Research Article

慢病毒微肌营养不良蛋白基因治疗杜氏肌营养不良症晚期mdx小鼠

卷 23, 期 4, 2023

发表于: 04 May, 2023

页: [304 - 315] 页: 12

弟呕挨: 10.2174/1566523223666230407091317

价格: $65

Open Access Journals Promotions 2
摘要

目的:杜氏肌营养不良症 (DMD) 会导致患者肌纤维中肌营养不良蛋白表达不足,从而导致进行性肌肉退化。随着新型基因治疗和分子生物学技术的进步,DMD的治疗已经发生了转变,这些技术是安全、耐受性良好且有效的治疗方法。 简介:DMD基因治疗主要针对年轻的DMD患者,已在0-1个月的DMD小鼠中进行了体内动物模型试验。然而,编码慢病毒治疗的微小肌营养不良蛋白如何影响 10 个月 mdx 小鼠的肌营养不良蛋白表达和 DMD 症状尚未得到解答。 方法:我们计划通过病毒转移将微小肌营养不良蛋白基因串行集成到肌肉细胞中,使用编码微小肌营养不良蛋白的慢病毒来减轻晚期DMD小鼠的营养不良病理。比较了慢病毒微肌营养不良蛋白基因治疗方法的组织病理学和生理功能再生活性,以及颞肌营养不良蛋白表达及其功能、毒性和基因表达水平的变化。 结果:在这里,我们发现,微肌营养不良蛋白转基因在晚期 dmd-mdx-4cv 小鼠中进行肌内和腹膜内转移,恢复了骨骼和心肌中肌营养不良蛋白的表达(p <0.001)。此外,治疗后运动表现分析(包括悬挂和跟踪测试)在统计上显着改善(p <0.05)。 结论:因此,本研究表明,肌营养不良症晚期患者可以从慢病毒微肌营养不良蛋白基因治疗中受益,从而改善营养不良性肌肉病理学。

关键词: 杜氏肌营养不良症,基因治疗,慢病毒,微肌营养不良蛋白基因,神经肌肉疾病,肌营养不良蛋白。

图形摘要
[1]
Mah JK, Korngut L, Dykeman J, Day L, Pringsheim T, Jette N. A systematic review and meta-analysis on the epidemiology of Duchenne and Becker muscular dystrophy. Neuromuscul Disord 2014; 24(6): 482-91.
[http://dx.doi.org/10.1016/j.nmd.2014.03.008] [PMID: 24780148]
[2]
Bushby K, Finkel R, Birnkrant DJ, et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: Diagnosis, and pharmaco-logical and psychosocial management. Lancet Neurol 2010; 9(1): 77-93.
[http://dx.doi.org/10.1016/S1474-4422(09)70271-6] [PMID: 19945913]
[3]
Hoffman EP, Brown RH Jr, Kunkel LM. Dystrophin: The protein product of the duchenne muscular dystrophy locus. Cell 1987; 51(6): 919-28.
[http://dx.doi.org/10.1016/0092-8674(87)90579-4] [PMID: 3319190]
[4]
Ervasti JM, Campbell KP. A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. J Cell Biol 1993; 122(4): 809-23.
[http://dx.doi.org/10.1083/jcb.122.4.809] [PMID: 8349731]
[5]
Mariol MC, Ségalat L. Muscular degeneration in the absence of dystrophin is a calcium-dependent process. Curr Biol 2001; 11(21): 1691-4.
[http://dx.doi.org/10.1016/S0960-9822(01)00528-0] [PMID: 11696327]
[6]
The molecular basis for Duchenne versus Becker muscular dystrophy: correlation of severity with type of deletion. Am J Hum Genet 1989; 45(4): 498-506.
[7]
Ervasti JM. Structure and function of the dystrophin-glycoprotein complex. In: Molecular Mechanisms of Muscular Dystrophies. Georgetown: Landes Biosciences 2006; pp. 1-13.
[8]
Rando TA. The dystrophin-glycoprotein complex, cellular signaling, and the regulation of cell survival in the muscular dystrophies. Muscle Nerve 2001; 24(12): 1575-94.
[http://dx.doi.org/10.1002/mus.1192] [PMID: 11745966]
[9]
Petrof BJ, Shrager JB, Stedman HH, Kelly AM, Sweeney HL. Dystrophin protects the sarcolemma from stresses developed during mus-cle contraction. Proc Natl Acad Sci USA 1993; 90(8): 3710-4.
[http://dx.doi.org/10.1073/pnas.90.8.3710] [PMID: 8475120]
[10]
Deconinck N, Dan B. Pathophysiology of duchenne muscular dystrophy: Current hypotheses. Pediatr Neurol 2007; 36(1): 1-7.
[http://dx.doi.org/10.1016/j.pediatrneurol.2006.09.016] [PMID: 17162189]
[11]
Ramos J, Chamberlain JS. Gene therapy for Duchenne muscular dystrophy. Expert Opin Orphan Drugs 2015; 3(11): 1255-66.
[http://dx.doi.org/10.1517/21678707.2015.1088780] [PMID: 26594599]
[12]
Dumont NA, Wang YX, von Maltzahn J, et al. Dystrophin expression in muscle stem cells regulates their polarity and asymmetric divi-sion. Nat Med 2015; 21(12): 1455-63.
[http://dx.doi.org/10.1038/nm.3990] [PMID: 26569381]
[13]
Counsell JR, Asgarian Z, Meng J, Ferrer V, Vink CA, Howe SJ. Lentiviral vectors can be used for full-length dystrophin gene therapy. Sci Rep 2017; 7(1): 1-10.
[14]
Annoni A, Brown BD, Cantore A, Sergi LS, Naldini L, Roncarolo MG. In vivo delivery of a microRNA-regulated transgene induces anti-gen-specific regulatory T cells and promotes immunologic tolerance. Blood 2009; 114(25): 5152-61.
[http://dx.doi.org/10.1182/blood-2009-04-214569] [PMID: 19794140]
[15]
Bostick B, Yue Y, Lai Y, Long C, Li D, Duan D. Adeno-associated virus serotype-9 microdystrophin gene therapy ameliorates electro-cardiographic abnormalities in mdx mice. Hum Gene Ther 2008; 19(8): 851-6.
[http://dx.doi.org/10.1089/hum.2008.058] [PMID: 18666839]
[16]
Lai Y, Thomas GD, Yue Y, et al. Dystrophins carrying spectrin-like repeats 16 and 17 anchor nNOS to the sarcolemma and enhance exercise performance in a mouse model of muscular dystrophy. J Clin Invest 2009; 119(3): 624-35.
[http://dx.doi.org/10.1172/JCI36612] [PMID: 19229108]
[17]
Shin JH, Hakim CH, Zhang K, Duan D. Genotyping mdx, mdx3cv, and mdx4cv mice by primer competition polymerase chain reaction. Muscle Nerve 2011; 43(2): 283-6.
[http://dx.doi.org/10.1002/mus.21873] [PMID: 21254096]
[18]
Lefaucheur JP, Pastoret C, Sebille A. Phenotype of dystrophinopathy in old mdx mice. Anat Rec 1995; 242(1): 70-6.
[19]
Pastoret C, Sebille A. mdx mice show progressive weakness and muscle deterioration with age. J Neurol Sci 1995; 129(2): 97-105.
[http://dx.doi.org/10.1016/0022-510X(94)00276-T] [PMID: 7608742]
[20]
Lynch GS, Hinkle RT, Chamberlain JS, Brooks SV, Faulkner JA. Force and power output of fast and slow skeletal muscles from mdx mice 6‐28 months old. J Physiol 2001; 535(2): 591-600.
[http://dx.doi.org/10.1111/j.1469-7793.2001.00591.x] [PMID: 11533147]
[21]
Judge LM, Arnett ALH, Banks GB, Chamberlain JS. Expression of the dystrophin isoform Dp116 preserves functional muscle mass and extends lifespan without preventing dystrophy in severely dystrophic mice. Hum Mol Genet 2011; 20(24): 4978-90.
[http://dx.doi.org/10.1093/hmg/ddr433] [PMID: 21949353]
[22]
Gaedigk R, Law DJ, Fitzgerald-Gustafson KM, et al. Improvement in survival and muscle function in an mdx/utrn−/− double mutant mouse using a human retinal dystrophin transgene. Neuromuscul Disord 2006; 16(3): 192-203.
[http://dx.doi.org/10.1016/j.nmd.2005.12.007] [PMID: 16487708]
[23]
Manning J, O’Malley D. What has the mdx mouse model of duchenne muscular dystrophy contributed to our understanding of this dis-ease? J Muscle Res Cell Motil 2015; 36(2): 155-67.
[http://dx.doi.org/10.1007/s10974-015-9406-4] [PMID: 25669899]
[24]
Cros D, Harnden P, Pellissier JF, Serratrice G. Muscle hypertrophy in Duchenne muscular dystrophy. J Neurol 1989; 236(1): 43-7.
[http://dx.doi.org/10.1007/BF00314217] [PMID: 2915226]
[25]
Marques MJ, Oggiam DS, Barbin ICC, Ferretti R, Santo Neto H. Long-term therapy with deflazacort decreases myocardial fibrosis in mdx mice. Muscle Nerve 2009; 40(3): 466-8.
[http://dx.doi.org/10.1002/mus.21341] [PMID: 19623634]
[26]
Kimura E, Han JJ, Li S, et al. Cell-lineage regulated myogenesis for dystrophin replacement: a novel therapeutic approach for treatment of muscular dystrophy. Hum Mol Genet 2008; 17(16): 2507-17.
[http://dx.doi.org/10.1093/hmg/ddn151] [PMID: 18511457]
[27]
Stewart SA, Dykxhoorn DM, Palliser D, et al. Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA 2003; 9(4): 493-501.
[http://dx.doi.org/10.1261/rna.2192803] [PMID: 12649500]
[28]
Taştan C, Kançağı DD, Turan RD, et al. Preclinical assessment of efficacy and safety analysis of car-t cells (Isikok-19) targeting cd19-expressing b-cells for the first turkish academic clinical trial with relapsed/refractory all and nhl patients. Turk J Haematol 2020; 37(4): 234-47.
[http://dx.doi.org/10.4274/tjh.galenos.2020.2020.0070] [PMID: 32755128]
[29]
Zhao Y, Stepto H, Schneider CK. Development of the first world health organization lentiviral vector standard: Toward the production control and standardization of lentivirus-based gene therapy products. Hum Gene Ther Methods 2017; 28(4): 205-14.
[http://dx.doi.org/10.1089/hgtb.2017.078] [PMID: 28747142]
[30]
Cornetta K, Yao J, Jasti A, et al. Replication-competent lentivirus analysis of clinical grade vector products. Mol Ther 2011; 19(3): 557-66.
[http://dx.doi.org/10.1038/mt.2010.278] [PMID: 21179010]
[31]
Agudo J, Ruzo A, Kitur K, Sachidanandam R, Blander JM, Brown BD. A TLR and non-TLR mediated innate response to lentiviruses restricts hepatocyte entry and can be ameliorated by pharmacological blockade. Mol Ther 2012; 20(12): 2257-67.
[http://dx.doi.org/10.1038/mt.2012.150] [PMID: 22871668]
[32]
Aartsma-Rus A, van Putten M. Assessing functional performance in the mdx mouse model. J Vis Exp 2014.
[33]
Kawano R, Ishizaki M, Maeda Y, Uchida Y, Kimura E, Uchino M. Transduction of full-length dystrophin to multiple skeletal muscles improves motor performance and life span in utrophin/dystrophin double knockout mice. Mol Ther 2008; 16(5): 825-31.
[http://dx.doi.org/10.1038/mt.2008.23] [PMID: 18334987]
[34]
Gibbs EM, Crosbie-Watson RH. A simple and low-cost assay for measuring ambulation in mouse models of muscular dystrophy. J Vis Exp 2017; 130: 56772.
[35]
Foster H, Sharp PS, Athanasopoulos T, et al. Codon and mRNA sequence optimization of microdystrophin transgenes improves expres-sion and physiological outcome in dystrophic mdx mice following AAV2/8 gene transfer. Mol Ther 2008; 16(11): 1825-32.
[http://dx.doi.org/10.1038/mt.2008.186] [PMID: 18766174]
[36]
Zatz M, Rapaport D, Vainzof M, et al. Serum creatine-kinase (CK) and pyruvate-kinase (PK) activities in duchenne (DMD) as compared with becker (BMD) muscular dystrophy. J Neurol Sci 1991; 102(2): 190-6.
[http://dx.doi.org/10.1016/0022-510X(91)90068-I] [PMID: 2072118]
[37]
Duan D. Micro-dystrophin gene therapy goes systemic in duchenne muscular dystrophy patients. Hum Gene Ther 2018; 29(7): 733-6.
[http://dx.doi.org/10.1089/hum.2018.012] [PMID: 29463117]
[38]
Dellorusso C, Crawford RW, Chamberlain JS, Brooks SV. Tibialis anterior muscles in mdx mice are highly susceptible to contraction-induced injury. J Muscle Res Cell Motil 2001; 22(5): 467-75.
[http://dx.doi.org/10.1023/A:1014587918367] [PMID: 11964072]
[39]
Chu X, Li J, Qiao C, et al. Long‐term effect of human mini‐dystrophin in transgenic mdx mice improves muscle physiological function. FASEB J 2021; 35(6): e21628.
[http://dx.doi.org/10.1096/fj.202100057RR] [PMID: 33982338]
[40]
Isaac C, Wright A, Usas A, et al. Dystrophin and utrophin “double knockout” dystrophic mice exhibit a spectrum of degenerative mus-culoskeletal abnormalities. J Orthop Res 2013; 31(3): 343-9.
[http://dx.doi.org/10.1002/jor.22236] [PMID: 23097179]
[41]
Wang JW, Song M, He YH, Gong HR. Stability, adsorption, and diffusion of hydrogen in Pd3Ag phases. J Membr Sci 2016; 503: 124-31.
[http://dx.doi.org/10.1016/j.memsci.2015.11.021]
[42]
Long C, Amoasii L, Mireault AA, McAnally JR, Li H, Sanchez-Ortiz E. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 2016; 351(6271): 400-3.
[43]
Crawford GE, Faulkner JA, Crosbie RH, Campbell KP, Froehner SC, Chamberlain JS. Assembly of the dystrophin-associated protein complex does not require the dystrophin COOH-terminal domain. J Cell Biol 2000; 150(6): 1399-410.
[http://dx.doi.org/10.1083/jcb.150.6.1399] [PMID: 10995444]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy