Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Application of Nucleic Acid Nanomaterials in the Treatment of Endocrine and Metabolic Diseases

Author(s): Qiang Zhu, Yuping Xie, Ting Fu, Chengji Shi, Long Bai, Lin Liu* and Jingang Xiao*

Volume 24, Issue 5, 2023

Published on: 12 May, 2023

Page: [385 - 392] Pages: 8

DOI: 10.2174/1389200224666230410111015

Price: $65

Open Access Journals Promotions 2
Abstract

Endocrine and metabolic diseases are the most prevalent chronic diseases globally, posing the greatest hazard to human health. Although various medications are applied in treating endocrine and metabolic illnesses, numerous obstacles exist to overcome. Nucleic acid nanomaterials are novel materials synthesized and engineered in the laboratory. In this case, Nucleic acids are employed as non-biological nanomaterials instead of serving as carriers of genetic information in live cells. Because of their high biocompatibility and editability, nucleic acid nanomaterials were frequently employed in disease diagnosis and therapy. In this review, recent developments and new viewpoints on nucleic acid nanomaterials are highlighted in the fields of diabetes mellitus and other endocrine and metabolic diseases.

Keywords: Nucleic acid, diabetes mellitus, osteoporosis, obesity, therapy, metabolic diseases.

Graphical Abstract
[1]
Afshin, A.; Forouzanfar, M.H.; Reitsma, M.B.; Sur, P.; Estep, K.; Lee, A.; Marczak, L.; Mokdad, A.H.; Moradi-Lakeh, M.; Naghavi, M.; Salama, J.S.; Vos, T.; Abate, K.H.; Abbafati, C.; Ahmed, M.B.; Al-Aly, Z.; Alkerwi, A.; Al-Raddadi, R.; Amare, A.T.; Amberbir, A.; Amegah, A.K.; Amini, E.; Amrock, S.M.; Anjana, R.M.; Ärnlöv, J.; Asayesh, H.; Banerjee, A.; Barac, A.; Baye, E.; Bennett, D.A.; Beyene, A.S.; Biadgilign, S.; Biryukov, S.; Bjertness, E.; Boneya, D.J.; Campos-Nonato, I.; Carrero, J.J.; Cecilio, P.; Cercy, K.; Ciobanu, L.G.; Cornaby, L.; Damtew, S.A.; Dandona, L.; Dandona, R.; Dharmaratne, S.D.; Duncan, B.B.; Eshrati, B.; Esteghamati, A.; Feigin, V.L.; Fernandes, J.C.; Fürst, T.; Gebrehiwot, T.T.; Gold, A.; Gona, P.N.; Goto, A.; Habtewold, T.D.; Hadush, K.T.; Hafezi-Nejad, N.; Hay, S.I.; Horino, M.; Islami, F.; Kamal, R.; Kasaeian, A.; Katikireddi, S.V.; Kengne, A.P.; Kesavachandran, C.N.; Khader, Y.S.; Khang, Y.H.; Khubchandani, J.; Kim, D.; Kim, Y.J.; Kinfu, Y.; Kosen, S.; Ku, T.; Defo, B.K.; Kumar, G.A.; Larson, H.J.; Leinsalu, M.; Liang, X.; Lim, S.S.; Liu, P.; Lopez, A.D.; Lozano, R.; Majeed, A.; Malekzadeh, R.; Malta, D.C.; Mazidi, M.; McAlinden, C.; McGarvey, S.T.; Mengistu, D.T.; Mensah, G.A.; Mensink, G.B.M.; Mezgebe, H.B.; Mirrakhimov, E.M.; Mueller, U.O.; Noubiap, J.J.; Obermeyer, C.M.; Ogbo, F.A.; Owolabi, M.O.; Patton, G.C.; Pourmalek, F.; Qorbani, M.; Rafay, A.; Rai, R.K.; Ranabhat, C.L.; Reinig, N.; Safiri, S.; Salomon, J.A.; Sanabria, J.R.; Santos, I.S.; Sartorius, B.; Sawhney, M.; Schmidhuber, J.; Schutte, A.E.; Schmidt, M.I.; Sepanlou, S.G.; Shamsizadeh, M.; Sheikhbahaei, S.; Shin, M.J.; Shiri, R.; Shiue, I.; Roba, H.S.; Silva, D.A.S.; Silverberg, J.I.; Singh, J.A.; Stranges, S.; Swaminathan, S.; Tabarés-Seisdedos, R.; Tadese, F.; Tedla, B.A.; Tegegne, B.S.; Terkawi, A.S.; Thakur, J.S.; Tonelli, M.; Topor-Madry, R.; Tyrovolas, S.; Ukwaja, K.N.; Uthman, O.A.; Vaezghasemi, M.; Vasankari, T.; Vlassov, V.V.; Vollset, S.E.; Weiderpass, E.; Werdecker, A.; Wesana, J.; Westerman, R.; Yano, Y.; Yonemoto, N.; Yonga, G.; Zaidi, Z.; Zenebe, Z.M.; Zipkin, B.; Murray, C.J.L. Health effects of overweight and obesity in 195 countries over 25 years. N. Engl. J. Med., 2017, 377(1), 13-27.
[http://dx.doi.org/10.1056/NEJMoa1614362] [PMID: 28604169]
[2]
DiMeglio, L.A.; Evans-Molina, C.; Oram, R.A. Type 1 diabetes. Lancet, 2018, 391(10138), 2449-2462.
[http://dx.doi.org/10.1016/S0140-6736(18)31320-5] [PMID: 29916386]
[3]
Kahn, S.E.; Cooper, M.E.; Del Prato, S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet, 2014, 383(9922), 1068-1083.
[http://dx.doi.org/10.1016/S0140-6736(13)62154-6] [PMID: 24315620]
[4]
Ensrud, K.E.; Crandall, C. J. Osteoporosis. Ann. Intern. Med., 2017, 167(3), ITC17-ITC32.
[http://dx.doi.org/10.7326/AITC201708010] [PMID: 28761958]
[5]
Caballero, B. Humans against Obesity: Who Will Win? Adv. Nutr., 2019, 10(Suppl. 1), S4-S9.
[http://dx.doi.org/10.1093/advances/nmy055] [PMID: 30721956]
[6]
Kassi, E.; Pervanidou, P.; Kaltsas, G.; Chrousos, G. Metabolic syndrome definitions and controversies. BMC Med., 2011, 9, 48.
[http://dx.doi.org/10.1186/1741-7015-9-48] [PMID: 21542944]
[7]
Persaud, S.J.; Bowe, J.E. Editorial overview: Endocrine and metabolic diseases Druggable diabetes: identification of therapeutic opportunities. Curr. Opin. Pharmacol., 2018, 43, iii-v.
[http://dx.doi.org/10.1016/j.coph.2018.10.002] [PMID: 30446351]
[8]
Bewick, G.A. Editorial overview: Endocrine and metabolic diseases: Busting BMI: new strategies for the treatment of obesity and metabolic disease. Curr. Opin. Pharmacol., 2017, 37, ix-xii.
[http://dx.doi.org/10.1016/j.coph.2017.11.012] [PMID: 29224800]
[9]
Xu, W.; He, W.; Du, Z.; Zhu, L.; Huang, K.; Lu, Y.; Luo, Y. Functional nucleic acid nanomaterials: development, properties, and applications. Angew. Chem. Int. Ed., 2021, 60(13), 6890-6918.
[http://dx.doi.org/10.1002/anie.201909927] [PMID: 31729826]
[10]
Sefah, K.; Shangguan, D.; Xiong, X.; O’Donoghue, M.B.; Tan, W. Development of DNA aptamers using Cell-SELEX. Nat. Protoc., 2010, 5(6), 1169-1185.
[http://dx.doi.org/10.1038/nprot.2010.66] [PMID: 20539292]
[11]
Douglas, S.M.; Marblestone, A.H.; Teerapittayanon, S.; Vazquez, A.; Church, G.M.; Shih, W.M. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res., 2009, 37(15), 5001-5006.
[http://dx.doi.org/10.1093/nar/gkp436] [PMID: 19531737]
[12]
Zhang, T.; Cui, W.; Tian, T.; Shi, S.; Lin, Y. Progress in biomedical applications of tetrahedral framework nucleic acid-based functional systems. ACS Appl. Mater. Interfaces, 2020, 12(42), 47115-47126.
[http://dx.doi.org/10.1021/acsami.0c13806] [PMID: 32975109]
[13]
Lin, C.; Xing, Wang S.R.; Liu, Y.; Seeman, N.C.; Yan, H. In vivo cloning of artificial DNA nanostructures. Proc. Natl. Acad. Sci. USA, 2008, 105(46), 17626-17631.
[http://dx.doi.org/10.1073/pnas.0805416105] [PMID: 18927233]
[14]
Zhang, C.; He, Y.; Zhao, X.; Fang, P.; Ribbe, A.E.; Jiang, W.; Mao, C. Conformational flexibility facilitates self-assembly of complex DNA nanostructures. Proc. Natl. Acad. Sci. USA, 2008, 105(31), 10665-10669.
[http://dx.doi.org/10.1073/pnas.0803841105] [PMID: 18667705]
[15]
Zhang, T.; Tian, T.; Zhou, R.; Li, S.; Ma, W.; Zhang, Y.; Liu, N.; Shi, S.; Li, Q.; Xie, X.; Ge, Y.; Liu, M.; Zhang, Q.; Lin, S.; Cai, X.; Lin, Y. Design, fabrication and applications of tetrahedral DNA nanostructure-based multifunctional complexes in drug delivery and biomedical treatment. Nat. Protoc., 2020, 15(8), 2728-2757.
[http://dx.doi.org/10.1038/s41596-020-0355-z] [PMID: 32669637]
[16]
Liu, Y.; Sun, Y.; Li, S.; Liu, M.; Qin, X.; Chen, X.; Lin, Y. Tetrahedral framework nucleic acids deliver antimicrobial peptides with improved effects and less susceptibility to bacterial degradation. Nano Lett., 2020, 20(5), 3602-3610.
[http://dx.doi.org/10.1021/acs.nanolett.0c00529] [PMID: 32272018]
[17]
Mou, Q.; Ma, Y.; Ding, F.; Gao, X.; Yan, D.; Zhu, X.; Zhang, C. Two-in-one chemogene assembled from drug-integrated antisense oligonucleotides to reverse chemoresistance. J. Am. Chem. Soc., 2019, 141(17), 6955-6966.
[http://dx.doi.org/10.1021/jacs.8b13875] [PMID: 30964284]
[18]
Tan, X.; Lu, X.; Jia, F.; Liu, X.; Sun, Y.; Logan, J.K.; Zhang, K. Blurring the role of oligonucleotides: Spherical nucleic acids as a drug delivery vehicle. J. Am. Chem. Soc., 2016, 138(34), 10834-10837.
[http://dx.doi.org/10.1021/jacs.6b07554] [PMID: 27522867]
[19]
Alterman, J.F.; Godinho, B.M.D.C.; Hassler, M.R.; Ferguson, C.M.; Echeverria, D.; Sapp, E.; Haraszti, R.A.; Coles, A.H.; Conroy, F.; Miller, R.; Roux, L.; Yan, P.; Knox, E.G.; Turanov, A.A.; King, R.M.; Gernoux, G.; Mueller, C.; Gray-Edwards, H.L.; Moser, R.P.; Bishop, N.C.; Jaber, S.M.; Gounis, M.J.; Sena-Esteves, M.; Pai, A.A.; DiFiglia, M.; Aronin, N.; Khvorova, A. A divalent siRNA chemical scaffold for potent and sustained modulation of gene expression throughout the central nervous system. Nat. Biotechnol., 2019, 37(8), 884-894.
[http://dx.doi.org/10.1038/s41587-019-0205-0] [PMID: 31375812]
[20]
Vasher, M.K.; Yamankurt, G.; Mirkin, C.A. Hairpin-like siRNA-based spherical nucleic acids. J. Am. Chem. Soc., 2022, 144(7), 3174-3181.
[http://dx.doi.org/10.1021/jacs.1c12750] [PMID: 35143189]
[21]
Li, C.; Samulski, R.J. Engineering adeno-associated virus vectors for gene therapy. Nat. Rev. Genet., 2020, 21(4), 255-272.
[http://dx.doi.org/10.1038/s41576-019-0205-4] [PMID: 32042148]
[22]
Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev., 2013, 65(1), 36-48.
[http://dx.doi.org/10.1016/j.addr.2012.09.037] [PMID: 23036225]
[23]
Gao, Y.; Chen, X.; Tian, T.; Zhang, T.; Gao, S.; Zhang, X.; Yao, Y.; Lin, Y.; Cai, X. A lysosome‐activated tetrahedral nanobox for encapsulated siRNA delivery. Adv. Mater., 2022, 34(46), 2201731.
[http://dx.doi.org/10.1002/adma.202201731] [PMID: 35511782]
[24]
Chen, S.; Sbuh, N.; Veedu, R.N. Antisense oligonucleotides as potential therapeutics for type 2 diabetes. Nucleic Acid Ther., 2021, 31(1), 39-57.
[http://dx.doi.org/10.1089/nat.2020.0891] [PMID: 33026966]
[25]
Yang, J.; Bowser, M.T. Capillary electrophoresis-SELEX selection of catalytic DNA aptamers for a small-molecule porphyrin target. Anal. Chem., 2013, 85(3), 1525-1530.
[http://dx.doi.org/10.1021/ac302721j] [PMID: 23234289]
[26]
Bunka, D.H.J.; Stockley, P.G. Aptamers come of age-at last. Nat. Rev. Microbiol., 2006, 4(8), 588-596.
[http://dx.doi.org/10.1038/nrmicro1458] [PMID: 16845429]
[27]
Gupta, S.; Drolet, D.W.; Wolk, S.K.; Waugh, S.M.; Rohloff, J.C.; Carter, J.D.; Mayfield, W.S.; Otis, M.R.; Fowler, C.R.; Suzuki, T.; Hirota, M.; Ishikawa, Y.; Schneider, D.J.; Janjic, N. Pharmacokinetic properties of DNA aptamers with base modifications. Nucleic Acid Ther., 2017, 27(6), 345-353.
[http://dx.doi.org/10.1089/nat.2017.0683] [PMID: 28961063]
[28]
Zhan, Y.; Ma, W.; Zhang, Y.; Mao, C.; Shao, X.; Xie, X.; Lin, Y. Diversity of DNA nanostructures and applications in oncotherapy. Biotechnol. J., 2020, 15(1), 1900094.
[http://dx.doi.org/10.1002/biot.201900094] [PMID: 31464361]
[29]
Ng, E.W.M.; Shima, D.T.; Calias, P.; Cunningham, E.T., Jr; Guyer, D.R.; Adamis, A.P. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat. Rev. Drug Discov., 2006, 5(2), 123-132.
[http://dx.doi.org/10.1038/nrd1955] [PMID: 16518379]
[30]
Hu, J.; Ye, M.; Zhou, Z. Aptamers: novel diagnostic and therapeutic tools for diabetes mellitus and metabolic diseases. J. Mol. Med., 2017, 95(3), 249-256.
[http://dx.doi.org/10.1007/s00109-016-1485-1] [PMID: 27847965]
[31]
He, Y.; Ye, T.; Su, M.; Zhang, C.; Ribbe, A.E.; Jiang, W.; Mao, C. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature, 2008, 452(7184), 198-201.
[http://dx.doi.org/10.1038/nature06597] [PMID: 18337818]
[32]
Zhang, M.; Zhang, X.; Tian, T.; Zhang, Q.; Wen, Y.; Zhu, J.; Xiao, D.; Cui, W.; Lin, Y. Anti-inflammatory activity of curcumin-loaded tetrahedral framework nucleic acids on acute gouty arthritis. Bioact. Mater., 2022, 8, 368-380.
[http://dx.doi.org/10.1016/j.bioactmat.2021.06.003] [PMID: 34541407]
[33]
Zhang, Q.; Jiang, Q.; Li, N.; Dai, L.; Liu, Q.; Song, L.; Wang, J.; Li, Y.; Tian, J.; Ding, B.; Du, Y. DNA origami as an in vivo drug delivery vehicle for cancer therapy. ACS Nano, 2014, 7, 6633-6643.
[http://dx.doi.org/10.1021/nn502058j] [PMID: 24963790]
[34]
Qin, X.; Xiao, L.; Li, N.; Hou, C.; Li, W.; Li, J.; Yan, N.; Lin, Y. Tetrahedral framework nucleic acids-based delivery of microRNA-155 inhibits choroidal neovascularization by regulating the polarization of macrophages. Bioact. Mater., 2022, 14, 134-144.
[http://dx.doi.org/10.1016/j.bioactmat.2021.11.031] [PMID: 35310341]
[35]
Xie, X.; Shao, X.; Ma, W.; Zhao, D.; Shi, S.; Li, Q.; Lin, Y. Overcoming drug-resistant lung cancer by paclitaxel loaded tetrahedral DNA nanostructures. Nanoscale, 2018, 10(12), 5457-5465.
[http://dx.doi.org/10.1039/C7NR09692E] [PMID: 29484330]
[36]
Li, S.; Tian, T.; Zhang, T.; Cai, X.; Lin, Y. Advances in biological applications of self-assembled DNA tetrahedral nanostructures. Mater. Today, 2019, 24, 57-68.
[http://dx.doi.org/10.1016/j.mattod.2018.08.002]
[37]
Zhang, T.; Tian, T.; Lin, Y. Functionalizing framework nucleic‐acid‐based nanostructures for biomedical application. Adv. Mater., 2022, 34(46), 2107820.
[http://dx.doi.org/10.1002/adma.202107820] [PMID: 34787933]
[38]
Stopar, A.; Coral, L.; Di Giacomo, S.; Adedeji, A.F.; Castronovo, M. Binary control of enzymatic cleavage of DNA origami by structural antideterminants. Nucleic Acids Res., 2018, 46(2), 995-1006.
[http://dx.doi.org/10.1093/nar/gkx1204] [PMID: 29216375]
[39]
Zagorovsky, K.; Chou, L.Y.T.; Chan, W.C.W. Controlling DNA–nanoparticle serum interactions. Proc. Natl. Acad. Sci. USA, 2016, 113(48), 13600-13605.
[http://dx.doi.org/10.1073/pnas.1610028113] [PMID: 27856755]
[40]
Li, J.; Pei, H.; Zhu, B.; Liang, L.; Wei, M.; He, Y.; Chen, N.; Li, D.; Huang, Q.; Fan, C. Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. ACS Nano, 2011, 5(11), 8783-8789.
[http://dx.doi.org/10.1021/nn202774x] [PMID: 21988181]
[41]
Ma, W.; Yang, Y.; Zhu, J.; Jia, W.; Zhang, T.; Liu, Z.; Chen, X.; Lin, Y. Biomimetic nanoerythrosome‐coated aptamer–DNA tetrahedron/maytansine conjugates: pH‐responsive and targeted cytotoxicity for HER2‐positive breast cancer. Adv. Mater., 2022, 34(46), 2109609.
[http://dx.doi.org/10.1002/adma.202109609] [PMID: 35064993]
[42]
Li, J.; Lai, Y.; Li, M.; Chen, X.; Zhou, M.; Wang, W.; Li, J.; Cui, W.; Zhang, G.; Wang, K.; Liu, L.; Lin, Y. Repair of infected bone defect with Clindamycin-Tetrahedral DNA nanostructure Complex-loaded 3D bioprinted hybrid scaffold. Chem. Eng. J., 2022, 435, 134855.
[http://dx.doi.org/10.1016/j.cej.2022.134855]
[43]
Zhang, B.; Tian, T.; Xiao, D.; Gao, S.; Cai, X.; Lin, Y. Facilitating in situ tumor imaging with a tetrahedral DNA framework‐enhanced hybridization chain reaction probe. Adv. Funct. Mater., 2022, 32(16), 2109728.
[http://dx.doi.org/10.1002/adfm.202109728]
[44]
Wang, Y.; Li, Y.; Gao, S.; Yu, X.; Chen, Y.; Lin, Y. Tetrahedral framework nucleic acids can alleviate taurocholate-induced severe acute pancreatitis and its subsequent multiorgan injury in mice. Nano Lett., 2022, 22(4), 1759-1768.
[http://dx.doi.org/10.1021/acs.nanolett.1c05003] [PMID: 35138113]
[45]
Zhu, J.; Yang, Y.; Ma, W.; Wang, Y.; Chen, L.; Xiong, H.; Yin, C.; He, Z.; Fu, W.; Xu, R.; Lin, Y. Antiepilepticus effects of tetrahedral framework nucleic acid via inhibition of gliosis-induced downregulation of glutamine synthetase and increased AMPAR internalization in the postsynaptic membrane. Nano Lett., 2022, 22(6), 2381-2390.
[http://dx.doi.org/10.1021/acs.nanolett.2c00025] [PMID: 35266400]
[46]
Chen, X.; Cui, W.; Liu, Z.; Ma, W.; Yang, X.; Tian, T.; Yang, Y.; Xie, Y.; Liu, Y.; Lin, Y. Positive neuroplastic effect of DNA framework nucleic acids on neuropsychiatric diseases. ACS Materials Letters, 2022, 4(4), 665-674.
[http://dx.doi.org/10.1021/acsmaterialslett.2c00021]
[47]
Li, J.; Yao, Y.; Wang, Y.; Xu, J.; Zhao, D.; Liu, M.; Shi, S.; Lin, Y. Modulation of the crosstalk between schwann cells and macrophages for nerve regeneration: A therapeutic strategy based on a multifunctional tetrahedral framework nucleic acids system. Adv. Mater., 2022, 34(46), 2202513.
[http://dx.doi.org/10.1002/adma.202202513] [PMID: 35483031]
[48]
Fu, W.; Ma, L.; Ju, Y.; Xu, J.; Li, H.; Shi, S.; Zhang, T.; Zhou, R.; Zhu, J.; Xu, R.; You, C.; Lin, Y. Therapeutic siCCR2 loaded by tetrahedral framework DNA nanorobotics in therapy for intracranial hemorrhage. Adv. Funct. Mater., 2021, 31(33), 2101435.
[http://dx.doi.org/10.1002/adfm.202101435]
[49]
Chen, Y.; Shi, S.; Li, B.; Lan, T.; Yuan, K.; Yuan, J.; Zhou, Y.; Song, J.; Lv, T.; Shi, Y.; Xiang, B.; Tian, T.; Zhang, T.; Yang, J.; Lin, Y. Therapeutic effects of self-assembled tetrahedral framework nucleic acids on liver regeneration in acute liver failure. ACS Appl. Mater. Interfaces, 2022, 14(11), 13136-13146.
[http://dx.doi.org/10.1021/acsami.2c02523] [PMID: 35285610]
[50]
Jiang, Y.; Li, S.; Zhang, T.; Zhang, M.; Chen, Y.; Wu, Y.; Liu, Y.; Liu, Z.; Lin, Y. Tetrahedral framework nucleic acids inhibit skin fibrosis via the pyroptosis pathway. ACS Appl. Mater. Interfaces, 2022, 14(13), 15069-15079.
[http://dx.doi.org/10.1021/acsami.2c02877] [PMID: 35319864]
[51]
Chen, R.; Wen, D.; Fu, W.; Xing, L.; Ma, L.; Liu, Y.; Li, H.; You, C.; Lin, Y. Treatment effect of DNA framework nucleic acids on diffuse microvascular endothelial cell injury after subarachnoid hemorrhage. Cell Prolif., 2022, 55(4), e13206.
[http://dx.doi.org/10.1111/cpr.13206] [PMID: 35187748]
[52]
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care, 2013, 36(Suppl. 1), S67-S74.
[http://dx.doi.org/10.2337/dc13-S067] [PMID: 23264425]
[53]
Li, Y.; Tang, Y.; Shi, S.; Gao, S.; Wang, Y.; Xiao, D.; Chen, T.; He, Q.; Zhang, J.; Lin, Y. Tetrahedral framework nucleic acids ameliorate insulin resistance in type 2 diabetes mellitus via the PI3K/Akt pathway. ACS Appl. Mater. Interfaces, 2021, 13(34), 40354-40364.
[http://dx.doi.org/10.1021/acsami.1c11468] [PMID: 34410099]
[54]
Gao, S.; Li, Y.; Xiao, D.; Zhou, M.; Cai, X.; Lin, Y. Tetrahedral framework nucleic acids induce immune tolerance and prevent the onset of type 1 diabetes. Nano Lett., 2021, 21(10), 4437-4446.
[http://dx.doi.org/10.1021/acs.nanolett.1c01131] [PMID: 33955221]
[55]
Li, Y.; Gao, S.; Shi, S.; Xiao, D.; Peng, S.; Gao, Y.; Zhu, Y.; Lin, Y. Tetrahedral framework nucleic acid-based delivery of resveratrol alleviates insulin resistance: From innate to adaptive immunity. Nano-Micro Lett., 2021, 13(1), 86.
[http://dx.doi.org/ 10.1007/s40820-021-00614-6] [PMID: 34138319]
[56]
Matthews, D.R.; Paldánius, P.M.; Proot, P.; Chiang, Y.; Stumvoll, M.; Del Prato, S. Glycaemic durability of an early combination therapy with vildagliptin and metformin versus sequential metformin monotherapy in newly diagnosed type 2 diabetes (VERIFY): a 5-year, multicentre, randomised, double-blind trial. Lancet, 2019, 394(10208), 1519-1529.
[http://dx.doi.org/10.1016/S0140-6736(19)32131-2] [PMID: 31542292]
[57]
Baig, M.M.F.A.; Khan, S.; Naeem, M.A.; Khan, G.J.; Ansari, M.T. Vildagliptin loaded triangular DNA nanospheres coated with eudragit for oral delivery and better glycemic control in type 2 diabetes mellitus. Biomed. Pharmacother., 2018, 97, 1250-1258.
[http://dx.doi.org/10.1016/j.biopha.2017.11.059] [PMID: 29145151]
[58]
Baig, M.M.F.A.; Abbas, M.; Naveed, M.; Kassim, S.A.; Khan, G.J.; Sohail, M.; Ullah, S.; Hasnat, M.; Shah, K.; Ansari, M.T. Design, synthesis and evaluation of DNA nano-cubes as a core material protected by the alginate coating for oral administration of anti-diabetic drug. J Food Drug Anal, 2019, 27(3), 805-814.
[http://dx.doi.org/10.1016/j.jfda.2019.03.004] [PMID: 31324296]
[59]
Baig, M.M.F.A.; Naveed, M.; Abbas, M.; Chunxia, W.; Ullah, S.; Hasnat, M.; Shad, A.; Sohail, M.; Khan, G.J.; Ansari, M.T. DNA scaffold nanoparticles coated with HPMC/EC for oral delivery. Int. J. Pharm., 2019, 562, 321-332.
[http://dx.doi.org/10.1016/j.ijpharm.2019.03.054] [PMID: 30928213]
[60]
Kang, Y.S.; Lee, M.H.; Song, H.K.; Ko, G.J.; Kwon, O.S.; Lim, T.K.; Kim, S.H.; Han, S.Y.; Han, K.H.; Lee, J.E.; Han, J.Y.; Kim, H.K.; Cha, D.R. CCR2 antagonism improves insulin resistance, lipid metabolism, and diabetic nephropathy in type 2 diabetic mice. Kidney Int., 2010, 78(9), 883-894.
[http://dx.doi.org/10.1038/ki.2010.263] [PMID: 20686445]
[61]
Menne, J.; Eulberg, D.; Beyer, D.; Baumann, M.; Saudek, F.; Valkusz, Z. Więcek, A.; Haller, H. C-C motif-ligand 2 inhibition with emapticap pegol (NOX-E36) in type 2 diabetic patients with albuminuria. Nephrol. Dial. Transplant., 2016, 32(2), 307-315.
[http://dx.doi.org/10.1093/ndt/gfv459] [PMID: 28186566]
[62]
Vater, A.; Sell, S.; Kaczmarek, P.; Maasch, C.; Buchner, K.; Pruszynska-Oszmalek, E.; Kolodziejski, P.; Purschke, W.G.; Nowak, K.W.; Strowski, M.Z.; Klussmann, S. A mixed mirror-image DNA/RNA aptamer inhibits glucagon and acutely improves glucose tolerance in models of type 1 and type 2 diabetes. J. Biol. Chem., 2013, 288(29), 21136-21147.
[http://dx.doi.org/10.1074/jbc.M112.444414] [PMID: 23744070]
[63]
Salhotra, A.; Shah, H.N.; Levi, B.; Longaker, M.T. Mechanisms of bone development and repair. Nat. Rev. Mol. Cell Biol., 2020, 21(11), 696-711.
[http://dx.doi.org/10.1038/s41580-020-00279-w] [PMID: 32901139]
[64]
Basu, S.; Pacelli, S.; Paul, A. Self-healing DNA-based injectable hydrogels with reversible covalent linkages for controlled drug delivery. Acta Biomater., 2020, 105, 159-169.
[http://dx.doi.org/10.1016/j.actbio.2020.01.021] [PMID: 31972367]
[65]
Gačanin, J.; Kovtun, A.; Fischer, S.; Schwager, V.; Quambusch, J.; Kuan, S.L.; Liu, W.; Boldt, F.; Li, C.; Yang, Z.; Liu, D.; Wu, Y.; Weil, T.; Barth, H.; Ignatius, A. Spatiotemporally controlled release of Rho-inhibiting C3 toxin from a protein-DNA hybrid hydrogel for targeted inhibition of osteoclast formation and activity. Adv. Healthc. Mater., 2017, 6(21), 1700392.
[http://dx.doi.org/10.1002/adhm.201700392] [PMID: 28758712]
[66]
Basu, S.; Pacelli, S.; Feng, Y.; Lu, Q.; Wang, J.; Paul, A. Harnessing the noncovalent interactions of DNA backbone with 2D silicate nanodisks to fabricate injectable therapeutic hydrogels. ACS Nano, 2018, 12(10), 9866-9880.
[http://dx.doi.org/10.1021/acsnano.8b02434] [PMID: 30189128]
[67]
Liang, C.; Guo, B.; Wu, H.; Shao, N.; Li, D.; Liu, J.; Dang, L.; Wang, C.; Li, H.; Li, S.; Lau, W.K.; Cao, Y.; Yang, Z.; Lu, C.; He, X.; Au, D.W.T.; Pan, X.; Zhang, B.T.; Lu, C.; Zhang, H.; Yue, K.; Qian, A.; Shang, P.; Xu, J.; Xiao, L.; Bian, Z.; Tan, W.; Liang, Z.; He, F.; Zhang, L.; Lu, A.; Zhang, G. Aptamer-functionalized lipid nanoparticles targeting osteoblasts as a novel RNA interference–based bone anabolic strategy. Nat. Med., 2015, 21(3), 288-294.
[http://dx.doi.org/10.1038/nm.3791] [PMID: 25665179]
[68]
Ren, M.; Li, Y.; Zhang, H.; Li, L.; He, P.; Ji, P.; Yang, S. An oligopeptide/aptamer-conjugated dendrimer-based nanocarrier for dual-targeting delivery to bone. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(12), 2831-2844.
[http://dx.doi.org/10.1039/D0TB02926B] [PMID: 33704322]
[69]
Zhong, W.; Zhang, Y.; Tan, W.; Zhang, J.; Liu, J.; Wang, G.; Liao, J.; Liu, B.; Chen, K.; Yu, B.; Deng, Y.; Zou, Y.; Pu, Y.; Liu, H. Adipose specific aptamer adipo-8 recognizes and interacts with APMAP to ameliorates fat deposition in vitro and in vivo. Life Sci., 2020, 251, 117609.
[http://dx.doi.org/10.1016/j.lfs.2020.117609] [PMID: 32272180]
[70]
Chen, X.; He, X.; Gao, R.; Lan, X.; Zhu, L.; Chen, K.; Hu, Y.; Huang, K.; Xu, W. Aptamer-functionalized binary-drug delivery system for synergetic obesity therapy. ACS Nano, 2021, 16(1), 1036-1050.
[http://dx.doi.org/10.1021/acsnano.1c08690] [PMID: 34967620]
[71]
Friedman, S.L.; Neuschwander-Tetri, B.A.; Rinella, M.; Sanyal, A.J. Mechanisms of NAFLD development and therapeutic strategies. Nat. Med., 2018, 24(7), 908-922.
[http://dx.doi.org/10.1038/s41591-018-0104-9] [PMID: 29967350]
[72]
Pu, Y.; Xiang, J.; Zhang, X.; Deng, Y.; Liu, H.; Tan, W. CD36 as a molecular target of functional DNA aptamer NAFLD01 selected against NAFLD cells. Anal. Chem., 2021, 93(8), 3951-3958.
[http://dx.doi.org/10.1021/acs.analchem.0c04866] [PMID: 33596054]
[73]
Mencin, A.; Kluwe, J.; Schwabe, R.F. Toll-like receptors as targets in chronic liver diseases. Gut, 2009, 58(5), 704-720.
[http://dx.doi.org/10.1136/gut.2008.156307] [PMID: 19359436]
[74]
Radovic-Moreno, A.F.; Chernyak, N.; Mader, C.C.; Nallagatla, S.; Kang, R.S.; Hao, L.; Walker, D.A.; Halo, T.L.; Merkel, T.J.; Rische, C.H.; Anantatmula, S.; Burkhart, M.; Mirkin, C.A.; Gryaznov, S.M. Immunomodulatory spherical nucleic acids. Proc. Natl. Acad. Sci. USA, 2015, 112(13), 3892-3897.
[http://dx.doi.org/10.1073/pnas.1502850112] [PMID: 25775582]
[75]
Setten, R.L.; Rossi, J.J.; Han, S. The current state and future directions of RNAi-based therapeutics. Nat. Rev. Drug Discov., 2019, 18(6), 421-446.
[http://dx.doi.org/10.1038/s41573-019-0017-4] [PMID: 30846871]
[76]
Xue, H.; Ding, F.; Zhang, J.; Guo, Y.; Gao, X.; Feng, J.; Zhu, X.; Zhang, C. DNA tetrahedron-based nanogels for siRNA delivery and gene silencing. Chem. Commun., 2019, 55(29), 4222-4225.
[http://dx.doi.org/10.1039/C9CC00175A] [PMID: 30896698]
[77]
Yang, J.; Jiang, Q.; He, L.; Zhan, P.; Liu, Q.; Liu, S.; Fu, M.; Liu, J.; Li, C.; Ding, B. Self-assembled double-bundle DNA tetrahedron for efficient antisense delivery. ACS Appl. Mater. Interfaces, 2018, 10(28), 23693-23699.
[http://dx.doi.org/10.1021/acsami.8b07889] [PMID: 29963858]
[78]
Yamankurt, G.; Stawicki, R.J.; Posadas, D.M.; Nguyen, J.Q.; Carthew, R.W.; Mirkin, C.A. The effector mechanism of siRNA spherical nucleic acids. Proc. Natl. Acad. Sci. USA, 2020, 117(3), 1312-1320.
[http://dx.doi.org/10.1073/pnas.1915907117] [PMID: 31900365]
[79]
Nimjee, S.M.; White, R.R.; Becker, R.C.; Sullenger, B.A. Aptamers as therapeutics. Annu. Rev. Pharmacol. Toxicol., 2017, 57(1), 61-79.
[http://dx.doi.org/10.1146/annurev-pharmtox-010716-104558] [PMID: 28061688]
[80]
Sun, Y.; Liu, Y.; Zhang, B.; Shi, S.; Zhang, T.; Zhao, D.; Tian, T.; Li, Q.; Lin, Y. Erythromycin loaded by tetrahedral framework nucleic acids are more antimicrobial sensitive against Escherichia coli (E. coli). Bioact. Mater., 2021, 6(8), 2281-2290.
[http://dx.doi.org/10.1016/j.bioactmat.2020.12.027] [PMID: 33553815]
[81]
Zhou, M. A DNA nanostructure-based neuroprotectant against neuronal apoptosis via inhibiting toll-like receptor 2 signaling pathway in acute ischemic stroke. ACS Nano, 2021.
[http://dx.doi.org/10.1021/acsnano.1c09626] [PMID: 34967217]
[82]
Krissanaprasit, A.; Key, C.M.; Pontula, S.; LaBean, T.H. Self-assembling nucleic acid nanostructures functionalized with aptamers. Chem. Rev., 2021, 121(22), 13797-13868.
[http://dx.doi.org/10.1021/acs.chemrev.0c01332] [PMID: 34157230]
[83]
Lincoff, A.M.; Mehran, R.; Povsic, T.J.; Zelenkofske, S.L.; Huang, Z.; Armstrong, P.W.; Steg, P.G.; Bode, C.; Cohen, M.G.; Buller, C.; Laanmets, P.; Valgimigli, M.; Marandi, T.; Fridrich, V.; Cantor, W.J.; Merkely, B.; Lopez-Sendon, J.; Cornel, J.H.; Kasprzak, J.D.; Aschermann, M.; Guetta, V.; Morais, J.; Sinnaeve, P.R.; Huber, K.; Stables, R.; Sellers, M.A.; Borgman, M.; Glenn, L.; Levinson, A.I.; Lopes, R.D.; Hasselblad, V.; Becker, R.C.; Alexander, J.H. Effect of the REG1 anticoagulation system versus bivalirudin on outcomes after percutaneous coronary intervention (REGULATE-PCI): A randomised clinical trial. Lancet, 2016, 387(10016), 349-356.
[http://dx.doi.org/10.1016/S0140-6736(15)00515-2] [PMID: 26547100]
[84]
Meng, D.; Ma, W.; Wu, X.; Xu, C.; Kuang, H. DNA‐driven two‐layer core–satellite gold nanostructures for ultrasensitive MicroRNA detection in living cells. Small, 2020, 16(23), 2000003.
[http://dx.doi.org/10.1002/smll.202000003] [PMID: 32374494]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy