Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Effects of Alkoxy Chain Length and 1-Hydroxy Group on Anticolorectal Cancer Activity of 2-Bromoalkoxyanthraquinones

Author(s): Nurhaliza Wati Mekzali, Cheok Wui Chee, Iskandar Abdullah*, Yean Kee Lee, Nurshamimi Nor Rashid, Vannajan Sanghiran Lee, Rozana Othman, Najihah Mohd Hashim and Chin Fei Chee*

Volume 19, Issue 9, 2023

Published on: 08 May, 2023

Page: [897 - 905] Pages: 9

DOI: 10.2174/1573406419666230410134213

Price: $65

Open Access Journals Promotions 2
Abstract

Background: KRAS and p53 are two of the most common genetic alterations associated with colorectal cancer. New drug development targeting these mutated genes in colorectal cancer may serve as a potential treatment avenue to the current regimen.

Objective: The objective of the present study was to investigate the effects of alkoxy chain length and 1-hydroxy group on anticolorectal cancer activity of a series of 2-bromoalkoxyanthraquinones and corroborate it with their in silico properties.

Methods: In vitro anticancer activity of 2-bromoalkoxyanthraquinones was evaluated against HCT116, HT29, and CCD841 CoN cell lines, respectively. Molecular docking was performed to understand the interactions of these compounds with putative p53 and KRAS targets (7B4N and 6P0Z).

Results: 2-Bromoalkoxyanthraquinones with the 1-hydroxy group were proven to be more active than the corresponding counterparts in anticancer activity. Among the tested compounds, compound 6b with a C3 alkoxy chain exhibited the most promising antiproliferation activity against HCT116 cells (IC50 = 3.83 ± 0.05 μM) and showed high selectivity for HCT116 over CCD841 CoN cells (SI = 45.47). The molecular docking reveals additional hydrogen bonds between the 1-hydroxy group of 6b and the proteins. Compound 6b has adequate lipophilicity (cLogP = 3.27) and ligand efficiency metrics (LE = 0.34; LLE = 2.15) close to the proposed acceptable range for an initial hit.

Conclusion: This work highlights the potential of the 1-hydroxy group and short alkoxy chain on anticolorectal cancer activity of 2-bromoalkoxyanthraquinones. Further optimisation may be warranted for compound 6b as a therapeutic agent against colorectal cancer.

Keywords: Alizarin, alkylation, antiproliferation, colorectal cancer, 2-hydroxyanthraquinone, in silico, side chain.

Graphical Abstract
[1]
Ghazali, A.K.; Musa, K.I.; Naing, N.N.; Mahmood, Z. Prognostic factors in patients with colorectal cancer at Hospital Universiti Sains Malaysia. Asian J. Surg., 2010, 33(3), 127-133.
[http://dx.doi.org/10.1016/S1015-9584(10)60022-X] [PMID: 21163410]
[2]
Lewandowska, A.; Rudzki, G.; Lewandowski, T.; Stryjkowska-Góra, A.; Rudzki, S. Risk factors for the diagnosis of colorectal cancer. Cancer Contr., 2022, 29, 10732748211056692.
[http://dx.doi.org/10.1177/10732748211056692] [PMID: 35000418]
[3]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[4]
Hasbullah, H.H.; Musa, M. Gene therapy targeting p53 and KRAS for colorectal cancer treatment: A myth or the way forward? Int. J. Mol. Sci., 2021, 22(21), 11941.
[http://dx.doi.org/10.3390/ijms222111941] [PMID: 34769370]
[5]
Huang, X.; Yang, Z.; Xie, Q.; Zhang, Z.; Zhang, H.; Ma, J. Natural products for treating colorectal cancer: A mechanistic review. Biomed. Pharmacother., 2019, 117, 109142.
[http://dx.doi.org/10.1016/j.biopha.2019.109142] [PMID: 31238258]
[6]
Li, Q.H.; Wang, Y.Z.; Tu, J.; Liu, C.W.; Yuan, Y.J.; Lin, R.; He, W.L.; Cai, S.R.; He, Y.L.; Ye, J.N. Anti-EGFR therapy in metastatic colorectal cancer: Mechanisms and potential regimens of drug resistance. Gastroenterol. Rep., 2020, 8(3), 179-191.
[http://dx.doi.org/10.1093/gastro/goaa026] [PMID: 32665850]
[7]
Hientz, K.; Mohr, A.; Bhakta-Guha, D.; Efferth, T. The role of p53 in cancer drug resistance and targeted chemotherapy. Oncotarget, 2017, 8(5), 8921-8946.
[http://dx.doi.org/10.18632/oncotarget.13475] [PMID: 27888811]
[8]
Chun, Y.S.; Passot, G.; Yamashita, S.; Nusrat, M.; Katsonis, P.; Loree, J.M.; Conrad, C.; Tzeng, C.W.D.; Xiao, L.; Aloia, T.A.; Eng, C.; Kopetz, S.E.; Lichtarge, O.; Vauthey, J.N. Deleterious effect of RAS and evolutionary high-risk TP53 double mutation in colorectal liver metastases. Ann. Surg., 2019, 269(5), 917-923.
[http://dx.doi.org/10.1097/SLA.0000000000002450] [PMID: 28767562]
[9]
Hussain, H.; Al-Harrasi, A.; Al-Rawahi, A.; Green, I.R.; Csuk, R.; Ahmed, I.; Shah, A.; Abbas, G.; Rehman, N.U.; Ullah, R. A fruitful decade from 2005 to 2014 for anthraquinone patents. Expert Opin. Ther. Pat., 2015, 25(9), 1053-1064.
[http://dx.doi.org/10.1517/13543776.2015.1050793] [PMID: 26036306]
[10]
Malik, E.M.; Müller, C.E. Anthraquinones as pharmacological tools and drugs. Med. Res. Rev., 2016, 36(4), 705-748.
[http://dx.doi.org/10.1002/med.21391] [PMID: 27111664]
[11]
Huang, Q.; Lu, G.; Shen, H.M.; Chung, M.C.M.; Ong, C.N. Anti-cancer properties of anthraquinones from rhubarb. Med. Res. Rev., 2007, 27(5), 609-630.
[http://dx.doi.org/10.1002/med.20094] [PMID: 17022020]
[12]
Su, Y.T.; Chang, H.L.; Shyue, S.K.; Hsu, S.L. Emodin induces apoptosis in human lung adenocarcinoma cells through a reactive oxygen species-dependent mitochondrial signaling pathway. Biochem. Pharmacol., 2005, 70(2), 229-241.
[http://dx.doi.org/10.1016/j.bcp.2005.04.026] [PMID: 15941563]
[13]
Srinivas, G.; Babykutty, S.; Sathiadevan, P.P.; Srinivas, P. Molecular mechanism of emodin action: Transition from laxative ingredient to an antitumor agent. Med. Res. Rev., 2007, 27(5), 591-608.
[http://dx.doi.org/10.1002/med.20095] [PMID: 17019678]
[14]
Shrimali, D.; Shanmugam, M.K.; Kumar, A.P.; Zhang, J.; Tan, B.K.H.; Ahn, K.S.; Sethi, G. Targeted abrogation of diverse signal transduction cascades by emodin for the treatment of inflammatory disorders and cancer. Cancer Lett., 2013, 341(2), 139-149.
[http://dx.doi.org/10.1016/j.canlet.2013.08.023] [PMID: 23962559]
[15]
Wang, W.; Bai, Z.; Zhang, F.; Wang, C.; Yuan, Y.; Shao, J. Synthesis and biological activity evaluation of emodin quaternary ammonium salt derivatives as potential anticancer agents. Eur. J. Med. Chem., 2012, 56, 320-331.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.051] [PMID: 22921966]
[16]
Shao, J.; Zhang, F.; Bai, Z.; Wang, C.; Yuan, Y.; Wang, W. Synthesis and antitumor activity of emodin quaternary ammonium salt derivatives. Eur. J. Med. Chem., 2012, 56, 308-319.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.047] [PMID: 22901410]
[17]
Tu, H.Y.; Huang, A.M.; Teng, C.H.; Hour, T.C.; Yang, S.C.; Pu, Y.S.; Lin, C.N. Anthraquinone derivatives induce G2/M cell cycle arrest and apoptosis in NTUB1 cells. Bioorg. Med. Chem., 2011, 19(18), 5670-5678.
[http://dx.doi.org/10.1016/j.bmc.2011.07.021] [PMID: 21852140]
[18]
Lin, K.W.; Lin, W.H.; Su, C.L.; Hsu, H.Y.; Lin, C.N. Design, synthesis and antitumour evaluation of novel anthraquinone derivatives. Bioorg. Chem., 2021, 107, 104395.
[http://dx.doi.org/10.1016/j.bioorg.2020.104395] [PMID: 33384144]
[19]
Wei, B.L.; Wu, S.H.; Chung, M.I.; Won, S.J.; Lin, C.N. Synthesis and cytotoxic effect of 1,3-dihydroxy-9,10-anthraquinone derivatives. Eur. J. Med. Chem., 2000, 35(12), 1089-1098.
[http://dx.doi.org/10.1016/S0223-5234(00)01190-9] [PMID: 11248407]
[20]
Teng, C.H.; Won, S.J.; Lin, C.N. Design, synthesis and cytotoxic effect of hydroxy- and 3-alkylaminopropoxy-9,10-anthraquinone derivatives. Bioorg. Med. Chem., 2005, 13(10), 3439-3445.
[http://dx.doi.org/10.1016/j.bmc.2005.03.001] [PMID: 15848756]
[21]
Yang, X.; Zhao, W.; Hu, X.; Hao, X.; Hong, F.; Wang, J.; Xiang, L.; Zhu, Y.; Yuan, Y.; Ho, R.J.Y.; Wang, W.; Shao, J. Synthesis, characterization, and anticancer activity of novel lipophilic emodin cationic derivatives. Chem. Biol. Drug Des., 2015, 86(6), 1451-1457.
[http://dx.doi.org/10.1111/cbdd.12612] [PMID: 26108260]
[22]
Yao, G.; Ye, M.; Dai, W.; Pan, Y.; Ouyang, X.; Wang, H. Synthesis, cytotoxicity, DNA binding, and apoptosis of alizarin 2-O-Side-chain derivatives. Chem. Nat. Compd., 2014, 50(2), 242-246.
[http://dx.doi.org/10.1007/s10600-014-0922-z]
[23]
Chee, C.W.; Zamakshshari, N.H.; Lee, V.S.; Abdullah, I.; Othman, R.; Lee, Y.K.; Mohd, H.N.; Nor, R.N. Morindone from morinda citrifolia as a potential antiproliferative agent against colorectal cancer cell lines. PLoS One, 2022, 17(7), e0270970.
[http://dx.doi.org/10.1371/journal.pone.0270970] [PMID: 35819953]
[24]
Frayère, C.; Galindo, C.; Divay, L.; Paté, M.; Le Barny, P. Covalent chemical modification of single-walled carbon nanotubes using azide functionalised anthraquinone derivatives for pseudocapacitor application. Proc. MRS, 2013, 1549(1), 111-116.
[http://dx.doi.org/10.1557/opl.2013.965]
[25]
Wang, T.C.; Zhao, Y.L.; Liou, S.S. Synthesis and cytotoxic evaluation of potential bis-intercalators: Tetramethylenebis(oxy)- and Hexamethylenebis(oxy)-Linked assemblies consisting of flavone, xanthone, anthraquinone, and dibenzofuran. Helv. Chim. Acta, 2002, 85(5), 1382-1389.
[http://dx.doi.org/10.1002/1522-2675(200205)85:5<1382:AID-HLCA1382>3.0.CO;2-Y]
[26]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2009, 31(2), NA.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[27]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[28]
Hopkins, A.L.; Keserü, G.M.; Leeson, P.D.; Rees, D.C.; Reynolds, C.H. The role of ligand efficiency metrics in drug discovery. Nat. Rev. Drug Discov., 2014, 13(2), 105-121.
[http://dx.doi.org/10.1038/nrd4163] [PMID: 24481311]
[29]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[30]
Ritchie, T.J.; Macdonald, S.J.F. The impact of aromatic ring count on compound developability - are too many aromatic rings a liability in drug design? Drug Discov. Today, 2009, 14(21-22), 1011-1020.
[http://dx.doi.org/10.1016/j.drudis.2009.07.014] [PMID: 19729075]
[31]
Tian, S.; Li, Y.; Wang, J.; Zhang, J.; Hou, T. ADME evaluation in drug discovery. 9. Prediction of oral bioavailability in humans based on molecular properties and structural fingerprints. Mol. Pharm., 2011, 8(3), 841-851.
[http://dx.doi.org/10.1021/mp100444g] [PMID: 21548635]
[32]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]
[33]
Leeson, P.D.; Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat. Rev. Drug Discov., 2007, 6(11), 881-890.
[http://dx.doi.org/10.1038/nrd2445] [PMID: 17971784]
[34]
Waring, M.J.; Arrowsmith, J.; Leach, A.R.; Leeson, P.D.; Mandrell, S.; Owen, R.M.; Pairaudeau, G.; Pennie, W.D.; Pickett, S.D.; Wang, J.; Wallace, O.; Weir, A. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat. Rev. Drug Discov., 2015, 14(7), 475-486.
[http://dx.doi.org/10.1038/nrd4609] [PMID: 26091267]
[35]
Arnott, J.A.; Planey, S.L. The influence of lipophilicity in drug discovery and design. Expert Opin. Drug Discov., 2012, 7(10), 863-875.
[http://dx.doi.org/10.1517/17460441.2012.714363] [PMID: 22992175]
[36]
Hopkins, A.L.; Groom, C.R.; Alex, A. Ligand efficiency: A useful metric for lead selection. Drug Discov. Today, 2004, 9(10), 430-431.
[http://dx.doi.org/10.1016/S1359-6446(04)03069-7] [PMID: 15109945]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy