Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Irisin and Energy Metabolism and the Role of Irisin on Metabolic Syndrome

Author(s): Tugce Aladag, Rasim Mogulkoc* and Abdulkerim Kasim Baltaci

Volume 23, Issue 20, 2023

Published on: 05 May, 2023

Page: [1942 - 1958] Pages: 17

DOI: 10.2174/1389557523666230411105506

Open Access Journals Promotions 2
Abstract

Irisin is a thermogenic hormone that leads to causes energy expenditure by increasing brown adipose tissue (BAT). This protein hormone that enables the conversion of white adipose tissue (WAT) to BAT is the irisin protein. This causes energy expenditure during conversion. WAT stores triglycerides and fatty acids and contains very few mitochondria. They also involve in the development of insulin resistance (IR). WAT, which contains a very small amount of mitochondria, contributes to the formation of IR by storing triglycerides and fatty acids.

WAT functions as endocrine tissue in the body, synthesizing various molecules such as leptin, ghrelin, NUCB2/nesfatin-1, and irisin along with fat storage. BAT is quite effective in energy expenditure, unlike WAT. The number of mitochondria and lipid droplets composed of multicellular cells in BAT is much higher when compared to WAT. BAT contains a protein called uncoupling protein-1 (UCP1) in the mitochondrial membranes. This protein pumps protons from the intermembrane space toward the mitochondrial matrix. When UCP1 is activated, heat dissipation occurs while ATP synthesis does not occur, because UCP1 is a division protein. At the same time, BAT regulates body temperature in infants. Its effectiveness in adults became clear after the discovery of irisin. The molecular mechanism of exercise, which increases calorie expenditure, became clear with the discovery of irisin. Thus, the isolation of irisin led to the clarification of metabolic events and fat metabolism. In this review, literature information will be given on the effect of irisin hormone on energy metabolism and metabolic syndrome (MetS).

Keywords: Irisin, energy metabolism, metabolic syndrome, glucose, FNDC5, adipose tissue.

Graphical Abstract
[1]
Wang, S.; Pan, J. Irisin ameliorates depressive-like behaviors in rats by regulating energy metabolism. Biochem. Biophys. Res. Commun., 2016, 474(1), 22-28.
[http://dx.doi.org/10.1016/j.bbrc.2016.04.047] [PMID: 27079240]
[2]
Boström, P.; Wu, J.; Jedrychowski, M.P.; Korde, A.; Ye, L.; Lo, J.C.; Rasbach, K.A.; Boström, E.A.; Choi, J.H.; Long, J.Z.; Kajimura, S.; Zingaretti, M.C.; Vind, B.F.; Tu, H.; Cinti, S.; Højlund, K.; Gygi, S.P.; Spiegelman, B.M.A. PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature, 2012, 481(7382), 463-468.
[http://dx.doi.org/10.1038/nature10777] [PMID: 22237023]
[3]
Moreno-Navarrete, J.M.; Ortega, F.; Serrano, M.; Guerra, E.; Pardo, G.; Tinahones, F.; Ricart, W.; Fernández-Real, J.M. Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulin resistance. J. Clin. Endocrinol. Metab., 2013, 98(4), E769-E778.
[http://dx.doi.org/10.1210/jc.2012-2749] [PMID: 23436919]
[4]
Huh, J.Y.; Dincer, F.; Mesfum, E.; Mantzoros, C.S. Irisin stimulates muscle growth-related genes and regulates adipocyte differentiation and metabolism in humans. Int. J. Obes., 2014, 38(12), 1538-1544.
[http://dx.doi.org/10.1038/ijo.2014.42]
[5]
Huh, J.Y.; Mougios, V.; Kabasakalis, A.; Fatouros, I.; Siopi, A.; Douroudos, I.I.; Filippaios, A.; Panagiotou, G.; Park, K.H.; Mantzoros, C.S. Exercise-induced irisin secretion is independent of age or fitness level and increased irisin may directly modulate muscle metabolism through AMPK activation. J. Clin. Endocrinol. Metab., 2014, 99(11), E2154-E2161.
[http://dx.doi.org/10.1210/jc.2014-1437] [PMID: 25119310]
[6]
Samy, D.M.; Ismail, C.A.; Nassra, R.A. Circulating irisin concentrations in rat models of thyroid dysfunction -- effect of exercise. Metabolism, 2015, 64(7), 804-813.
[http://dx.doi.org/10.1016/j.metabol.2015.01.001] [PMID: 25720940]
[7]
Tekin, S.; Erden, Y.; Ozyalin, F.; Onalan, E.E.; Cigremis, Y.; Colak, C.; Tekedereli, I.; Sandal, S. Central irisin administration suppresses thyroid hormone production but increases energy consumption in rats. Neurosci. Lett., 2018, 674, 136-141.
[http://dx.doi.org/10.1016/j.neulet.2018.03.046] [PMID: 29574218]
[8]
Villarroya, F. Irisin, turning up the heat. Cell Metab., 2012, 15(3), 277-278.
[http://dx.doi.org/10.1016/j.cmet.2012.02.010] [PMID: 22405065]
[9]
Sesti, G.; Andreozzi, F.; Fiorentino, T.V.; Mannino, G.C.; Sciacqua, A.; Marini, M.A.; Perticone, F. High circulating irisin levels are associated with insulin resistance and vascular atherosclerosis in a cohort of nondiabetic adult subjects. Acta Diabetol., 2014, 51(5), 705-713.
[http://dx.doi.org/10.1007/s00592-014-0576-0] [PMID: 24619655]
[10]
Staiger, H.; Böhm, A.; Scheler, M.; Berti, L.; Machann, J.; Schick, F.; Machicao, F.; Fritsche, A.; Stefan, N.; Weigert, C.; Krook, A.; Häring, H.U.; de Angelis, M.H. Common genetic variation in the human FNDC5 locus, encoding the novel muscle-derived ‘browning’ factor irisin, determines insulin sensitivity. PLoS One, 2013, 8(4), e61903.
[http://dx.doi.org/10.1371/journal.pone.0061903] [PMID: 23637927]
[11]
Bi, J.; Zhang, J.; Ren, Y.; Du, Z.; Li, Q.; Wang, Y.; Wei, S.; Yang, L.; Zhang, J.; Liu, C.; Lv, Y.; Wu, R. Irisin alleviates liver ischemia-reperfusion injury by inhibiting excessive mitochondrial fission, promoting mitochondrial biogenesis and decreasing oxidative stress. Redox Biol., 2019, 20, 296-306.
[http://dx.doi.org/10.1016/j.redox.2018.10.019] [PMID: 30388684]
[12]
Rabiee, F.; Lachinani, L.; Ghaedi, S.; Nasr-Esfahani, M.H.; Megraw, T.L.; Ghaedi, K. New insights into the cellular activities of Fndc5/Irisin and its signaling pathways. Cell Biosci., 2020, 10(1), 51.
[http://dx.doi.org/10.1186/s13578-020-00413-3] [PMID: 32257109]
[13]
Zhang, Y.; Li, R.; Meng, Y.; Li, S.; Donelan, W.; Zhao, Y.; Qi, L.; Zhang, M.; Wang, X.; Cui, T.; Yang, L.J.; Tang, D. Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling. Diabetes, 2014, 63(2), 514-525.
[http://dx.doi.org/10.2337/db13-1106] [PMID: 24150604]
[14]
Sanchis-Gomar, F.; Perez-Quilis, C. The p38–PGC-1α–irisin–betatrophin axis. Adipocyte, 2014, 3(1), 67-68.
[http://dx.doi.org/10.4161/adip.27370] [PMID: 24575373]
[15]
Ross, S.E.; Hemati, N.; Longo, K.A.; Bennett, C.N.; Lucas, P.C.; Erickson, R.L.; MacDougald, O.A. Inhibition of adipogenesis by Wnt signaling. Science, 2000, 289(5481), 950-953.
[http://dx.doi.org/10.1126/science.289.5481.950] [PMID: 10937998]
[16]
Cawthorn, W.P.; Bree, A.J.; Yao, Y.; Du, B.; Hemati, N.; Martinez-Santibañez, G.; MacDougald, O.A. Wnt6, Wnt10a and Wnt10b inhibit adipogenesis and stimulate osteoblastogenesis through a β-catenin-dependent mechanism. Bone, 2012, 50(2), 477-489.
[http://dx.doi.org/10.1016/j.bone.2011.08.010] [PMID: 21872687]
[17]
Ma, E.B.; Sahar, N.E.; Jeong, M.; Huh, J.Y. Irisin exerts inhibitory effect on adipogenesis through regulation of wnt signaling. Front. Physiol., 2019, 10, 1085.
[http://dx.doi.org/10.3389/fphys.2019.01085] [PMID: 31507448]
[18]
Tepper, O.M.; Galiano, R.D.; Capla, J.M.; Kalka, C.; Gagne, P.J.; Jacobowitz, G.R.; Levine, J.P.; Gurtner, G.C. Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation, 2002, 106(22), 2781-2786.
[http://dx.doi.org/10.1161/01.CIR.0000039526.42991.93] [PMID: 12451003]
[19]
Liu, S.; Du, F.; Li, X.; Wang, M.; Duan, R.; Zhang, J.; Wu, Y.; Zhang, Q. Effects and underlying mechanisms of irisin on the proliferation and apoptosis of pancreatic β cells. PLoS One, 2017, 12(4), e0175498.
[http://dx.doi.org/10.1371/journal.pone.0175498] [PMID: 28394923]
[20]
Lee, H.J.; Lee, J.O.; Kim, N.; Kim, J.K.; Kim, H.I.; Lee, Y.W.; Kim, S.J.; Choi, J.I.; Oh, Y.; Kim, J.H.; Hwang, S.; Park, S.H.; Kim, H.S. Irisin, a novel myokine, regulates glucose uptake in skeletal muscle cells via AMPK. Mol. Endocrinol., 2015, 29(6), 873-881.
[http://dx.doi.org/10.1210/me.2014-1353] [PMID: 25826445]
[21]
Pang, Y.; Zhu, H.; Xu, J.; Yang, L.; Liu, L.; Li, J. β-arrestin-2 is involved in irisin induced glucose metabolism in type 2 diabetes via p38 MAPK signaling. Exp. Cell Res., 2017, 360(2), 199-204.
[http://dx.doi.org/10.1016/j.yexcr.2017.09.006] [PMID: 28888936]
[22]
Xiong, X.Q.; Chen, D.; Sun, H.J.; Ding, L.; Wang, J.J.; Chen, Q.; Li, Y.H.; Zhou, Y.B.; Han, Y.; Zhang, F.; Gao, X.Y.; Kang, Y.M.; Zhu, G.Q. FNDC5 overexpression and irisin ameliorate glucose/lipid metabolic derangements and enhance lipolysis in obesity. Biochim. Biophys. Acta Mol. Basis Dis., 2015, 1852(9), 1867-1875.
[http://dx.doi.org/10.1016/j.bbadis.2015.06.017] [PMID: 26111885]
[23]
Perakakis, N.; Triantafyllou, G.A.; Fernández-Real, J.M.; Huh, J.Y.; Park, K.H.; Seufert, J.; Mantzoros, C.S. Physiology and role of irisin in glucose homeostasis. Nat. Rev. Endocrinol., 2017, 13(6), 324-337.
[http://dx.doi.org/10.1038/nrendo.2016.221] [PMID: 28211512]
[24]
Liu, T.Y.; Shi, C.X.; Gao, R.; Sun, H.J.; Xiong, X.Q.; Ding, L. Irisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via the PI3K/Akt pathway in type 2 diabetic mice and hepatocytes. Clin. Sci., 2015, 129(10), 839-850.
[25]
Zhang, Y.; Xie, C.; Wang, H.; Foss, R.M.; Clare, M.; George, E.V.; Li, S.; Katz, A.; Cheng, H.; Ding, Y.; Tang, D.; Reeves, W.H.; Yang, L.J. Irisin exerts dual effects on browning and adipogenesis of human white adipocytes. Am. J. Physiol. Endocrinol. Metab., 2016, 311(2), E530-E541.
[http://dx.doi.org/10.1152/ajpendo.00094.2016] [PMID: 27436609]
[26]
Xiong, X.Q.; Geng, Z.; Zhou, B.; Zhang, F.; Han, Y.; Zhou, Y.B.; Wang, J.J.; Gao, X.Y.; Chen, Q.; Li, Y.H.; Kang, Y.M.; Zhu, G.Q. FNDC5 attenuates adipose tissue inflammation and insulin resistance via AMPK-mediated macrophage polarization in obesity. Metabolism, 2018, 83, 31-41.
[http://dx.doi.org/10.1016/j.metabol.2018.01.013] [PMID: 29374559]
[27]
Bi, J.; Zhang, J.; Ren, Y.; Du, Z.; Li, T.; Wang, T.; Zhang, L.; Wang, M.; Wu, Z.; Lv, Y.; Wu, R. Irisin reverses intestinal epithelial barrier dysfunction during intestinal injury via binding to the integrin αVβ5 receptor. J. Cell. Mol. Med., 2020, 24(1), 996-1009.
[http://dx.doi.org/10.1111/jcmm.14811] [PMID: 31701659]
[28]
Jiang, X.; Hu, Y.; Zhou, Y.; Chen, J.; Sun, C.; Chen, Z.; Jing, C.; Xu, L.; Liu, F.; Ni, W.; Yu, X.; Chen, L. Irisin protects female mice with LPS-induced endometritis through the AMPK/NF-κB pathway. Iran. J. Basic Med. Sci., 2021, 24(9), 1247-1253.
[PMID: 35083012]
[29]
Ma, Q. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol., 2013, 53(1), 401-426.
[http://dx.doi.org/10.1146/annurev-pharmtox-011112-140320] [PMID: 23294312]
[30]
Du, J.; Fan, X.; Yang, B.; Chen, Y.; Liu, K.X.; Zhou, J. Irisin pretreatment ameliorates intestinal ischemia/reperfusion injury in mice through activation of the Nrf2 pathway. Int. Immunopharmacol., 2019, 73, 225-235.
[http://dx.doi.org/10.1016/j.intimp.2019.05.011] [PMID: 31108387]
[31]
Mazur-Bialy, A.I.; Pocheć, E.; Zarawski, M. Anti-inflammatory properties of irisin, mediator of physical activity, are connected with TLR4/MyD88 signaling pathway activation. Int. J. Mol. Sci., 2017, 18(4), 701.
[http://dx.doi.org/10.3390/ijms18040701] [PMID: 28346354]
[32]
Zhu, G.; Wang, J.; Song, M.; Zhou, F.; Fu, D.; Ruan, G.; Zhu, X.; Bai, Y.; Huang, L.; Pang, R.; Kang, H.; Pan, X. Irisin increased the number and improved the function of endothelial progenitor cells in diabetes mellitus mice. J. Cardiovasc. Pharmacol., 2016, 68(1), 67-73.
[http://dx.doi.org/10.1097/FJC.0000000000000386] [PMID: 27002278]
[33]
Zhu, D.; Wang, H.; Zhang, J.; Zhang, X.; Xin, C.; Zhang, F.; Lee, Y.; Zhang, L.; Lian, K.; Yan, W.; Ma, X.; Liu, Y.; Tao, L. Irisin improves endothelial function in type 2 diabetes through reducing oxidative/nitrative stresses. J. Mol. Cell. Cardiol., 2015, 87, 138-147.
[http://dx.doi.org/10.1016/j.yjmcc.2015.07.015] [PMID: 26225842]
[34]
Dong, J.; Dong, Y.; Dong, Y.; Chen, F.; Mitch, W.E.; Zhang, L. Inhibition of myostatin in mice improves insulin sensitivity via irisin-mediated cross talk between muscle and adipose tissues. Int. J. Obes., 2016, 40(3), 434-442.
[http://dx.doi.org/10.1038/ijo.2015.200] [PMID: 26435323]
[35]
Elizondo-Montemayor, L.; Gonzalez-Gil, A.M.; Tamez-Rivera, O.; Toledo-Salinas, C.; Peschard-Franco, M.; Rodríguez-Gutiérrez, N.A.; Silva-Platas, C.; Garcia-Rivas, G. Association between Irisin, hs-CRP, and metabolic status in children and adolescents with type 2 diabetes mellitus. Media. Inflamm., 2019, 2019, 1-13.
[http://dx.doi.org/10.1155/2019/6737318] [PMID: 31015797]
[36]
Lackey, D.E.; Olefsky, J.M. Regulation of metabolism by the innate immune system. Nat. Rev. Endocrinol., 2016, 12(1), 15-28.
[http://dx.doi.org/10.1038/nrendo.2015.189] [PMID: 26553134]
[37]
Flori, L.; Testai, L.; Calderone, V. The “irisin system”: From biological roles to pharmacological and nutraceutical perspectives. Life Sci., 2021, 267, 118954.
[38]
Hofmann, T.; Elbelt, U.; Stengel, A. Irisin as a muscle-derived hormone stimulating thermogenesis - a critical update. Peptides, 2014, 54, 89-100.
[39]
Shin, H.; Shi, H.; Xue, B.; Yu, L. What activates thermogenesis when lipid droplet lipolysis is absent in brown adipocytes? Adipocyte, 2018, 7(2), 1-5.
[http://dx.doi.org/10.1080/21623945.2018.1453769] [PMID: 29620433]
[40]
Vliora, M.; Grillo, E.; Corsini, M.; Ravelli, C.; Nintou, E.; Karligiotou, E. Irisin regulates thermogenesis and lipolysis in 3T3-L1 adipocytes. Biochim. Biophys. Acta, Gen. Subj., 2022, 1866(4), 130085.
[41]
Nonogaki, K. New insights into sympathetic regulation of glucose and fat metabolism. Diabetologia, 2000, 43(5), 533-549.
[http://dx.doi.org/10.1007/s001250051341] [PMID: 10855527]
[42]
Zhang, J.; Valverde, P.; Zhu, X.; Murray, D.; Wu, Y.; Yu, L.; Jiang, H.; Dard, M.M.; Huang, J.; Xu, Z.; Tu, Q.; Chen, J. Exercise-induced irisin in bone and systemic irisin administration reveal new regulatory mechanisms of bone metabolism. Bone Res., 2017, 5(1), 16056.
[http://dx.doi.org/10.1038/boneres.2016.56] [PMID: 28944087]
[43]
Rana, K.S.; Arif, M.; Hill, E.J.; Aldred, S.; Nagel, D.A.; Nevill, A.; Randeva, H.S.; Bailey, C.J.; Bellary, S.; Brown, J.E. Plasma irisin levels predict telomere length in healthy adults. Age (Omaha), 2014, 36(2), 995-1001.
[http://dx.doi.org/10.1007/s11357-014-9620-9] [PMID: 24469890]
[44]
Affourtit, C.; Quinlan, C.L.; Brand, M.D. Measurement of proton leak and electron leak in isolated mitochondria. Methods Mol. Biol., 2012, 810, 165-182.
[http://dx.doi.org/10.1007/978-1-61779-382-0_11] [PMID: 22057567]
[45]
Jastroch, M.; Divakaruni, A.S.; Mookerjee, S.; Treberg, J.R.; Brand, M.D. Mitochondrial proton and electron leaks. Essays Biochem., 2010, 47, 53-67.
[http://dx.doi.org/10.1042/bse0470053] [PMID: 20533900]
[46]
Polyzos, S.A.; Kountouras, J.; Shields, K.; Mantzoros, C.S. Irisin: A renaissance in metabolism? Metabolism, 2013, 62(8), 1037-1044.
[http://dx.doi.org/10.1016/j.metabol.2013.04.008] [PMID: 23664085]
[47]
Aydin, S.; Kuloglu, T.; Aydin, S.; Eren, M.N.; Celik, A.; Yilmaz, M.; Kalayci, M.; Sahin, İ.; Gungor, O.; Gurel, A.; Ogeturk, M.; Dabak, O. Cardiac, skeletal muscle and serum irisin responses to with or without water exercise in young and old male rats: Cardiac muscle produces more irisin than skeletal muscle. Peptides, 2014, 52, 68-73.
[http://dx.doi.org/10.1016/j.peptides.2013.11.024] [PMID: 24345335]
[48]
Buchanan, C.M.; Phillips, A.R.J.; Cooper, G.J.S. Preptin derived from proinsulin-like growth factor II (proIGF-II) is secreted from pancreatic islet β-cells and enhances insulin secretion. Biochem. J., 2001, 360(2), 431-439.
[http://dx.doi.org/10.1042/bj3600431] [PMID: 11716772]
[49]
Roberts, M.D.; Bayless, D.S.; Company, J.M.; Jenkins, N.T.; Padilla, J.; Childs, T.E.; Martin, J.S.; Dalbo, V.J.; Booth, F.W.; Rector, R.S.; Laughlin, M.H. Elevated skeletal muscle irisin precursor FNDC5 mRNA in obese OLETF rats. Metabolism, 2013, 62(8), 1052-1056.
[http://dx.doi.org/10.1016/j.metabol.2013.02.002] [PMID: 23498898]
[50]
Cousin, B.; Cinti, S.; Morroni, M.; Raimbault, S.; Ricquier, D.; Penicaud, L. Occurrence of brown adipocytes in rat white adipose tissue: Molecular and morphological characterization. J. Cell Sci., 1992, 103(4), 931-942.
[http://dx.doi.org/10.1242/jcs.103.4.931]
[51]
Lim, S.; Honek, J.; Xue, Y.; Seki, T.; Cao, Z.; Andersson, P.; Yang, X.; Hosaka, K.; Cao, Y. Cold-induced activation of brown adipose tissue and adipose angiogenesis in mice. Nat. Protoc., 2012, 7(3), 606-615.
[http://dx.doi.org/10.1038/nprot.2012.013] [PMID: 22383039]
[52]
Wen, M.S.; Wang, C.Y.; Lin, S.L.; Hung, K.C. Decrease in irisin in patients with chronic kidney disease. PLoS One, 2013, 8(5), e64025.
[http://dx.doi.org/10.1371/journal.pone.0064025] [PMID: 23667695]
[53]
Zhang, H.J.; Zhang, X.F.; Ma, Z.M.; Pan, L.L.; Chen, Z.; Han, H.W.; Han, C.K.; Zhuang, X.J.; Lu, Y.; Li, X.J.; Yang, S.Y.; Li, X.Y. Irisin is inversely associated with intrahepatic triglyceride contents in obese adults. J. Hepatol., 2013, 59(3), 557-562.
[http://dx.doi.org/10.1016/j.jhep.2013.04.030] [PMID: 23665283]
[54]
Damiano, F.; Rochira, A.; Gnoni, A.; Siculella, L. Action of thyroid hormones, T3 and T2, on hepatic fatty acids: Differences in metabolic effects and molecular mechanisms. Int. J. Mol. Sci., 2017, 18(4), 744.
[http://dx.doi.org/10.3390/ijms18040744] [PMID: 28362337]
[55]
Lage, R.; Fernø, J.; Nogueiras, R.; Diéguez, C.; López, M. Contribution of adaptive thermogenesis to the hypothalamic regulation of energy balance. Biochem. J., 2016, 473(22), 4063-4082.
[http://dx.doi.org/10.1042/BCJ20160012] [PMID: 27834738]
[56]
Gouni-Berthold, I.; Berthold, H.K.; Huh, J.Y.; Berman, R.; Spenrath, N.; Krone, W.; Mantzoros, C.S. Effects of lipid-lowering drugs on irisin in human subjects in vivo and in human skeletal muscle cells ex vivo. PLoS One, 2013, 8(9), e72858.
[http://dx.doi.org/10.1371/journal.pone.0072858] [PMID: 24023786]
[57]
Stengel, A.; Hofmann, T.; Goebel-Stengel, M.; Elbelt, U.; Kobelt, P.; Klapp, B.F. Circulating levels of irisin in patients with anorexia nervosa and different stages of obesity – Correlation with body mass index. Peptides, 2013, 39(1), 125-130.
[http://dx.doi.org/10.1016/j.peptides.2012.11.014] [PMID: 23219488]
[58]
Ruchala, M.; Zybek, A.; Szczepanek-Parulska, E. Serum irisin levels and thyroid function-Newly discovered association. Peptides, 2014, 60, 51-55.
[http://dx.doi.org/10.1016/j.peptides.2014.07.021] [PMID: 25102448]
[59]
Atici, E.; Mogulkoc, R.; Baltaci, A.K.; Menevse, E. Both hypothyroidism and hyperthyroidism increase plasma irisin levels in rats. Horm. Mol. Biol. Clin. Investig., 2018, 33(3)
[http://dx.doi.org/10.1515/hmbci-2017-0054] [PMID: 29182513]
[60]
Atici, E.; Menevse, E.; Baltaci, A.K.; Mogulkoc, R. Both experimental hypothyroidism and hyperthyroidism increase cardiac irisin levels in rats. Bratisl. Med. J., 2018, 119(1), 32-35.
[http://dx.doi.org/10.4149/BLL_2018_007] [PMID: 29405728]
[61]
Dun, S.L.; Lyu, R.M.; Chen, Y.H.; Chang, J.K.; Luo, J.J.; Dun, N.J. Irisin-immunoreactivity in neural and non-neural cells of the rodent. Neuroscience, 2013, 240, 155-162.
[http://dx.doi.org/10.1016/j.neuroscience.2013.02.050] [PMID: 23470775]
[62]
Crujeiras, A.B.; Pardo, M.; Roca-Rivada, A.; Navas-Carretero, S.; Zulet, M.A.; Martínez, J.A. Longitudinal variation of circulating irisin after an energy restriction-induced weight loss and following weight regain in obese men and women. Am. J. Hum. Biol., 2014, 26(2), 198-207.
[http://dx.doi.org/10.1002/ajhb.22493]
[63]
Schlögl, M.; Piaggi, P.; Votruba, S.B.; Walter, M.; Krakoff, J.; Thearle, M.S. Increased 24-hour ad libitum food intake is associated with lower plasma irisin concentrations the following morning in adult humans. Appetite, 2015, 90, 154-159.
[http://dx.doi.org/10.1016/j.appet.2015.03.003] [PMID: 25765248]
[64]
Anastasilakis, A.D.; Polyzos, S.A.; Saridakis, Z.G.; Kynigopoulos, G.; Skouvaklidou, E.C.; Molyvas, D.; Vasiloglou, M.F.; Apostolou, A.; Karagiozoglou-Lampoudi, T.; Siopi, A.; Mougios, V.; Chatzistavridis, P.; Panagiotou, G.; Filippaios, A.; Delaroudis, S.; Mantzoros, C.S. Circulating irisin in healthy, young individuals: day-night rhythm, effects of food intake and exercise, and associations with gender, physical activity, diet, and body composition. J. Clin. Endocrinol. Metab., 2014, 99(9), 3247-3255.
[http://dx.doi.org/10.1210/jc.2014-1367] [PMID: 24915120]
[65]
Butt, Z.D.; Hackett, J.D.; Volkoff, H. Irisin in goldfish (Carassius auratus): Effects of irisin injections on feeding behavior and expression of appetite regulators, uncoupling proteins and lipoprotein lipase, and fasting-induced changes in FNDC5 expression. Peptides, 2017, 90, 27-36.
[http://dx.doi.org/10.1016/j.peptides.2017.02.003] [PMID: 28219696]
[66]
Ferrante, C.; Orlando, G.; Recinella, L.; Leone, S.; Chiavaroli, A.; Di Nisio, C.; Shohreh, R.; Manippa, F.; Ricciuti, A.; Vacca, M.; Brunetti, L. Central inhibitory effects on feeding induced by the adipo-myokine irisin. Eur. J. Pharmacol., 2016, 791, 389-394.
[http://dx.doi.org/10.1016/j.ejphar.2016.09.011] [PMID: 27614130]
[67]
Tekin, S.; Erden, Y.; Ozyalin, F.; Cigremis, Y.; Colak, C.; Sandal, S. The effects of intracerebroventricular infusion of irisin on feeding behaviour in rats. Neurosci. Lett., 2017, 645, 25-32.
[http://dx.doi.org/10.1016/j.neulet.2017.02.066] [PMID: 28242329]
[68]
Weiner, J.; Hankir, M.; Heiker, J.T.; Fenske, W.; Krause, K. Thyroid hormones and browning of adipose tissue. Mol. Cell. Endocrinol., 2017, 458, 156-159.
[http://dx.doi.org/10.1016/j.mce.2017.01.011] [PMID: 28089823]
[69]
Barbe, P.; Darimont, C.; Saint-Marc, P.; Galitzky, J. Measurements of white adipose tissue metabolism by microdialysis technique. Methods Mol. Biol., 2001, 155, 305-321.
[http://dx.doi.org/10.1385/1-59259-231-7:305] [PMID: 11293081]
[70]
de Lange, P.; Feola, A.; Ragni, M.; Senese, R.; Moreno, M.; Lombardi, A.; Silvestri, E.; Amat, R.; Villarroya, F.; Goglia, F.; Lanni, A. Differential 3,5,3′-triiodothyronine-mediated regulation of uncoupling protein 3 transcription: role of Fatty acids. Endocrinology, 2007, 148(8), 4064-4072.
[http://dx.doi.org/10.1210/en.2007-0206] [PMID: 17478558]
[71]
Lee, J.Y.; Takahashi, N.; Yasubuchi, M.; Kim, Y.I.; Hashizaki, H.; Kim, M.J.; Sakamoto, T.; Goto, T.; Kawada, T. Triiodothyronine induces UCP-1 expression and mitochondrial biogenesis in human adipocytes. Am. J. Physiol. Cell Physiol., 2012, 302(2), C463-C472.
[http://dx.doi.org/10.1152/ajpcell.00010.2011] [PMID: 22075692]
[72]
Skarulis, M.C.; Celi, F.S.; Mueller, E.; Zemskova, M.; Malek, R.; Hugendubler, L.; Cochran, C.; Solomon, J.; Chen, C.; Gorden, P. Thyroid hormone induced brown adipose tissue and amelioration of diabetes in a patient with extreme insulin resistance. J. Clin. Endocrinol. Metab., 2010, 95(1), 256-262.
[http://dx.doi.org/10.1210/jc.2009-0543] [PMID: 19897683]
[73]
Piya, M.K.; Harte, A.L.; Sivakumar, K.; Tripathi, G.; Voyias, P.D.; James, S.; Sabico, S.; Al-Daghri, N.M.; Saravanan, P.; Barber, T.M.; Kumar, S.; Vatish, M.; McTernan, P.G. The identification of irisin in human cerebrospinal fluid: influence of adiposity, metabolic markers, and gestational diabetes. Am. J. Physiol. Endocrinol. Metab., 2014, 306(5), E512-E518.
[http://dx.doi.org/10.1152/ajpendo.00308.2013] [PMID: 24398403]
[74]
Erden, Y.; Tekin, S.; Sandal, S.; Onalan, E.E.; Tektemur, A.; Kirbag, S. Effects of central irisin administration on the uncoupling proteins in rat brain. Neurosci. Lett., 2016, 618, 6-13.
[http://dx.doi.org/10.1016/j.neulet.2016.02.046] [PMID: 26926562]
[75]
Ateş, İ.; Altay, M.; Topçuoğlu, C.; Yılmaz, F.M. Circulating levels of irisin is elevated in hypothyroidism, a case-control study. Arch. Endocrinol. Metab., 2016, 60(2), 95-100.
[http://dx.doi.org/10.1590/2359-3997000000077] [PMID: 26201007]
[76]
Yin, W.; Signore, A.P.; Iwai, M.; Cao, G.; Gao, Y.; Chen, J. Rapidly increased neuronal mitochondrial biogenesis after hypoxic-ischemic brain injury. Stroke, 2008, 39(11), 3057-3063.
[http://dx.doi.org/10.1161/STROKEAHA.108.520114] [PMID: 18723421]
[77]
Joe, Y.; Zheng, M.; Kim, H.J.; Uddin, M.J.; Kim, S.K.; Chen, Y.; Park, J.; Cho, G.J.; Ryter, S.W.; Chung, H.T. Cilostazol attenuates murine hepatic ischemia and reperfusion injury via heme oxygenase-dependent activation of mitochondrial biogenesis. Am. J. Physiol. Gastrointest. Liver Physiol., 2015, 309(1), G21-G29.
[http://dx.doi.org/10.1152/ajpgi.00307.2014] [PMID: 25951827]
[78]
Pedersen, B.K.; Febbraio, M.A. Muscles, exercise and obesity: Skeletal muscle as a secretory organ. Nat. Rev. Endocrinol., 2012, 8(8), 457-465.
[http://dx.doi.org/10.1038/nrendo.2012.49]
[79]
So, B.; Kim, H.J.; Kim, J.; Song, W. Exercise-induced myokines in health and metabolic diseases. Integr. Med. Res., 2014, 3(4), 172-179.
[http://dx.doi.org/10.1016/j.imr.2014.09.007] [PMID: 28664094]
[80]
Brenmoehl, J.; Albrecht, E.; Komolka, K.; Schering, L.; Langhammer, M.; Hoeflich, A.; Maak, S. Irisin is elevated in skeletal muscle and serum of mice immediately after acute exercise. Int. J. Biol. Sci., 2014, 10(3), 338-349.
[http://dx.doi.org/10.7150/ijbs.7972] [PMID: 24644429]
[81]
Ricquier, D. Uncoupling protein 1 of brown adipocytes, the only uncoupler: a historical perspective. Front. Endocrinol. (Lausanne), 2011, 2(DEC), 85.
[http://dx.doi.org/10.3389/fendo.2011.00085] [PMID: 22649389]
[82]
Fernández-Verdejo, R.; Casas, M.; Galgani, J.E.; Jaimovich, E.; Buvinic, S. Exercise sensitizes skeletal muscle to extracellular ATP for IL-6 expression in mice. Int. J. Sports Med., 2014, 35(4), 273-279.
[PMID: 24022572]
[83]
Peltier, J.; O’Neill, A.; Schaffer, D.V. PI3K/Akt and CREB regulate adult neural hippocampal progenitor proliferation and differentiation. Dev. Neurobiol., 2007, 67(10), 1348-1361.
[http://dx.doi.org/10.1002/dneu.20506] [PMID: 17638387]
[84]
Cao, W.; Daniel, K.W.; Robidoux, J.; Puigserver, P.; Medvedev, A.V.; Bai, X.; Floering, L.M.; Spiegelman, B.M.; Collins, S. p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene. Mol. Cell. Biol., 2004, 24(7), 3057-3067.
[http://dx.doi.org/10.1128/MCB.24.7.3057-3067.2004] [PMID: 15024092]
[85]
Chen, K.; Xu, Z.; Liu, Y.; Wang, Z.; Li, Y.; Xu, X.; Chen, C.; Xia, T.; Liao, Q.; Yao, Y.; Zeng, C.; He, D.; Yang, Y.; Tan, T.; Yi, J.; Zhou, J.; Zhu, H.; Ma, J.; Zeng, C. Irisin protects mitochondria function during pulmonary ischemia/reperfusion injury. Sci. Transl. Med., 2017, 9(418), eaao6298.
[http://dx.doi.org/10.1126/scitranslmed.aao6298] [PMID: 29187642]
[86]
Bouillaud, F.; Alves-Guerra, M.C.; Ricquier, D. UCPs, at the interface between bioenergetics and metabolism. Biochim. Biophys. Acta Mol. Cell Res., 2016, 1863(10), 2443-2456.
[http://dx.doi.org/10.1016/j.bbamcr.2016.04.013] [PMID: 27091404]
[87]
Vaughan, R.A.; Gannon, N.P.; Mermier, C.M.; Conn, C.A. Irisin, a unique non-inflammatory myokine in stimulating skeletal muscle metabolism. J. Physiol. Biochem., 2015, 71(4), 679-689.
[http://dx.doi.org/10.1007/s13105-015-0433-9] [PMID: 26399516]
[88]
Sahu, B.; Tikoo, O.; Pati, B.; Senapati, U.; Bal, N.C. Role of distinct fat depots in metabolic regulation and pathological implications. Rev. Physiol. Biochem. Pharmacol., 2022, 186, 135-176.
[http://dx.doi.org/10.1007/112_2022_73] [PMID: 35915363]
[89]
Chen, Y.J.; Lin, C.W.; Peng, Y.J.; Huang, C.W.; Chien, Y.S.; Huang, T.H.; Liao, P.X.; Yang, W.Y.; Wang, M.H.; Mersmann, H.J.; Wu, S.C.; Chuang, T.Y.; Lin, Y.Y.; Kuo, W.H.; Ding, S.T. Overexpression of adiponectin receptor 1 inhibits brown and beige adipose tissue activity in mice. Int. J. Mol. Sci., 2021, 22(2), 906.
[http://dx.doi.org/10.3390/ijms22020906] [PMID: 33477525]
[90]
Kajimura, S. Engineering fat cell fate to fight obesity and metabolic diseases. Keio J. Med., 2015, 64(4), 65.
[http://dx.doi.org/10.2302/kjm.64-004-ABST] [PMID: 26727580]
[91]
Birnbacher, L.; Maurer, S.; Scheidt, K.; Herzen, J.; Pfeiffer, F.; Fromme, T. Electron density of adipose tissues determined by phase-contrast computed tomography provides a measure for mitochondrial density and fat content. Front. Physiol., 2018, 9, 707.
[http://dx.doi.org/10.3389/fphys.2018.00707] [PMID: 29962958]
[92]
Scheel, A.K.; Espelage, L.; Chadt, A. Many ways to Rome: Exercise, cold exposure and diet—Do they all affect BAT activation and WAT browning in the same manner? Int. J. Mol. Sci., 2022, 23(9), 4759.
[http://dx.doi.org/10.3390/ijms23094759] [PMID: 35563150]
[93]
Thyagarajan, B.; Foster, M.T. Beiging of white adipose tissue as a therapeutic strategy for weight loss in humans. Horm. Mol. Biol. Clin. Investig., 2017, 31(2)
[http://dx.doi.org/10.1515/hmbci-2017-0016] [PMID: 28672737]
[94]
Kern-Matschilles, S.; Gar, C.; Wanger, L.; Haschka, S.J.; Potzel, A.L.; Hesse, N.; Then, C.; Seissler, J.; Lechner, A. Association of serum myostatin with body weight, visceral fat volume, and high sensitivity C-reactive protein but not with muscle mass and physical fitness in premenopausal women. Exp. Clin. Endocrinol. Diabetes, 2022, 130(6), 393-399.
[http://dx.doi.org/10.1055/a-1500-4605] [PMID: 34407549]
[95]
Behera, J.; Ison, J.; Voor, M.J.; Tyagi, N. Exercise-linked skeletal irisin ameliorates diabetes-associated osteoporosis by inhibiting the oxidative damage–dependent miR-150-FNDC5/pyroptosis axis. Diabetes, 2022, 71(12), 2777-2792.
[http://dx.doi.org/10.2337/db21-0573] [PMID: 35802043]
[96]
Gheit, R.E.A.E.; Younis, R.L.; El-Saka, M.H.; Emam, M.N.; Soliman, N.A.; El-Sayed, R.M.; Hafez, Y.M. AbuoHashish, N.A.; Radwan, D.A.; khaled, H.E.; Kamel, S.; Zaitone, S.A.; Badawi, G.A. Irisin improves adiposity and exercise tolerance in a rat model of postmenopausal obesity through enhancing adipo-myocyte thermogenesis. J. Physiol. Biochem., 2022, 78(4), 897-913.
[http://dx.doi.org/10.1007/s13105-022-00915-3] [PMID: 35996069]
[97]
Lavi, G.; Horwitz, A.; Einstein, O.; Zipori, R.; Gross, O.; Birk, R. Fndc5/irisin is regulated by myogenesis stage, irisin, muscle type and training. Am. J. Transl. Res., 2022, 14(10), 7063-7079.
[PMID: 36398256]
[98]
Park, J.; Kim, J.; Mikami, T. Exercise hormone irisin prevents physical inactivity-induced cognitive decline in mice. Behav. Brain Res., 2022, 433, 114008.
[http://dx.doi.org/10.1016/j.bbr.2022.114008] [PMID: 35850397]
[99]
Shen, S.; Liao, Q.; Chen, X.; Peng, C.; Lin, L. The role of irisin in metabolic flexibility: Beyond adipose tissue browning. Drug Discov. Today, 2022, 27(8), 2261-2267.
[http://dx.doi.org/10.1016/j.drudis.2022.03.019] [PMID: 35364272]
[100]
Ambroszkiewicz, J.; Chełchowska, M.; Mazur, J.; Rowicka, G.; Gajewska, J. Relationships between body weight status and serum levels of adipokine, myokine and bone metabolism parameters in healthy normal weight and thin children. J. Clin. Med., 2022, 11(14), 4013.
[http://dx.doi.org/10.3390/jcm11144013] [PMID: 35887780]
[101]
Barp, A.; Carraro, E.; Goggi, G.; Lizio, A.; Zanolini, A.; Messina, C.; Perego, S.; Verdelli, C.; Lombardi, G.; Sansone, V.A.; Corbetta, S. Body composition and myokines in a cohort of patients with Becker muscular dystrophy. Muscle Nerve, 2022, 66(1), 63-70.
[http://dx.doi.org/10.1002/mus.27565] [PMID: 35474226]
[102]
Yi, P.; Park, J.S.; Melton, D.A. Betatrophin: A hormone that controls pancreatic β cell proliferation. Cell, 2013, 153(4), 747-758.
[http://dx.doi.org/10.1016/j.cell.2013.04.008] [PMID: 23623304]
[103]
Gao, S.; Li, F.; Li, H.; Huang, Y.; Liu, Y.; Chen, Y. Effects and molecular mechanism of GST-irisin on lipolysis and autocrine function in 3T3-L1 adipocytes. PLoS One, 2016, 11(1), e0147480.
[http://dx.doi.org/10.1371/journal.pone.0147480] [PMID: 26799325]
[104]
Kurdiova, T.; Balaz, M.; Vician, M.; Maderova, D.; Vlcek, M.; Valkovic, L.; Srbecky, M.; Imrich, R.; Kyselovicova, O.; Belan, V.; Jelok, I.; Wolfrum, C.; Klimes, I.; Krssak, M.; Zemkova, E.; Gasperikova, D.; Ukropec, J.; Ukropcova, B. Effects of obesity, diabetes and exercise on Fndc5 gene expression and irisin release in human skeletal muscle and adipose tissue: In vivo and in vitro studies. J. Physiol., 2014, 592(5), 1091-1107.
[http://dx.doi.org/10.1113/jphysiol.2013.264655] [PMID: 24297848]
[105]
Xin, C.; Liu, J.; Zhang, J.; Zhu, D.; Wang, H.; Xiong, L. Irisin improves fatty acid oxidation and glucose utilization in type 2 diabetes by regulating the AMPK signaling pathway. Int. J. Obes., 2016, 40(3), 443-445.
[http://dx.doi.org/10.1038/ijo.2015.199]
[106]
Yang, Z.; Chen, X.; Chen, Y.; Zhao, Q. Decreased irisin secretion contributes to muscle insulin resistance in high-fat diet mice. Int. J. Clin. Exp. Pathol., 2015, 8(6), 6490-6497.
[PMID: 26261526]
[107]
Vaughan, R.A.; Gannon, N.P.; Barberena, M.A.; Garcia-Smith, R.; Bisoffi, M.; Mermier, C.M.; Conn, C.A.; Trujillo, K.A. Characterization of the metabolic effects of irisin on skeletal muscle in vitro. Diabetes Obes. Metab., 2014, 16(8), 711-718.
[http://dx.doi.org/10.1111/dom.12268] [PMID: 24476050]
[108]
Huh, J.Y.; Panagiotou, G.; Mougios, V.; Brinkoetter, M.; Vamvini, M.T.; Schneider, B.E.; Mantzoros, C.S. FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise. Metabolism, 2012, 61(12), 1725-1738.
[http://dx.doi.org/10.1016/j.metabol.2012.09.002] [PMID: 23018146]
[109]
Kurdiova, T.; Balaz, M.; Mayer, A.; Maderova, D.; Belan, V.; Wolfrum, C.; Ukropec, J.; Ukropcova, B. Exercise-mimicking treatment fails to increase Fndc5 mRNA & irisin secretion in primary human myotubes. Peptides, 2014, 56, 1-7.
[http://dx.doi.org/10.1016/j.peptides.2014.03.003] [PMID: 24642356]
[110]
Mo, L.; Shen, J.; Liu, Q.; Zhang, Y.; Kuang, J.; Pu, S.; Cheng, S.; Zou, M.; Jiang, W.; Jiang, C.; Qu, A.; He, J. Irisin Is Regulated by CAR in Liver and Is a Mediator of Hepatic Glucose and Lipid Metabolism. Mol. Endocrinol., 2016, 30(5), 533-542.
[http://dx.doi.org/10.1210/me.2015-1292] [PMID: 27007446]
[111]
Choi, E.S.; Kim, M.K.; Song, M.K.; Kim, J.M.; Kim, E.S.; Chung, W.J. Association between serum irisin levels and non-alcoholic fatty liver disease in health screen examinees. PLOS ONE, 2014, 9(10), e110680.
[http://dx.doi.org/10.1371/journal.pone.0110680]
[112]
Rizk, F.H.; Elshweikh, S.A.; Abd El-Naby, A.Y. Irisin levels in relation to metabolic and liver functions in Egyptian patients with metabolic syndrome. Can. J. Physiol. Pharmacol., 2016, 94(4), 359-362.
[http://dx.doi.org/10.1139/cjpp-2015-0371] [PMID: 26695389]
[113]
Aydin, S.; Kuloglu, T.; Aydin, S.; Kalayci, M.; Yilmaz, M.; Cakmak, T.; Albayrak, S.; Gungor, S.; Colakoglu, N.; Ozercan, İ.H. A comprehensive immunohistochemical examination of the distribution of the fat-burning protein irisin in biological tissues. Peptides, 2014, 61, 130-136.
[http://dx.doi.org/10.1016/j.peptides.2014.09.014] [PMID: 25261800]
[114]
Yang, M.; Chen, P.; Jin, H.; Xie, X.; Gao, T.; Yang, L.; Yu, X. Circulating levels of irisin in middle-aged first-degree relatives of type 2 diabetes mellitus-Correlation with pancreatic β-cell function. Diabetol. Metab. Syndr., 2014, 6(1), 133.
[http://dx.doi.org/10.1186/1758-5996-6-133] [PMID: 25530809]
[115]
Wang, L.; Song, J.; Wang, C.; Lin, P.; Liang, K.; Sun, Y. Circulating levels of betatrophin and irisin are not associated with pancreatic β-cell function in previously diagnosed type 2 diabetes mellitus patients. J. Diabetes Res., 2016, 2016, 2616539.
[116]
Assyov, Y.; Gateva, A.; Tsakova, A.; Kamenov, Z. Irisin in the Glucose Continuum. Exp. Clin. Endocrinol. Diabetes, 2016, 124(1), 22-27.
[PMID: 26479549]
[117]
Tuomilehto, J.; Lindström, J.; Eriksson, J.G.; Valle, T.T.; Hämäläinen, H.; Ilanne-Parikka, P.; Keinänen-Kiukaanniemi, S.; Laakso, M.; Louheranta, A.; Rastas, M.; Salminen, V.; Aunola, S.; Cepaitis, Z.; Moltchanov, V.; Hakumäki, M.; Mannelin, M.; Martikkala, V.; Sundvall, J.; Uusitupa, M. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med., 2001, 344(18), 1343-1350.
[http://dx.doi.org/10.1056/NEJM200105033441801] [PMID: 11333990]
[118]
Yamaoka, K.; Tango, T. Effects of lifestyle modification on metabolic syndrome: A systematic review and meta-analysis. BMC Med., 2012, 10(1), 138.
[http://dx.doi.org/10.1186/1741-7015-10-138] [PMID: 23151238]
[119]
Booth, F.W.; Roberts, C.K.; Laye, M.J. Lack of exercise is a major cause of chronic diseases. Compr. Physiol., 2012, 2(2), 1143-1211.
[http://dx.doi.org/10.1002/cphy.c110025] [PMID: 23798298]
[120]
Duzova, H. Skeletal muscle, myokines and health. Medicine Science. Int. Med. J., 2012, 1(3), 211.
[121]
Ho, M-Y.; Wang, C-Y. Role of irisin in myocardial infarction, heart failure, and cardiac hypertrophy. Cells, 2021, 10(8), 2103.
[122]
Daskalopoulou, S.S.; Cooke, A.B.; Gomez, Y.H.; Mutter, A.F.; Filippaios, A.; Mesfum, E.T.; Mantzoros, C.S. Plasma irisin levels progressively increase in response to increasing exercise workloads in young, healthy, active subjects. Eur. J. Endocrinol., 2014, 171(3), 343-352.
[http://dx.doi.org/10.1530/EJE-14-0204] [PMID: 24920292]
[123]
Roca-Rivada, A.; Castelao, C.; Senin, L.L.; Landrove, M.O.; Baltar, J.; Crujeiras, A.B.; Seoane, L.M.; Casanueva, F.F.; Pardo, M. FNDC5/irisin is not only a myokine but also an adipokine. PLoS One, 2013, 8(4), e60563.
[http://dx.doi.org/10.1371/journal.pone.0060563] [PMID: 23593248]
[124]
Liu, J.J.; Wong, M.D.S.; Toy, W.C.; Tan, C.S.H.; Liu, S.; Ng, X.W.; Tavintharan, S.; Sum, C.F.; Lim, S.C. Lower circulating irisin is associated with type 2 diabetes mellitus. J. Diabetes Complications, 2013, 27(4), 365-369.
[http://dx.doi.org/10.1016/j.jdiacomp.2013.03.002] [PMID: 23619195]
[125]
Al-Daghri, N.M.; Alkharfy, K.M.; Rahman, S.; Amer, O.E.; Vinodson, B.; Sabico, S.; Piya, M.K.; Harte, A.L.; McTernan, P.G.; Alokail, M.S.; Chrousos, G.P. Irisin as a predictor of glucose metabolism in children: Sexually dimorphic effects. Eur. J. Clin. Invest., 2014, 44(2), 119-124.
[http://dx.doi.org/10.1111/eci.12196] [PMID: 24188288]
[126]
Choi, Y.K.; Kim, M.K.; Bae, K.H.; Seo, H.A.; Jeong, J.Y.; Lee, W.K.; Kim, J.G.; Lee, I.K.; Park, K.G. Serum irisin levels in new-onset type 2 diabetes. Diabetes Res. Clin. Pract., 2013, 100(1), 96-101.
[http://dx.doi.org/10.1016/j.diabres.2013.01.007] [PMID: 23369227]
[127]
Yan, B.; Shi, X.; Zhang, H.; Pan, L.; Ma, Z.; Liu, S.; Liu, Y.; Li, X.; Yang, S.; Li, Z. Association of serum irisin with metabolic syndrome in obese Chinese adults. PLoS One, 2014, 9(4), e94235.
[http://dx.doi.org/10.1371/journal.pone.0094235] [PMID: 24709991]
[128]
Hee Park, K.; Zaichenko, L.; Brinkoetter, M.; Thakkar, B.; Sahin-Efe, A.; Joung, K.E.; Tsoukas, M.A.; Geladari, E.V.; Huh, J.Y.; Dincer, F.; Davis, C.R.; Crowell, J.A.; Mantzoros, C.S. Circulating irisin in relation to insulin resistance and the metabolic syndrome. J. Clin. Endocrinol. Metab., 2013, 98(12), 4899-4907.
[http://dx.doi.org/10.1210/jc.2013-2373] [PMID: 24057291]
[129]
Reinehr, T.; Elfers, C.; Lass, N.; Roth, C.L. Irisin and its relation to insulin resistance and puberty in obese children: A longitudinal analysis. J. Clin. Endocrinol. Metab., 2015, 100(5), 2123-2130.
[http://dx.doi.org/10.1210/jc.2015-1208] [PMID: 25781361]
[130]
Sanchis-Gomar, F.; Lippi, G.; Mayero, S.; Perez-Quilis, C.; García-Giménez, J.L. Irisin: A new potential hormonal target for the treatment of obesity and type 2 diabetes. J. Diabetes, 2012, 4(3), 196.
[http://dx.doi.org/10.1111/j.1753-0407.2012.00194.x] [PMID: 22372821]
[131]
Nielsen, S.; Guo, Z.; Johnson, C.M.; Hensrud, D.D.; Jensen, M.D. Splanchnic lipolysis in human obesity. J. Clin. Invest., 2004, 113(11), 1582-1588.
[http://dx.doi.org/10.1172/JCI21047] [PMID: 15173884]
[132]
Seino, S.; Shibasaki, T.; Minami, K. Dynamics of insulin secretion and the clinical implications for obesity and diabetes. J. Clin. Invest., 2011, 121(6), 2118-2125.
[http://dx.doi.org/10.1172/JCI45680] [PMID: 21633180]
[133]
Montez, J.M.; Soukas, A.; Asilmaz, E.; Fayzikhodjaeva, G.; Fantuzzi, G.; Friedman, J.M. Acute leptin deficiency, leptin resistance, and the physiologic response to leptin withdrawal. Proc. Natl. Acad. Sci. USA, 2005, 102(7), 2537-2542.
[http://dx.doi.org/10.1073/pnas.0409530102] [PMID: 15699332]
[134]
Park, K.H.; Zaichenko, L.; Peter, P.; Davis, C.R.; Crowell, J.A.; Mantzoros, C.S. Diet quality is associated with circulating C-reactive protein but not irisin levels in humans. Metabolism, 2014, 63(2), 233-241.
[http://dx.doi.org/10.1016/j.metabol.2013.10.011] [PMID: 24315778]
[135]
Aydin, S.; Kuloglu, T.; Aydin, S. Copeptin, adropin and irisin concentrations in breast milk and plasma of healthy women and those with gestational diabetes mellitus. Peptides, 2013, 47, 66-70.
[http://dx.doi.org/10.1016/j.peptides.2013.07.001] [PMID: 23850897]
[136]
Jodeiri Farshbaf, M.; Alviña, K. Multiple roles in neuroprotection for the exercise derived myokine irisin. Front. Aging Neurosci., 2021, 13, 649929.
[http://dx.doi.org/10.3389/fnagi.2021.649929] [PMID: 33935687]
[137]
Domin, R.; Dadej, D.; Pytka, M.; Zybek-Kocik, A.; Ruchała, M.; Guzik, P. Effect of various exercise regimens on selected exercise-induced cytokines in healthy people. Int. J. Environ. Res. Public Health, 2021, 18(3), 1261.
[http://dx.doi.org/10.3390/ijerph18031261] [PMID: 33572495]
[138]
Zhu, X.; Li, X.; Wang, X.; Chen, T.; Tao, F.; Liu, C.; Tu, Q.; Shen, G.; Chen, J.J. Irisin deficiency disturbs bone metabolism. J. Cell. Physiol., 2021, 236(1), 664-676.
[http://dx.doi.org/10.1002/jcp.29894] [PMID: 32572964]
[139]
Kirk, B.; Feehan, J.; Lombardi, G.; Duque, G. Muscle, bone, and fat crosstalk: the biological role of myokines, osteokines, and adipokines. Curr. Osteoporos. Rep., 2020, 18(4), 388-400.
[http://dx.doi.org/10.1007/s11914-020-00599-y] [PMID: 32529456]
[140]
Gonzalez-Gil, A.M.; Elizondo-Montemayor, L. The role of exercise in the interplay between myokines, hepatokines, osteokines, adipokines, and modulation of inflammation for energy substrate redistribution and fat mass loss: A review. Nutrients, 2020, 12(6), 1899.
[http://dx.doi.org/10.3390/nu12061899] [PMID: 32604889]
[141]
Gomarasca, M.; Banfi, G.; Lombardi, G. Myokines: The endocrine coupling of skeletal muscle and bone. Adv. Clin. Chem., 2020, 94, 155-218.
[http://dx.doi.org/10.1016/bs.acc.2019.07.010] [PMID: 31952571]
[142]
Xiong, Y.; Wu, Z.; Zhang, B.; Wang, C.; Mao, F.; Liu, X.; Hu, K.; Sun, X.; Jin, W.; Kuang, S. Fndc5 loss‐of‐function attenuates exercise‐induced browning of white adipose tissue in mice. FASEB J., 2019, 33(5), 5876-5886.
[http://dx.doi.org/10.1096/fj.201801754RR] [PMID: 30721625]
[143]
Lv, J.; Pan, Y.; Li, X.; Cheng, D.; Ju, H.; Tian, J.; Shi, H.; Zhang, Y. Study on the distribution and elimination of the new hormone irisin in vivo: new discoveries regarding irisin. Horm. Metab. Res., 2015, 47(8), 591-595.
[http://dx.doi.org/10.1055/s-0035-1547261] [PMID: 25757030]
[144]
Bonfante, I.L.P.; Chacon-Mikahil, M.P.T.; Brunelli, D.T.; Gáspari, A.F.; Duft, R.G.; Lopes, W.A.; Bonganha, V.; Libardi, C.A.; Cavaglieri, C.R. Combined training, FNDC5/irisin levels and metabolic markers in obese men: A randomised controlled trial. Eur. J. Sport Sci., 2017, 17(5), 629-637.
[http://dx.doi.org/10.1080/17461391.2017.1296025] [PMID: 28287024]
[145]
Wu, F.; Song, H.; Zhang, Y.; Zhang, Y.; Mu, Q.; Jiang, M.; Wang, F.; Zhang, W.; Li, L.; Li, H.; Wang, Y.; Zhang, M.; Li, S.; Yang, L.; Meng, Y.; Tang, D. Irisin induces angiogenesis in human umbilical vein endothelial cells in vitro and in zebrafish embryos in vivovia activation of the erk signaling pathway. PLoS One, 2015, 10(8), e0134662.
[http://dx.doi.org/10.1371/journal.pone.0134662] [PMID: 26241478]
[146]
Song, H.; Wu, F.; Zhang, Y.; Zhang, Y.; Wang, F.; Jiang, M. Irisin promotes human umbilical vein endothelial cell proliferation through the ERK signaling pathway and partly suppresses high glucose-induced apoptosis. PLoS One, 2014, 9(10), e110273.
[http://dx.doi.org/10.1371/journal.pone.0110273]
[147]
Song, R.; Zhao, X.; Cao, R.; Liang, Y.; Zhang, D.Q.; Wang, R. Irisin improves insulin resistance by inhibiting autophagy through the PI3K/Akt pathway in H9c2 cells. Gene, 2021, 769, 145209.
[http://dx.doi.org/10.1016/j.gene.2020.145209] [PMID: 33038421]
[148]
So, W.Y.; Leung, P.S. Irisin ameliorates hepatic glucose/lipid metabolism and enhances cell survival in insulin-resistant human HepG2 cells through adenosine monophosphate-activated protein kinase signaling. Int. J. Biochem. Cell Biol., 2016, 78, 237-247.
[http://dx.doi.org/10.1016/j.biocel.2016.07.022] [PMID: 27452313]
[149]
Natalicchio, A.; Marrano, N.; Biondi, G.; Spagnuolo, R.; Labarbuta, R.; Porreca, I.; Cignarelli, A.; Bugliani, M.; Marchetti, P.; Perrini, S.; Laviola, L.; Giorgino, F. The myokine irisin is released in response to saturated fatty acids and promotes pancreatic β-cell survival and insulin secretion. Diabetes, 2017, 66(11), 2849-2856.
[http://dx.doi.org/10.2337/db17-0002] [PMID: 28724742]
[150]
Agbo, E.; Li, M.X.; Wang, Y.Q.; Saahene, R.O.; Massaro, J.; Tian, G.Z. Hexarelin protects cardiac H9C2 cells from angiotensin II-induced hypertrophy via the regulation of autophagy. Pharmazie, 2019, 74(8), 485-491.
[PMID: 31526442]
[151]
Khorasani, Z.M.; Khameneh Bagheri, R.; Yaghoubi, M.A.; Chobkar, S.; Aghaee, M.A.; Abbaszadegan, M.R. The association between serum irisin levels and cardiovascular disease in diabetic patients. Diabetes Metab. Syndr., 2018, 13(1), 786-790.
[152]
Aronis, K.N.; Moreno, M.; Polyzos, S.A.; Moreno-Navarrete, J.M.; Ricart, W.; Delgado, E. Circulating irisin levels and coronary heart disease: association with future acute coronary syndrome and major adverse cardiovascular events. Int. J. Obes., 2014, 39(1), 156-161.
[153]
Hsieh, I.C.; Ho, M.Y.; Wen, M.S.; Chen, C.C.; Hsieh, M.J.; Lin, C.P.; Yeh, J.K.; Tsai, M.L.; Yang, C.H.; Wu, V.C.C.; Hung, K.C.; Wang, C.C.; Wang, C.Y. Serum irisin levels are associated with adverse cardiovascular outcomes in patients with acute myocardial infarction. Int. J. Cardiol., 2018, 261, 12-17.
[http://dx.doi.org/10.1016/j.ijcard.2017.11.072] [PMID: 29657036]
[154]
Zhang, Y.; Mu, Q.; Zhou, Z.; Song, H.; Zhang, Y.; Wu, F.; Jiang, M.; Wang, F.; Zhang, W.; Li, L.; Shao, L.; Wang, X.; Li, S.; Yang, L.; Wu, Q.; Zhang, M.; Tang, D. Protective effect of irisin on atherosclerosis via suppressing oxidized low density lipoprotein induced vascular inflammation and endothelial dysfunction. PLoS One, 2016, 11(6), e0158038.
[http://dx.doi.org/10.1371/journal.pone.0158038] [PMID: 27355581]
[155]
Zhang, Y.; Song, H.; Zhang, Y.; Wu, F.; Mu, Q.; Jiang, M.; Wang, F.; Zhang, W.; Li, L.; Shao, L.; Li, S.; Yang, L.; Zhang, M.; Wu, Q.; Tang, D. Irisin inhibits atherosclerosis by promoting endothelial proliferation through microRNA126‐5p. J. Am. Heart Assoc., 2016, 5(9), e004031.
[http://dx.doi.org/10.1161/JAHA.116.004031] [PMID: 27671318]
[156]
Tang, H.; Yu, R.; Liu, S.; Huwatibieke, B.; Li, Z.; Zhang, W. Irisin inhibits hepatic cholesterol synthesis via AMPK-SREBP2 Signaling. EBioMedicine, 2016, 6, 139-148.
[http://dx.doi.org/10.1016/j.ebiom.2016.02.041] [PMID: 27211556]
[157]
Li, H.; Shen, J.; Wu, T.; Kuang, J.; Liu, Q.; Cheng, S.; Pu, S.; Chen, L.; Li, R.; Li, Y.; Zou, M.; Zhang, Z.; Jiang, W.; Qu, A.; He, J. Irisin is controlled by farnesoid X receptor and regulates cholesterol homeostasis. Front. Pharmacol., 2019, 10(MAY), 548.
[http://dx.doi.org/10.3389/fphar.2019.00548] [PMID: 31191305]
[158]
Ellefsen, S.; Vikmoen, O.; Slettaløkken, G.; Whist, J.E.; Nygaard, H.; Hollan, I.; Rauk, I.; Vegge, G.; Strand, T.A.; Raastad, T.; Rønnestad, B.R. Irisin and FNDC5: effects of 12-week strength training, and relations to muscle phenotype and body mass composition in untrained women. Eur. J. Appl. Physiol., 2014, 114(9), 1875-1888.
[http://dx.doi.org/10.1007/s00421-014-2922-x] [PMID: 24906447]
[159]
Srinivasa, S.; Suresh, C.; Mottla, J.; Hamarneh, S.R.; Irazoqui, J.E.; Frontera, W. FNDC5 relates to skeletal muscle IGF-I and mitochondrial function and gene expression in obese men with reduced growth hormone. Growth Horm. IGF Res., 2015, 26, 36-41.
[160]
Zybek-Kocik, A.; Sawicka-Gutaj, N.; Szczepanek-Parulska, E.; Andrusiewicz, M.; Waligórska-Stachura, J.; Białas, P.; Krauze, T.; Guzik, P.; Skrobisz, J.; Ruchała, M. The association between irisin and muscle metabolism in different thyroid disorders. Clin. Endocrinol. (Oxf.), 2018, 88(3), 460-467.
[http://dx.doi.org/10.1111/cen.13527] [PMID: 29197093]
[161]
Abdu Allah, A.M.; Hammoudah, S.A.F.; Abd El Gayed, E.M.; El-Attar, L.M.; Shehab-Eldin, W.A. Obesity and its Association with Irisin Level Among Individuals with FNDC5/Irisin Gene Variants RS16835198 and RS726344. Protein Pept. Lett., 2018, 25(6), 560-569.
[http://dx.doi.org/10.2174/0929866525666180508120653] [PMID: 29745314]
[162]
Tang, S.; Zhang, R.; Jiang, F.; Wang, J.; Chen, M.; Peng, D.; Yan, J.; Bao, Y.; Hu, C.; Jia, W. An interaction between a FNDC5 variant and obesity modulates glucose metabolism in a Chinese Han population. PLoS One, 2014, 9(11), e109957.
[http://dx.doi.org/10.1371/journal.pone.0109957] [PMID: 25369206]
[163]
Cao, R.Y.; Zheng, H.; Redfearn, D.; Yang, J. FNDC5: A novel player in metabolism and metabolic syndrome. Biochimie, 2019, 158, 111-116.
[http://dx.doi.org/10.1016/j.biochi.2019.01.001] [PMID: 30611879]
[164]
Dehghani, M.; Kargarfard, M.; Rabiee, F.; Nasr-Esfahani, M.H.; Ghaedi, K. A comparative study on the effects of acute and chronic downhill running vs uphill running exercise on the RNA levels of the skeletal muscles PGC1-α, FNDC5 and the adipose UCP1 in BALB/c mice. Gene, 2018, 679, 369-376.
[http://dx.doi.org/10.1016/j.gene.2018.09.024] [PMID: 30218749]
[165]
Bakhshalizadeh, S.; Rabiee, F.; Shirazi, R.; Ghaedi, K.; Amidi, F.; Nasr-Esfahani, M.H. Assessment of PGC1α-FNDC5 axis in granulosa cells of PCOS Mouse Model. J. Reprod. Infertil., 2018, 19(2), 89-94.
[PMID: 30009142]
[166]
Pérez-Sotelo, D.; Roca-Rivada, A.; Baamonde, I.; Baltar, J.; Castro, A.I.; Domínguez, E.; Collado, M.; Casanueva, F.F.; Pardo, M. Lack of adipocyte-fndc5/irisin expression and secretion reduces thermogenesis and enhances adipogenesis. Sci. Rep., 2017, 7(1), 16289.
[http://dx.doi.org/10.1038/s41598-017-16602-z] [PMID: 29176631]
[167]
Ling, L.; Chen, D.; Tong, Y.; Zang, Y.H.; Ren, X.S.; Zhou, H.; Qi, X.H.; Chen, Q.; Li, Y.H.; Kang, Y.M.; Zhu, G.Q. Fibronectin type III domain containing 5 attenuates NLRP3 inflammasome activation and phenotypic transformation of adventitial fibroblasts in spontaneously hypertensive rats. J. Hypertens., 2018, 36(5), 1104-1114.
[http://dx.doi.org/10.1097/HJH.0000000000001654] [PMID: 29303830]
[168]
Li, M.; Yang, M.; Zhou, X.; Fang, X.; Hu, W.; Zhu, W.; Wang, C.; Liu, D.; Li, S.; Liu, H.; Yang, G.; Li, L. Elevated circulating levels of irisin and the effect of metformin treatment in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab., 2015, 100(4), 1485-1493.
[http://dx.doi.org/10.1210/jc.2014-2544] [PMID: 25675380]
[169]
Crujeiras, A.B.; Zulet, M.A.; Lopez-Legarrea, P.; de la Iglesia, R.; Pardo, M.; Carreira, M.C.; Martínez, J.A.; Casanueva, F.F. Association between circulating irisin levels and the promotion of insulin resistance during the weight maintenance period after a dietary weight-lowering program in obese patients. Metabolism, 2014, 63(4), 520-531.
[http://dx.doi.org/10.1016/j.metabol.2013.12.007] [PMID: 24439241]
[170]
Crujeiras, A.B.; Pardo, M.; Casanueva, F.F. Irisin: ‘fat’ or artefact. Clin. Endocrinol. (Oxf.), 2015, 82(4), 467-474.
[http://dx.doi.org/10.1111/cen.12627] [PMID: 25287317]
[171]
Huerta, A.E.; Prieto-Hontoria, P.L.; Fernández-Galilea, M.; Sáinz, N.; Cuervo, M.; Martínez, J.A.; Moreno-Aliaga, M.J. Circulating irisin and glucose metabolism in overweight/obese women: effects of α-lipoic acid and eicosapentaenoic acid. J. Physiol. Biochem., 2015, 71(3), 547-558.
[http://dx.doi.org/10.1007/s13105-015-0400-5] [PMID: 25820474]
[172]
Huh, J.H.; Ahn, S.V.; Choi, J.H.; Koh, S.B.; Chung, C.H. High Serum Irisin Level as an Independent Predictor of Diabetes Mellitus. Medicine (Baltimore), 2016, 95(23), e3742.
[http://dx.doi.org/10.1097/MD.0000000000003742] [PMID: 27281072]
[173]
Aslan, G.; Gül, H.F.; Tektemur, A.; Sahna, E. Miyokardiyal iskemi-reperfüzyon hasarında ardkoşullanmanın koruyuculuğunda melatoninin fizyolojik ve farmakolojik konsantrasyonlarının rolü. Anatol. J. Cardiol., 2020, 23(1), 19-27.
[PMID: 31911566]
[174]
Shim, Y.S.; Kang, M.J.; Yang, S.; Hwang, I.T. Irisin is a biomarker for metabolic syndrome in prepubertal children. Endocr. J., 2018, 65(1), 23-31.
[http://dx.doi.org/10.1507/endocrj.EJ17-0260] [PMID: 28904307]
[175]
van Marken Lichtenbelt, W.D.; Vanhommerig, J.W.; Smulders, N.M.; Drossaerts, J.M.A.F.L.; Kemerink, G.J.; Bouvy, N.D.; Schrauwen, P.; Teule, G.J.J. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med., 2009, 360(15), 1500-1508.
[http://dx.doi.org/10.1056/NEJMoa0808718] [PMID: 19357405]
[176]
Huh, J.Y.; Siopi, A.; Mougios, V.; Park, K.H.; Mantzoros, C.S. Irisin in response to exercise in humans with and without metabolic syndrome. J. Clin. Endocrinol. Metab., 2015, 100(3), E453-E457.
[http://dx.doi.org/10.1210/jc.2014-2416] [PMID: 25514098]
[177]
Luo, Y.; Qiao, X.; Ma, Y.; Deng, H.; Xu, C.C.; Xu, L. Disordered metabolism in mice lacking irisin. Sci. Rep., 2020, 10(1), 17368.
[http://dx.doi.org/10.1038/s41598-020-74588-7] [PMID: 33060792]
[178]
Qiu, S.; Cai, X.; Yin, H.; Zügel, M.; Sun, Z.; Steinacker, J.M.; Schumann, U. Association between circulating irisin and insulin resistance in non-diabetic adults: A meta-analysis. Metabolism, 2016, 65(6), 825-834.
[http://dx.doi.org/10.1016/j.metabol.2016.02.006] [PMID: 27173461]
[179]
Arhire, L.I.; Mihalache, L.; Covasa, M. Irisin: A hope in understanding and managing obesity and metabolic syndrome. Front. Endocrinol. (Lausanne), 2019, 10, 524.
[http://dx.doi.org/10.3389/fendo.2019.00524] [PMID: 31428053]
[180]
Ma, C.; Ding, H.; Deng, Y.; Liu, H.; Xiong, X.; Yang, Y. Irisin: A new code uncover the relationship of skeletal muscle and cardiovascular health during exercise. Front. Physiol., 2021, 12, 620608.
[http://dx.doi.org/10.3389/fphys.2021.620608] [PMID: 33597894]
[181]
Han, F.; Zhang, S.; Hou, N.; Wang, D.; Sun, X. Irisin improves endothelial function in obese mice through the AMPK-eNOS pathway. Am. J. Physiol. Heart Circ. Physiol., 2015, 309(9), H1501-H1508.
[http://dx.doi.org/10.1152/ajpheart.00443.2015] [PMID: 26371167]
[182]
Lu, J.; Xiang, G.; Liu, M.; Mei, W.; Xiang, L.; Dong, J. Irisin protects against endothelial injury and ameliorates atherosclerosis in apolipoprotein E-Null diabetic mice. Atherosclerosis, 2015, 243(2), 438-448.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.10.020]

© 2024 Bentham Science Publishers | Privacy Policy