10.1016/j.ica.2010.08.009]
[77]
Montenegro, R.C.; Lotufo, L.V.; de Moraes, M.O.; Pessoa, C.Ó.; Rodrigues, F.A.R.; de Lima Ferreira Bispo, M.; de Alcantara, C.C.; Kaiser, C.R.; de Souza, M.V.N. 1-(7-Chloroquinolin-4-yl)-2-[(1H-pyrrol-2-yl)methylene]hydrazine: A potent compound against cancer. Med. Chem. Res., 2012, 21(11), 3615-3619.
[http://dx.doi.org/10.1007/s00044-011-9894-8]
[78]
Arafa, R.K.; Hegazy, G.H.; Piazza, G.A.; Abadi, A.H. Synthesis and in vitro antiproliferative effect of novel quinoline-based potential anticancer agents. Eur. J. Med. Chem., 2013, 63, 826-832.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.008] [PMID: 23584545]
[79]
Senthil Raja, D.; Bhuvanesh, N.S.P.; Natarajan, K. Synthesis, crystal structure and pharmacological evaluation of two new Cu(II) complexes of 2-oxo-1,2-dihydroquinoline-3-carbaldehyde (benzoyl) hydrazone: A comparative investigation. Eur. J. Med. Chem., 2012, 47(1), 73-85.
[http://dx.doi.org/10.1016/j.ejmech.2011.10.024] [PMID: 22071253]
[80]
Loza-Mejía, M.A.; Maldonado-Hernández, K.; Rodríguez-Hernández, F.; Rodríguez-Sotres, R.; González-Sánchez, I.; Quintero, A.; Solano, J.D.; Lira-Rocha, A. Synthesis, cytotoxic evaluation, and DNA binding of novel thiazolo[5,4-b]quinoline derivatives. Bioorg. Med. Chem., 2008, 16(3), 1142-1149.
[http://dx.doi.org/10.1016/j.bmc.2007.10.084] [PMID: 18035542]
[81]
Li, W.; Zhang, Z.W.; Wang, S.X.; Ren, S.M.; Jiang, T. Synthesis and analysis of potential DNA intercalators containing quinoline-glucose hybrids. Chem. Biol. Drug Des., 2009, 74(1), 80-86.
[http://dx.doi.org/10.1111/j.1747-0285.2009.00831.x] [PMID: 19519747]
[82]
Thirunavukkarasu, T.; Sparkes, H.A.; Natarajan, K. Quinoline based Pd(II) complexes: Synthesis, characterization and evaluation of DNA/protein binding, molecular docking and in vitro anticancer activity. Inorg. Chim. Acta, 2018, 482, 229-239.
[http://dx.doi.org/10.1016/j.ica.2018.06.003]
[83]
Hu, K.; Liu, C.; Li, J.; Liang, F. Copper( II ) complexes based on quinoline-derived Schiff-base ligands: Synthesis, characterization, HSA/DNA binding ability, and anticancer activity. Med. Chem. Comm., 2018, 9(10), 1663-1672.
[http://dx.doi.org/10.1039/C8MD00223A] [PMID: 30429971]
[84]
Paitandi, R.P.; Mukhopadhyay, S.; Singh, R.S.; Sharma, V.; Mobin, S.M.; Pandey, D.S. Anticancer activity of iridium (III) complexes based on a pyrazole-appended quinoline-based BODIPY. Inorg. Chem., 2017, 56(20), 12232-12247.
[http://dx.doi.org/10.1021/acs.inorgchem.7b01693] [PMID: 28956596]
[85]
Hranjec, M. Pavlović, G.; Marjanović, M.; Kralj, M.; Karminski-Zamola, G. Benzimidazole derivatives related to 2,3-acrylonitriles, benzimidazo[1,2-a]quinolines and fluorenes: Synthesis, antitumor evaluation in vitro and crystal structure determination. Eur. J. Med. Chem., 2010, 45(6), 2405-2417.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.022] [PMID: 20207049]
[86]
Mirzaei, S.; Eisvand, F.; Hadizadeh, F.; Mosaffa, F.; Ghodsi, R. Design, synthesis, and biological evaluation of novel 5,6,7-trimethoxy quinolines as potential anticancer agents and tubulin polymerization inhibitors. Iran. J. Basic Med. Sci., 2020, 23(12), 1527-1537.
[PMID: 33489025]
[87]
El-Sayed, O.D.M.A-A.; Tantawy, A.S.; Amen, Y.; Shimizu, K. Okauchi T. Kitamura M. Bioorg. Med. Chem., 2019, 27, 115026-115038.
[http://dx.doi.org/10.1016/j.bmc.2019.07.042] [PMID: 31416740]
[88]
Jin, X.Y.; Chen, H.; Li, D.D.; Li, A.L.; Wang, W.Y.; Gu, W. Design, synthesis, and anticancer evaluation of novel quinoline derivatives of ursolic acid with hydrazide, oxadiazole, and thiadiazole moieties as potent MEK inhibitors. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 955-972.
[http://dx.doi.org/10.1080/14756366.2019.1605364] [PMID: 31072147]
[89]
Scott, D.A.; Balliet, C.L.; Cook, D.J.; Davies, A.M.; Gero, T.W.; Omer, C.A.; Poondru, S.; Theoclitou, M.E.; Tyurin, B.; Zinda, M.J. Identification of 3-amido-4-anilinoquinolines as potent and selective inhibitors of CSF-1R kinase. Bioorg. Med. Chem. Lett., 2009, 19(3), 697-700.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.046] [PMID: 19112018]
[90]
Yamato, M.; Takeuchi, Y.; Hashigaki, K.; Ikeda, Y.; Chang, M.R.; Takeuchi, K.; Matsushima, M.; Tsuruo, T.; Tashiro, T.; Tsukagoshi, S. Synthesis and antitumor activity of fused tetracyclic quinoline derivatives. 1. J. Med. Chem., 1989, 32(6), 1295-1300.
[http://dx.doi.org/10.1021/jm00126a025] [PMID: 2542558]
[91]
Chen, Y.L.; Hung, H.M.; Lu, C.M.; Li, K.C.; Tzeng, C.C. Synthesis and anticancer evaluation of certain indolo[2,3-b]quinoline derivatives. Bioorg. Med. Chem., 2004, 12(24), 6539-6546.
[http://dx.doi.org/10.1016/j.bmc.2004.09.025] [PMID: 15556770]
[92]
Yanato, M.; Takeuchi, Y.; Chang, M.; Hashigaki, K.; Tsuruo, T.; Tashiro, T.; Tsukagoshi, S. Synthesis and antitumor activity of fused quinoline derivatives. Chem. Pharm. Bull. (Tokyo), 1990, 38(11), 3048-3052.
[http://dx.doi.org/10.1248/cpb.38.3048] [PMID: 2085886]
[93]
Nagaraju, R.; Gopichand, K.; Rao, N.N.; Ganai, A.M.; Kishan, E.; Rao, P.V. Synthesis and anticancer activity of a novel series of tetrazolo [1, 5-a] quinoline based 1, 2, 3-triazole derivatives. Russ. J. Gen. Chem., 2020, 90(2), 314-318.
[http://dx.doi.org/10.1134/S1070363220020255]
[94]
Su, T.; Zhu, J.; Sun, R.; Zhang, H.; Huang, Q.; Zhang, X.; Du, R.; Qiu, L.; Cao, R. Design, synthesis and biological evaluation of new quinoline derivatives as potential antitumor agents. Eur. J. Med. Chem., 2019, 178, 154-167.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.088] [PMID: 31181480]
[95]
Bingul, M.; Tan, O.; Gardner, C.; Sutton, S.; Arndt, G.; Marshall, G.; Cheung, B.; Kumar, N.; Black, D. Synthesis, characterization and anti-cancer activity of hydrazide derivatives incorporating a quinoline moiety. Molecules, 2016, 21(7), 916.
[http://dx.doi.org/10.3390/molecules21070916] [PMID: 27428941]
[96]
Srivastava, A.; Singh, MK.; Singh, RM. Pyrazolo-fused quinoline analogues: Synthesis of 1H-pyrazolo [3, 4-b] quinolines and 3-amino-1H-pyrazolo [3, 4-b] quinolines from 3-formyl and 3-cyano-2-chloroquinolines. Indian J. Chem. Sect. B, 2006, 45(1), 292-296.
[97]
Meth-Cohn, O.; Narine, B.; Tarnowski, B. A versatile new synthesis of quinolines and related fused pyridines, Part 5. The synthesis of 2-chloroquinoline-3-carbaldehydes. J. Chem. Soc., Perkin Trans. 1, 1981, 1520-1530.
[http://dx.doi.org/10.1039/p19810001520]
[98]
Singh, B.; Chandra, A.; Asthana, M.; Singh, R.M. Rapid, clean and efficient one-pot synthesis of thiopyrano[2,3-b]quinolines via domino Michael addition/cyclization reactions. Tetrahedron Lett., 2012, 53(26), 3242-3244.
[http://dx.doi.org/10.1016/j.tetlet.2012.04.032]
[99]
Kumar, S.V.; Muthusubramanian, S.; Perumal, S. A solvent- and catalyst-free domino reaction for the efficient synthesis of 3-arylthiazolidine-2-thiones under microwave irradiation. RSC Advances, 2015, 5(110), 90451-90456.
[http://dx.doi.org/10.1039/C5RA19112B]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy