Review Article

MicroRNA介导的LDL受体调控:生物学和药理学意义

卷 31, 期 14, 2024

发表于: 12 May, 2023

页: [1830 - 1838] 页: 9

弟呕挨: 10.2174/0929867330666230407091652

价格: $65

摘要

动脉粥样硬化的主要原因之一是细胞胆固醇止血的中断。低密度脂蛋白受体(LDLR)是通过受体介导的LDL颗粒内吞作用维持胆固醇稳态的重要因素。肝脏LDLR活性缺陷和LDL颗粒摄取导致血液低密度脂蛋白胆固醇(LDL- c)水平升高,这与动脉粥样硬化性心血管疾病的高风险相关。LDLR的表达可以受到microRNAs (miRNAs)的影响。一些mirna,如miR-148a、miR-185、miR-224、miR-520、miR-128-1、miR-27a/b、miR-130b和miR-301似乎是LDLR相关基因的重要转录后调控因子。这些发现表明miRNA在调节LDL代谢中的关键作用。本综述的目的是深入了解参与LDLR活性的mirna及其在心血管疾病治疗中的潜在作用。

关键词: MicroRNA,低密度脂蛋白受体,动脉粥样硬化,细胞胆固醇止血,受体介导的内吞作用,低密度脂蛋白胆固醇。

[1]
Macchi, C.; Greco, M.F.; Favero, C.; Dioni, L.; Cantone, L.; Hoxha, M.; Vigna, L.; Solazzo, G.; Corsini, A.; Banach, M.; Pesatori, A.C.; Bollati, V.; Ruscica, M. Associations among PCSK9 levels, atherosclerosis-derived extracellular vesicles, and their miRNA content in adults with obesity. Front. Cardiovasc. Med., 2022, 8, 785250.
[http://dx.doi.org/10.3389/fcvm.2021.785250] [PMID: 35071356]
[2]
Alvarez, M.L.; Khosroheidari, M.; Eddy, E.; Done, S.C. MicroRNA-27a decreases the level and efficiency of the LDL receptor and contributes to the dysregulation of cholesterol homeostasis. Atherosclerosis, 2015, 242(2), 595-604.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.08.023] [PMID: 26318398]
[3]
Aryal, B.; Singh, A.K.; Rotllan, N.; Price, N.; Fernández-Hernando, C. MicroRNAs and lipid metabolism. Curr. Opin. Lipidol., 2017, 28(3), 273-280.
[http://dx.doi.org/10.1097/MOL.0000000000000420] [PMID: 28333713]
[4]
Goedeke, L.; Wagschal, A.; Fernández-Hernando, C.; Näär, A.M. miRNA regulation of LDL-cholesterol metabolism. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2016, 1861(12)(12 Pt B), 2047-2052.
[http://dx.doi.org/10.1016/j.bbalip.2016.03.007] [PMID: 26968099]
[5]
Bahrami, A.; Parsamanesh, N.; Atkin, S.L.; Banach, M.; Sahebkar, A. Effect of statins on toll-like receptors: A new insight to pleiotropic effects. Pharmacol. Res., 2018, 135, 230-238.
[http://dx.doi.org/10.1016/j.phrs.2018.08.014] [PMID: 30120976]
[6]
Ferretti, G.; Bacchetti, T.; Sahebkar, A. Effect of statin therapy on paraoxonase-1 status: A systematic review and meta-analysis of 25 clinical trials. Prog. Lipid Res., 2015, 60, 50-73.
[http://dx.doi.org/10.1016/j.plipres.2015.08.003] [PMID: 26416579]
[7]
Parizadeh, S.M.R.; Azarpazhooh, M.R.; Moohebati, M.; Nematy, M.; Ghayour-Mobarhan, M.; Tavallaie, S.; Rahsepar, A.A.; Amini, M.; Sahebkar, A.; Mohammadi, M.; Ferns, G.A.A. Simvastatin therapy reduces prooxidant-antioxidant balance: Results of a placebo-controlled cross-over trial. Lipids, 2011, 46(4), 333-340.
[http://dx.doi.org/10.1007/s11745-010-3517-x] [PMID: 21207250]
[8]
Sahebkar, A.; Kotani, K.; Serban, C.; Ursoniu, S.; Mikhailidis, D.P.; Jones, S.R.; Ray, K.K.; Blaha, M.J.; Rysz, J.; Toth, P.P.; Muntner, P.; Lip, G.Y.H.; Banach, M. Statin therapy reduces plasma endothelin-1 concentrations: A meta-analysis of 15 randomized controlled trials. Atherosclerosis, 2015, 241(2), 433-442.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.05.022] [PMID: 26074317]
[9]
Sahebkar, A.; Serban, C.; Mikhailidis, D.P.; Undas, A.; Lip, G.Y.H.; Muntner, P.; Bittner, V.; Ray, K.K.; Watts, G.F.; Hovingh, G.K.; Rysz, J.; Kastelein, J.J.; Banach, M. Association between statin use and plasma D-dimer levels. A systematic review and meta-analysis of randomised controlled trials. Thromb. Haemost., 2015, 114(3), 546-557.
[PMID: 26017749]
[10]
Sahebkar, A.; Serban, C.; Ursoniu, S.; Mikhailidis, D.P.; Undas, A.; Lip, G.Y.H.; Bittner, V.; Ray, K.K.; Watts, G.F.; Hovingh, G.K.; Rysz, J.; Kastelein, J.J.P.; Banach, M. The impact of statin therapy on plasma levels of von Willebrand factor antigen. Thromb. Haemost., 2016, 115(3), 520-532.
[http://dx.doi.org/10.1160/th15-08-0620] [PMID: 26632869]
[11]
Koushki, K.; Shahbaz, S.K.; Mashayekhi, K.; Sadeghi, M.; Zayeri, Z.D.; Yousefi, M.T.; Banach, M.; Al- Rasadi, K.; Johnston, T.P.; Sahebkar A. Anti-inflammatory action of statins in cardiovascular disease: The role of inflammasome and toll-Like receptor pathways. Clin. Rev. Allergy. Immunol., 2021, 60(2), 175-199.
[http://dx.doi.org/10.1007/s12016-020-08791-9]
[12]
Sohrevardi, S.; Nasab, F.; Mirjalili, M.; Bagherniya, M.; Tafti, A.; Jarrahzadeh, M.; Azarpazhooh, M.; Saeidmanesh, M.; Banach, M.; Jamialahmadi, T.; Sahebkar, A. Effect of atorvastatin on delirium status of patients in the intensive care unit: A randomized controlled trial. Arch. Med. Sci., 2019, 17(5), 1423-1428.
[http://dx.doi.org/10.5114/aoms.2019.89330] [PMID: 34522273]
[13]
Bahrami, A.; Bo, S.; Jamialahmadi, T.; Sahebkar, A. Effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors on ageing: Molecular mechanisms. Ageing Res. Rev., 2020, 58, 101024.
[http://dx.doi.org/10.1016/j.arr.2020.101024] [PMID: 32006687]
[14]
Vallejo-Vaz, A.J.; De Marco, M.; Stevens, C.A.T.; Akram, A.; Freiberger, T.; Hovingh, G.K.; Kastelein, J.J.P.; Mata, P.; Raal, F.J.; Santos, R.D.; Soran, H.; Watts, G.F.; Abifadel, M.; Aguilar-Salinas, C.A.; Al-khnifsawi, M.; AlKindi, F.A.; Alnouri, F.; Alonso, R.; Al-Rasadi, K.; Al-Sarraf, A.; Ashavaid, T.F.; Binder, C.J.; Bogsrud, M.P.; Bourbon, M.; Bruckert, E.; Chlebus, K.; Corral, P.; Descamps, O.; Durst, R.; Ezhov, M.; Fras, Z.; Genest, J.; Groselj, U.; Harada-Shiba, M.; Kayikcioglu, M.; Lalic, K.; Lam, C.S.P.; Latkovskis, G.; Laufs, U.; Liberopoulos, E.; Lin, J.; Maher, V.; Majano, N.; Marais, A.D.; März, W.; Mirrakhimov, E.; Miserez, A.R.; Mitchenko, O.; Nawawi, H.M.; Nordestgaard, B.G.; Paragh, G.; Petrulioniene, Z.; Pojskic, B.; Postadzhiyan, A.; Reda, A.; Reiner, Ž.; Sadoh, W.E.; Sahebkar, A.; Shehab, A.; Shek, A.B.; Stoll, M.; Su, T.C.; Subramaniam, T.; Susekov, A.V.; Symeonides, P.; Tilney, M.; Tomlinson, B.; Truong, T.H.; Tselepis, A.D.; Tybjærg-Hansen, A.; Vázquez-Cárdenas, A.; Viigimaa, M.; Vohnout, B.; Widén, E.; Yamashita, S.; Banach, M.; Gaita, D.; Jiang, L.; Nilsson, L.; Santos, L.E.; Schunkert, H.; Tokgözoğlu, L.; Car, J.; Catapano, A.L.; Ray, K.K. Overview of the current status of familial hypercholesterolaemia care in over 60 countries-the EAS Familial Hypercholesterolaemia Studies Collaboration (FHSC). Atherosclerosis, 2018, 277, 234-255.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.08.051] [PMID: 30270054]
[15]
Banach, M.; Serban, C.; Ursoniu, S.; Rysz, J.; Muntner, P.; Toth, P.P.; Jones, S.R.; Rizzo, M.; Glasser, S.P.; Watts, G.F.; Blumenthal, R.S.; Lip, G.Y.H.; Mikhailidis, D.P.; Sahebkar, A. Statin therapy and plasma coenzyme Q10 concentrations-A systematic review and meta-analysis of placebo-controlled trials. Pharmacol. Res., 2015, 99, 329-336.
[http://dx.doi.org/10.1016/j.phrs.2015.07.008] [PMID: 26192349]
[16]
Bytyçi, I.; Penson, P.E.; Mikhailidis, D.P.; Wong, N.D.; Hernandez, A.V.; Sahebkar, A.; Thompson, P.D.; Mazidi, M.; Rysz, J.; Pella, D.; Reiner, Ž.; Toth, P.P.; Banach, M. Prevalence of statin intolerance: A meta-analysis. Eur. Heart J., 2022, 43(34), 3213-3223.
[http://dx.doi.org/10.1093/eurheartj/ehac015] [PMID: 35169843]
[17]
Treiber, T.; Treiber, N.; Meister, G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat. Rev. Mol. Cell Biol., 2019, 20(1), 5-20.
[http://dx.doi.org/10.1038/s41580-018-0059-1] [PMID: 30228348]
[18]
Yang, S.C.; Alalaiwe, A.; Lin, Z.C.; Lin, Y.C.; Aljuffali, I.A.; Fang, J.Y. Anti-inflammatory microRNAs for treating inflammatory skin dseases. Biomolecules, 2022, 12(8), 1072.
[http://dx.doi.org/10.3390/biom12081072] [PMID: 36008966]
[19]
Medley, J.C.; Panzade, G.; Zinovyeva, A.Y. microRNA strand selection: Unwinding the rules. Wiley Interdiscip. Rev. RNA, 2021, 12(3), e1627.
[http://dx.doi.org/10.1002/wrna.1627] [PMID: 32954644]
[20]
Goedeke, L.; Aranda, J.F.; Fernández-Hernando, C. microRNA regulation of lipoprotein metabolism. Curr. Opin. Lipidol., 2014, 25(4), 282-288.
[http://dx.doi.org/10.1097/MOL.0000000000000094] [PMID: 24978143]
[21]
Ramírez, C.M.; Goedeke, L.; Fernández-Hernando, C. “Micromanaging” metabolic syndrome. Cell Cycle, 2011, 10(19), 3249-3252.
[http://dx.doi.org/10.4161/cc.10.19.17558] [PMID: 21946517]
[22]
Goedeke, L.; Rotllan, N.; Ramírez, C.M.; Aranda, J.F.; Canfrán-Duque, A.; Araldi, E.; Fernández-Hernando, A.; Langhi, C.; de Cabo, R.; Baldán, Á.; Suárez, Y.; Fernández-Hernando, C. miR-27b inhibits LDLR and ABCA1 expression but does not influence plasma and hepatic lipid levels in mice. Atherosclerosis, 2015, 243(2), 499-509.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.09.033] [PMID: 26520906]
[23]
Chen, W.J.; Yin, K.; Zhao, G.J.; Fu, Y.C.; Tang, C.K. The magic and mystery of MicroRNA-27 in atherosclerosis. Atherosclerosis, 2012, 222(2), 314-323.
[http://dx.doi.org/10.1016/j.atherosclerosis.2012.01.020] [PMID: 22307089]
[24]
Wagschal, A.; Najafi-Shoushtari, S.H.; Wang, L.; Goedeke, L.; Sinha, S.; deLemos, A.S.; Black, J.C.; Ramírez, C.M.; Li, Y.; Tewhey, R.; Hatoum, I.; Shah, N.; Lu, Y.; Kristo, F.; Psychogios, N.; Vrbanac, V.; Lu, Y.C.; Hla, T.; de Cabo, R.; Tsang, J.S.; Schadt, E.; Sabeti, P.C.; Kathiresan, S.; Cohen, D.E.; Whetstine, J.; Chung, R.T.; Fernández-Hernando, C.; Kaplan, L.M.; Bernards, A.; Gerszten, R.E.; Näär, A.M. Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis. Nat. Med., 2015, 21(11), 1290-1297.
[http://dx.doi.org/10.1038/nm.3980] [PMID: 26501192]
[25]
Salerno, A.G.; van Solingen, C.; Scotti, E.; Wanschel, A.C.B.A.; Afonso, M.S.; Oldebeken, S.R.; Spiro, W.; Tontonoz, P.; Rayner, K.J.; Moore, K.J. LDL receptor pathway regulation by miR-224 and miR-520d. Front. Cardiovasc. Med., 2020, 7, 81.
[http://dx.doi.org/10.3389/fcvm.2020.00081] [PMID: 32528976]
[26]
Jiang, H.; Zhang, J.; Du, Y.; Jia, X.; Yang, F.; Si, S.; Wang, L.; Hong, B. microRNA-185 modulates low density lipoprotein receptor expression as a key posttranscriptional regulator. Atherosclerosis, 2015, 243(2), 523-532.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.10.026] [PMID: 26523989]
[27]
Yang, M.; Liu, W.; Pellicane, C.; Sahyoun, C.; Joseph, B.K.; Gallo-Ebert, C.; Donigan, M.; Pandya, D.; Giordano, C.; Bata, A.; Nickels, J.T., Jr Identification of miR-185 as a regulator of de novo cholesterol biosynthesis and low density lipoprotein uptake. J. Lipid Res., 2014, 55(2), 226-238.
[http://dx.doi.org/10.1194/jlr.M041335] [PMID: 24296663]
[28]
Xu, Y.; Gao, J.; Gong, Y.; Chen, M.; Chen, J.; Zhao, W.; Tan, S. Hsa-miR-140-5p down-regulates LDL receptor and attenuates LDL-C uptake in human hepatocytes. Atherosclerosis, 2020, 297, 111-119.
[http://dx.doi.org/10.1016/j.atherosclerosis.2020.02.004] [PMID: 32109664]
[29]
van Solingen, C.; Oldebeken, S.R.; Salerno, A.G.; Wanschel, A.C.B.A.; Moore, K.J. High-throughput screening identifies MicroRNAs regulating human PCSK9 and hepatic low-density lipoprotein receptor expression. Front. Cardiovasc. Med., 2021, 8, 667298.
[http://dx.doi.org/10.3389/fcvm.2021.667298] [PMID: 34322524]
[30]
Ma, N.; Fan, L.; Dong, Y.; Xu, X.; Yu, C.; Chen, J.; Ren, J. New PCSK9 inhibitor miR-552-3p reduces LDL-C via enhancing LDLR in high fat diet-fed mice. Pharmacol. Res., 2021, 167, 105562.
[http://dx.doi.org/10.1016/j.phrs.2021.105562] [PMID: 33737240]
[31]
Wang, N.; He, L.; Lin, H.; Tan, L.; Sun, Y.; Zhang, X.; Danser, A.H.J.; Lu, H.S.; He, Y.; Lu, X. MicroRNA-148a regulates low-density lipoprotein metabolism by repressing the (pro)renin receptor. PLoS One, 2020, 15(5), e0225356.
[http://dx.doi.org/10.1371/journal.pone.0225356] [PMID: 32437440]
[32]
Liu, A.; Frostegård, J. PCSK9 plays a novel immunological role in oxidized LDL-induced dendritic cell maturation and activation of T cells from human blood and atherosclerotic plaque. J. Intern. Med., 2018, 284(2), 193-210.
[http://dx.doi.org/10.1111/joim.12758] [PMID: 29617044]
[33]
Rotllan, N.; Fernández-Hernando, C. MicroRNA regulation of cholesterol metabolism. Cholesterol, 2012, 2012, 1-8.
[http://dx.doi.org/10.1155/2012/847849] [PMID: 22919472]
[34]
Lambert, G.; Sjouke, B.; Choque, B.; Kastelein, J.J.P.; Hovingh, G.K. The PCSK9 decade. J. Lipid Res., 2012, 53(12), 2515-2524.
[http://dx.doi.org/10.1194/jlr.R026658] [PMID: 22811413]
[35]
Reiner, Ž. PCSK9 inhibitors in clinical practice: Expectations and reality. Atherosclerosis, 2018, 270, 187-188.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.01.001] [PMID: 29366497]
[36]
Dong, J.; He, M.; Li, J.; Pessentheiner, A.; Wang, C.; Zhang, J.; Sun, Y.; Wang, W.T.; Zhang, Y.; Liu, J.; Wang, S.C.; Huang, P.H.; Gordts, P.L.S.M.; Yuan, Z.Y.; Tsimikas, S.; Shyy, J.Y.J. microRNA-483 ameliorates hypercholesterolemia by inhibiting PCSK9 production. JCI Insight, 2020, 5(23), e143812.
[http://dx.doi.org/10.1172/jci.insight.143812] [PMID: 33119548]
[37]
Momtazi, A.A.; Banach, M.; Pirro, M.; Stein, E.A.; Sahebkar, A. MicroRNAs: New therapeutic targets for familial hypercholesterolemia? Clin. Rev. Allergy Immunol., 2018, 54(2), 224-233.
[http://dx.doi.org/10.1007/s12016-017-8611-x] [PMID: 28534160]
[38]
Šimić, I.; Reiner, Z. Adverse effects of statins-myths and reality. Curr. Pharm. Des., 2015, 21(9), 1220-1226.
[http://dx.doi.org/10.2174/1381612820666141013134447] [PMID: 25312733]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy