Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Natural Products and Gastric Cancer: Cellular Mechanisms and Effects to Change Cancer Progression

Author(s): Ning Zhao, Wendi Wang, Haoyue Jiang, Zhengkang Qiao, Shiming Sun, Yang Wei, Xinru Xie, Hui Li*, Xiuli Bi* and Zhe Yang*

Volume 23, Issue 13, 2023

Published on: 09 May, 2023

Page: [1506 - 1518] Pages: 13

DOI: 10.2174/1871520623666230407082955

Price: $65

conference banner
Abstract

Gastric cancer is a severe malignant tumor with high morbidity and mortality, which seriously affects people’s health. At present, the most common treatment for gastric cancer is chemotherapy. However, chemotherapy is very harmful to the human body, and some of the injuries caused by chemotherapy are irreversible. Natural products have low toxicity and anti-cancer activity, so they are currently widely studied at present. Natural products are a large variety of compounds naturally found in fruits, vegetables, spices, and medicinal plants. It is reported that natural products have different anti-cancer properties. This review has summarized the study of natural products in inducing gastric cancer cell apoptosis, inhibiting gastric cancer cell metastasis, and inhibiting gastric cancer cell proliferation. The relevant references on gastric cancer and natural products were obtained from scientific databases, including Pub- Med, Web of Science, and Science Direct. This paper records dozens of natural products with anti-gastric tumor activity and describes the potential living anti-cancer chemical compounds, their element targets, and their underlying mechanism. This review may lay the foundation for future researchers to treat gastric cancer.

Keywords: Gastric cancer, natural products, anti-cancerous effects, signaling pathways, anti-oxidant function, anti-proliferative function, anti-inflammatory activity.

Graphical Abstract
[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Crew, K.D.; Neugut, A.I. Epidemiology of gastric cancer. World J. Gastroenterol., 2006, 12(3), 354-362.
[http://dx.doi.org/10.3748/wjg.v12.i3.354] [PMID: 16489633]
[3]
Karimi, P.; Islami, F.; Anandasabapathy, S.; Freedman, N.D.; Kamangar, F. Gastric cancer: Descriptive epidemiology, risk factors, screening, and prevention. Cancer Epidemiol. Biomarkers Prev., 2014, 23(5), 700-713.
[http://dx.doi.org/10.1158/1055-9965.EPI-13-1057] [PMID: 24618998]
[4]
Chung, M.Y.; Lim, T.G.; Lee, K.W. Molecular mechanisms of chemopreventive phytochemicals against gastroenterological cancer development. World J. Gastroenterol., 2013, 19(7), 984-993.
[http://dx.doi.org/10.3748/wjg.v19.i7.984] [PMID: 23467658]
[5]
Katz, L.; Baltz, R.H. Natural product discovery: Past, present, and future. J. Ind. Microbiol. Biotechnol., 2016, 43(2-3), 155-176.
[http://dx.doi.org/10.1007/s10295-015-1723-5] [PMID: 26739136]
[6]
Mondal, S.; Bandyopadhyay, S.; Ghosh, M.K.; Mukhopadhyay, S.; Roy, S.; Mandal, C. Natural products: promising resources for cancer drug discovery. Anticancer. Agents Med. Chem., 2012, 12(1), 49-75.
[http://dx.doi.org/10.2174/187152012798764697] [PMID: 21707502]
[7]
Pratheeshkumar, P.; Sreekala, C.; Zhang, Z.; Budhraja, A.; Ding, S.; Son, Y.O.; Wang, X.; Hitron, A.; Hyun-Jung, K.; Wang, L.; Lee, J.C.; Shi, X. Cancer prevention with promising natural products: Mechanisms of action and molecular targets. Anticancer. Agents Med. Chem., 2012, 12(10), 1159-1184.
[http://dx.doi.org/10.2174/187152012803833035] [PMID: 22583402]
[8]
Kim, C.; Kim, B. Anti-cancer natural products and their bioactive compounds inducing ER stress-mediated apoptosis: A review. Nutrients, 2018, 10(8), 1021.
[http://dx.doi.org/10.3390/nu10081021] [PMID: 30081573]
[9]
Azab, A.; Nassar, A.; Azab, A. Anti-Inflammatory Activity of Natural Products. Molecules, 2016, 21(10), 1321.
[http://dx.doi.org/10.3390/molecules21101321] [PMID: 27706084]
[10]
Sznarkowska, A.; Kostecka, A.; Meller, K.; Bielawski, K.P. Inhibition of cancer antioxidant defense by natural compounds. Oncotarget, 2017, 8(9), 15996-16016.
[http://dx.doi.org/10.18632/oncotarget.13723] [PMID: 27911871]
[11]
Khalid, E.B.; Ayman, E.L.M.E.L.K.; Rahman, H.; Abdelkarim, G.; Najda, A. Natural products against cancer angiogenesis. Tumour Biol., 2016, 37(11), 14513-14536.
[http://dx.doi.org/10.1007/s13277-016-5364-8] [PMID: 27651162]
[12]
Siu, D. Natural products and their role in cancer therapy. Med. Oncol., 2011, 28(3), 888-900.
[http://dx.doi.org/10.1007/s12032-010-9528-x] [PMID: 20414819]
[13]
Demain, A.L.; Vaishnav, P. Natural products for cancer chemotherapy. Microb. Biotechnol., 2011, 4(6), 687-699.
[http://dx.doi.org/10.1111/j.1751-7915.2010.00221.x] [PMID: 21375717]
[14]
Yuan, R.; Hou, Y.; Sun, W.; Yu, J.; Liu, X.; Niu, Y.; Lu, J.J.; Chen, X. Natural products to prevent drug resistance in cancer chemotherapy: A review. Ann. N. Y. Acad. Sci., 2017, 1401(1), 19-27.
[http://dx.doi.org/10.1111/nyas.13387] [PMID: 28891091]
[15]
Bao, C.; Kramata, P.; Lee, H.J.; Suh, N. Regulation of Hedgehog signaling in cancer by natural and dietary compounds. Mol. Nutr. Food Res., 2018, 62(1), 1700621.
[http://dx.doi.org/10.1002/mnfr.201700621] [PMID: 29164817]
[16]
Zhang, J.Y.; Lin, M.T.; Zhou, M.J.; Yi, T.; Tang, Y.N.; Tang, S.L.; Yang, Z.J.; Zhao, Z.Z.; Chen, H.B. Combinational treatment of curcumin and quercetin against gastric cancer MGC-803 cells in vitro. Molecules, 2015, 20(6), 11524-11534.
[http://dx.doi.org/10.3390/molecules200611524] [PMID: 26111180]
[17]
Koosirirat, C.; Linpisarn, S.; Changsom, D.; Chawansuntati, K.; Wipasa, J. Investigation of the anti-inflammatory effect of Curcuma longa in Helicobacter pylori-infected patients. Int. Immunopharmacol., 2010, 10(7), 815-818.
[http://dx.doi.org/10.1016/j.intimp.2010.04.021] [PMID: 20438867]
[18]
Zhang, X.; Zhang, C.; Ren, Z.; Zhang, F.; Xu, J.; Zhang, X.; Zheng, H. Curcumin affects gastric cancer cell migration, invasion and cytoskeletal remodeling through Gli1-β-. Catenin. Cancer Manag. Res., 2020, 12, 3795-3806.
[http://dx.doi.org/10.2147/CMAR.S244384] [PMID: 32547215]
[19]
Sun, Q.; Zhang, W.; Guo, Y.; Li, Z.; Chen, X.; Wang, Y.; Du, Y.; Zang, W.; Zhao, G. Curcumin inhibits cell growth and induces cell apoptosis through upregulation of miR-33b in gastric cancer. Tumour Biol., 2016, 37(10), 13177-13184.
[http://dx.doi.org/10.1007/s13277-016-5221-9] [PMID: 27456358]
[20]
Liang, Z.; Wu, R.; Xie, W.; Geng, H.; Zhao, L.; Xie, C.; Wu, J.; Geng, S.; Li, X.; Zhu, M.; Zhu, W.; Zhu, J.; Huang, C.; Ma, X.; Zhong, C.; Han, H. Curcumin suppresses MAPK pathways to reverse tobacco smoke-induced gastric epithelial-mesenchymal transition in Mice. Phytother. Res., 2015, 29(10), 1665-1671.
[http://dx.doi.org/10.1002/ptr.5398] [PMID: 26074474]
[21]
Da, W.; Zhang, J.; Zhang, R.; Zhu, J. Curcumin inhibits the lymphangiogenesis of gastric cancer cells by inhibiton of HMGB1/VEGF-D signaling. Int. J. Immunopathol. Pharmacol., 2019, 33.
[http://dx.doi.org/10.1177/2058738419861600] [PMID: 31266378]
[22]
Wang, X.P.; Wang, Q.X.; Lin, H.P.; Chang, N. Anti-tumor bioactivities of curcumin on mice loaded with gastric carcinoma. Food Funct., 2017, 8(9), 3319-3326.
[http://dx.doi.org/10.1039/C7FO00555E] [PMID: 28848967]
[23]
Fu, H.; Wang, C.; Yang, D.; Wei, Z.; Xu, J.; Hu, Z.; Zhang, Y.; Wang, W.; Yan, R.; Cai, Q. Curcumin regulates proliferation, autophagy, and apoptosis in gastric cancer cells by affecting PI3K and P53 signaling. J. Cell. Physiol., 2018, 233(6), 4634-4642.
[http://dx.doi.org/10.1002/jcp.26190] [PMID: 28926094]
[24]
Liu, G.; Xiang, T.; Wu, Q.F.; Wang, W.X. Curcumin suppresses the proliferation of gastric cancer cells by downregulating H19. Oncol. Lett., 2016, 12(6), 5156-5162.
[http://dx.doi.org/10.3892/ol.2016.5354] [PMID: 28105222]
[25]
Qin, H. B.; Wei, L.; Zhang, J. W.; Tang, J. M. Study on functions and mechanism of curcumin in inducing gastric carcinoma BGC apoptosis. Chinese J. cellul. Molecule. immunol., 2011, 27(11), 1227-30.
[26]
Weng, Q.; Fu, L.; Chen, G.; Hui, J.; Song, J.; Feng, J.; Shi, D.; Cai, Y.; Ji, J.; Liang, G. Design, synthesis, and anticancer evaluation of long-chain alkoxylated mono-carbonyl analogues of curcumin. Eur. J. Med. Chem., 2015, 103, 44-55.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.036] [PMID: 26318057]
[27]
Zhou, S.; Yao, D.; Guo, L.; Teng, L. Curcumin suppresses gastric cancer by inhibiting gastrin-mediated acid secretion. FEBS Open Bio, 2017, 7(8), 1078-1084.
[http://dx.doi.org/10.1002/2211-5463.12237] [PMID: 28781948]
[28]
Haghi, A.; Azimi, H.; Rahimi, R. A Comprehensive review on pharmacotherapeutics of three phytochemicals, curcumin, quercetin, and allicin, in the treatment of gastric cancer. J. Gastrointest. Cancer, 2017, 48(4), 314-320.
[http://dx.doi.org/10.1007/s12029-017-9997-7] [PMID: 28828709]
[29]
Yu, L.L.; Wu, J.G.; Dai, N.; Yu, H.G.; Si, J.M. Curcumin reverses chemoresistance of human gastric cancer cells by downregulating the NF-κB transcription factor. Oncol. Rep., 2011, 26(5), 1197-1203.
[http://dx.doi.org/10.3892/or.2011.1410] [PMID: 21811763]
[30]
He, W.; Xia, Y.; Cao, P.; Hong, L.; Zhang, T.; Shen, X.; Zheng, P.; Shen, H.; Liang, G.; Zou, P. Curcuminoid WZ35 synergize with cisplatin by inducing ROS production and inhibiting TrxR1 activity in gastric cancer cells. J. Exp. Clin. Cancer Res., 2019, 38(1), 207.
[http://dx.doi.org/10.1186/s13046-019-1215-y] [PMID: 31113439]
[31]
Chen, X.; Chen, X.; Zhang, X.; Wang, L.; Cao, P.; Rajamanickam, V.; Wu, C.; Zhou, H.; Cai, Y.; Liang, G.; Wang, Y. Curcuminoid B63 induces ROS-mediated paraptosis-like cell death by targeting TrxR1 in gastric cells. Redox Biol., 2019, 21, 101061.
[http://dx.doi.org/10.1016/j.redox.2018.11.019] [PMID: 30590310]
[32]
Tang, X.; Bi, H.; Feng, J.; Cao, J. Effect of curcumin on multidrug resistance in resistant human gastric carcinoma cell line SGC7901/VCR. Acta Pharmacol. Sin., 2005, 26(8), 1009-1016.
[http://dx.doi.org/10.1111/j.1745-7254.2005.00149.x] [PMID: 16038636]
[33]
Sun, C.; Zhang, S.; Liu, C.; Liu, X. Curcumin promoted miR-34a expression and suppressed proliferation of gastric cancer cells. Cancer Biother. Radiopharm., 2019, 34(10), 634-641.
[http://dx.doi.org/10.1089/cbr.2019.2874] [PMID: 31539270]
[34]
Gao, C.; Ding, Z.; Liang, B.; Chen, N.; Cheng, D. Study on the effects of curcumin on angiogenesis. Zhong Yao Cai, 2003, 26(7), 499-502.
[PMID: 14650061]
[35]
Lee, H.; Lee, S.; Shin, Y.; Cho, M.; Kang, H.; Cho, H. Anti-cancer effect of quercetin in Xenograft models with EBV-associated human gastric carcinoma. Molecules, 2016, 21(10), 1286.
[http://dx.doi.org/10.3390/molecules21101286] [PMID: 27681719]
[36]
Yu, Z.J.; He, L.Y.; Chen, Y.; Wu, M.Y.; Zhao, X.H.; Wang, Z.Y. Effects of quercetin on the expression of VEGF-C and VEGFR-3 in human cancer MGC-803 cells. Xi bao yu fen zi mian yi xue za zhi = Chinese J. Cell. Mol. Immunol., 2009, 25(8), 678-680.
[37]
Xu, Y.X.; Wang, B.; Zhao, X.H. In vitro effects and the related molecular mechanism of galangin and quercetin on human gastric cancer cell line (SGC-7901). Pak. J. Pharm. Sci., 2017, 30(4), 1279-1287.
[PMID: 29039326]
[38]
Qin, Y.; He, L.Y.; Chen, Y.; Wang, W.Y.; Zhao, X.H.; Wu, M.Y. Quercetin affects leptin and its receptor in human gastric cancer MGC-803 cells and JAK-STAT pathway. Xi bao yu fen zi mian yi xue za zhi = Chinese J. Cell. Mol. Immunol., 2012, 28(1), 12-16.
[39]
Lei, C.S.; Hou, Y.C.; Pai, M.H.; Lin, M.T.; Yeh, S.L. Effects of quercetin combined with anticancer drugs on metastasis-associated factors of gastric cancer cells: in vitro and in vivo studies. J. Nutr. Biochem., 2018, 51, 105-113.
[http://dx.doi.org/10.1016/j.jnutbio.2017.09.011] [PMID: 29125991]
[40]
Borska, S.; Chmielewska, M.; Wysocka, T.; Drag-Zalesinska, M.; Zabel, M.; Dziegiel, P. In vitro effect of quercetin on human gastric carcinoma: Targeting cancer cells death and MDR. Food Chem. Toxicol., 2012, 50(9), 3375-3383.
[http://dx.doi.org/10.1016/j.fct.2012.06.035] [PMID: 22750388]
[41]
Hyun, H.; Moon, J.; Cho, S. Quercetin suppresses CYR61-Mediated multidrug resistance in human gastric adenocarcinoma AGS Cells. Molecules, 2018, 23(2), 209.
[http://dx.doi.org/10.3390/molecules23020209] [PMID: 29364834]
[42]
Li, H.; Chen, C. Quercetin has antimetastatic effects on gastric cancer cells via the interruption of uPA/uPAR function by modulating NF-κb, PKC-δ ERK1/2, and AMPKα. Integr. Cancer Ther., 2018, 17(2), 511-523.
[http://dx.doi.org/10.1177/1534735417696702] [PMID: 28627240]
[43]
Shang, H.S.; Lu, H.F.; Lee, C.H.; Chiang, H.S.; Chu, Y.L.; Chen, A.; Lin, Y.F.; Chung, J.G. Quercetin induced cell apoptosis and altered gene expression in AGS human gastric cancer cells. Environ. Toxicol., 2018, 33(11), 1168-1181.
[http://dx.doi.org/10.1002/tox.22623] [PMID: 30152185]
[44]
Yoshida, M.; Sakai, T.; Hosokawa, N.; Marui, N.; Matsumoto, K.; Fujioka, A.; Nishino, H.; Aoike, A. The effect of quercetin on cell cycle progression and growth of human gastric cancer cells. FEBS Lett., 1990, 260(1), 10-13.
[http://dx.doi.org/10.1016/0014-5793(90)80053-L] [PMID: 2298289]
[45]
Wang, P.; Zhang, K.; Zhang, Q.; Mei, J.; Chen, C.; Feng, Z.; Yu, D. Effects of quercetin on the apoptosis of the human gastric carcinoma cells. Toxicol. In Vitro, 2012, 26(2), 221-228.
[http://dx.doi.org/10.1016/j.tiv.2011.11.015] [PMID: 22222411]
[46]
Zhang, S.; Huang, J.; Xie, X.; He, Y.; Mo, F.; Luo, Z. Quercetin from Polygonum capitatum protects against gastric inflammation and apoptosis associated with Helicobacter pylori infection by affecting the levels of p38MAPK, BCL-2 and BAX. Molecules, 2017, 22(5), 744.
[http://dx.doi.org/10.3390/molecules22050744] [PMID: 28481232]
[47]
Kim, M.C.; Lee, H.J.; Lim, B.; Ha, K.T.; Kim, S.Y.; So, I.; Kim, B.J. Quercetin induces apoptosis by inhibiting MAPKs and TRPM7 channels in AGS cells. Int. J. Mol. Med., 2014, 33(6), 1657-1663.
[http://dx.doi.org/10.3892/ijmm.2014.1704] [PMID: 24647664]
[48]
Wang, H.Y.; Guo, L.M.; Chen, Y.; Zhao, X.H.; Cheng, C.L.; Wu, M.Y.; He, L.Y. Quercetin inhibits growth and induces apoptosis of human gastric carcinoma cells. Xi bao yu fen zi mian yi xue za zhi = Chinese J. Cell. Mol. Immunol., 2006, 22(5), 585-587.
[49]
Wang, K.; Liu, R.; Li, J.; Mao, J.; Lei, Y.; Wu, J.; Zeng, J.; Zhang, T.; Wu, H.; Chen, L.; Huang, C.; Wei, Y. Quercetin induces protective autophagy in gastric cancer cells: Involvement of Akt-mTOR- and hypoxia-induced factor 1α-mediated signaling. Autophagy, 2011, 7(9), 966-978.
[http://dx.doi.org/10.4161/auto.7.9.15863] [PMID: 21610320]
[50]
Yang, L.; Hu, Z.; Zhu, J.; Liang, Q.; Zhou, H.; Li, J.; Fan, X.; Zhao, Z.; Pan, H.; Fei, B. Systematic elucidation of the mechanism of quercetin against gastric cancer via network pharmacology approach. BioMed Res. Int., 2020, 2020, 3860213.
[http://dx.doi.org/10.1155/2020/3860213] [PMID: 32964029]
[51]
Zhou, H.B.; Chen, J.J.; Wang, W.X.; Cai, J.T.; Du, Q. Anticancer activity of resveratrol on implanted human primary gastric carcinoma cells in nude mice. World J. Gastroenterol., 2005, 11(2), 280-284.
[http://dx.doi.org/10.3748/wjg.v11.i2.280] [PMID: 15633232]
[52]
Xu, Q.H.; Xiao, Y.; Li, X.Q.; Fan, L.; Zhou, C.C.; Cheng, L.; Jiang, Z.D.; Wang, G.H. Resveratrol counteracts hypoxia-induced gastric cancer invasion and EMT through hedgehog pathway suppression. Anticancer. Agents Med. Chem., 2020, 20(9), 1105-1114.
[http://dx.doi.org/10.2174/1871520620666200402080034] [PMID: 32238142]
[53]
Riles, W.L.; Erickson, J.; Nayyar, S.; Atten, M.J.; Attar, B.M.; Holian, O. Resveratrol engages selective apoptotic signals in gastric adenocarcinoma cells. World J. Gastroenterol., 2006, 12(35), 5628-5634.
[http://dx.doi.org/10.3748/wjg.v12.i35.5628] [PMID: 17007014]
[54]
Kim, S.; Kim, W.; Kim, D.H.; Jang, J.H.; Kim, S.J.; Park, S.A.; Hahn, H.; Han, B.W.; Na, H.K.; Chun, K.S.; Choi, B.Y.; Surh, Y.J. Resveratrol suppresses gastric cancer cell proliferation and survival through inhibition of PIM-1 kinase activity. Arch. Biochem. Biophys., 2020, 689, 108413.
[http://dx.doi.org/10.1016/j.abb.2020.108413] [PMID: 32473133]
[55]
Shin, K.O.; Park, N.Y.; Seo, C.H.; Hong, S.P.; Oh, K.W.; Hong, J.T.; Han, S.K.; Lee, Y.M. Inhibition of sphingolipid metabolism enhances resveratrol chemotherapy in human gastric cancer cells. Biomol. Ther., 2012, 20(5), 470-476.
[http://dx.doi.org/10.4062/biomolther.2012.20.5.470] [PMID: 24009836]
[56]
Yin, L.; Zhang, R.; Hu, Y.; Li, W.; Wang, M.; Liang, Z.; Sun, Z.; Ji, R.; Xu, W.; Qian, H. Gastric-cancer-derived mesenchymal stem cells: a promising target for resveratrol in the suppression of gastric cancer metastasis. Hum. Cell, 2020, 33(3), 652-662.
[http://dx.doi.org/10.1007/s13577-020-00339-5] [PMID: 32350750]
[57]
Xu, J.; Liu, D.; Niu, H.; Zhu, G.; Xu, Y.; Ye, D.; Li, J.; Zhang, Q. Resveratrol reverses Doxorubicin resistance by inhibiting epithelial-mesenchymal transition (EMT) through modulating PTEN/Akt signaling pathway in gastric cancer. J. Exp. Clin. Cancer Res., 2017, 36(1), 19.
[http://dx.doi.org/10.1186/s13046-016-0487-8] [PMID: 28126034]
[58]
Gao, Q.; Yuan, Y.; Gan, H.Z.; Peng, Q. Resveratrol inhibits the hedgehog signaling pathway and epithelial-mesenchymal transition and suppresses gastric cancer invasion and metastasis. Oncol. Lett., 2015, 9(5), 2381-2387.
[http://dx.doi.org/10.3892/ol.2015.2988] [PMID: 26137075]
[59]
Yang, Z.; Xie, Q.; Chen, Z.; Ni, H.; Xia, L.; Zhao, Q.; Chen, Z.; Chen, P. Resveratrol suppresses the invasion and migration of human gastric cancer cells via inhibition of MALAT1-mediated epithelial-to-mesenchymal transition. Exp. Ther. Med., 2019, 17(3), 1569-1578.
[PMID: 30783423]
[60]
Slattery, M.L.; Benson, J.; Curtin, K.; Ma, K.N.; Schaeffer, D.; Potter, J.D. Carotenoids and colon cancer. Am. J. Clin. Nutr., 2000, 71(2), 575-582.
[http://dx.doi.org/10.1093/ajcn/71.2.575] [PMID: 10648274]
[61]
Milani, A.; Basirnejad, M.; Shahbazi, S.; Bolhassani, A. Carotenoids: Biochemistry, pharmacology and treatment. Br. J. Pharmacol., 2017, 174(11), 1290-1324.
[http://dx.doi.org/10.1111/bph.13625] [PMID: 27638711]
[62]
Kim, J.H.; Lee, J.; Choi, I.J.; Kim, Y.I.; Kwon, O.; Kim, H.; Kim, J. Dietary carotenoids intake and the risk of gastric cancer: A case-control study in Korea. Nutrients, 2018, 10(8), 1031.
[http://dx.doi.org/10.3390/nu10081031] [PMID: 30087311]
[63]
Li, P.; Zhang, H.; Chen, J.; Shi, Y.; Cai, J.; Yang, J.; Wu, Y. Association between dietary antioxidant vitamins intake/blood level and risk of gastric cancer. Int. J. Cancer, 2014, 135(6), 1444-1453.
[http://dx.doi.org/10.1002/ijc.28777] [PMID: 24510802]
[64]
Larsson, S.C.; Bergkvist, L.; Näslund, I.; Rutegård, J.; Wolk, A.; Vitamin, A. retinol, and carotenoids and the risk of gastric cancer: A prospective cohort study. Am. J. Clin. Nutr., 2007, 85(2), 497-503.
[http://dx.doi.org/10.1093/ajcn/85.2.497] [PMID: 17284749]
[65]
Botterweck, A.A.M.; van den Brandt, P.A.; Goldbohm, R.A. Vitamins, carotenoids, dietary fiber, and the risk of gastric carcinoma. Cancer, 2000, 88(4), 737-748.
[http://dx.doi.org/10.1002/(SICI)1097-0142(20000215)88:4<737:AID-CNCR2>3.0.CO;2-H] [PMID: 10679641]
[66]
Smith-Warner, S.A.; Elmer, P.J.; Tharp, T.M.; Fosdick, L.; Randall, B.; Gross, M.; Wood, J.; Potter, J.D. Increasing vegetable and fruit intake: Randomized intervention and monitoring in an at-risk population. Cancer Epidemiol. Biomarkers Prev., 2000, 9(3), 307-317.
[PMID: 10750670]
[67]
Green, A.S.; Fascetti, A.J. Meeting the vitamin A requirement: The efficacy and importance of β -Carotene in animal species. Sci. World J., 2016, 2016, 7393620.
[http://dx.doi.org/10.1155/2016/7393620] [PMID: 27833936]
[68]
Nishiwaki, R.; Okuno, M.; Moriwaki, H. Beta-carotene. Jpn. J. Clin. Med., 2004, 62, 141-144.
[PMID: 15658284]
[69]
Park, Y. Choi, J.; Lim, J.W.; Kim, H. β-Carotene-induced apoptosis is mediated with loss of Ku proteins in gastric cancer AGS cells. Genes Nutr., 2015, 10(4), 17.
[http://dx.doi.org/10.1007/s12263-015-0467-1] [PMID: 25981694]
[70]
Jang, S.H.; Lim, J.W.; Kim, H. Mechanism of beta-carotene-induced apoptosis of gastric cancer cells: involvement of ataxia-telangiectasia-mutated. Ann. N. Y. Acad. Sci., 2009, 1171(1), 156-162.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04711.x] [PMID: 19723050]
[71]
Kim, Y. Seo, J.H.; Kim, H. β-Carotene and lutein inhibit hydrogen peroxide-induced activation of NF-κB and IL-8 expression in gastric epithelial AGS cells. J. Nutr. Sci. Vitaminol., 2011, 57(3), 216-223.
[http://dx.doi.org/10.3177/jnsv.57.216] [PMID: 21908944]
[72]
Lu, L. Chen, J.; Li, M.; Tang, L.; Wu, R.; Jin, L.; Liang, Z. β carotene reverses tobacco smoke induced gastric EMT via Notch pathway in vivo. Oncol. Rep., 2018, 39(4), 1867-1873.
[http://dx.doi.org/10.3892/or.2018.6246] [PMID: 29393400]
[73]
Danesh, J. Helicobacter pylori infection and gastric cancer: Systematic review of the epidemiological studies. Aliment. Pharmacol. Ther., 1999, 13(7), 851-856.
[http://dx.doi.org/10.1046/j.1365-2036.1999.00546.x] [PMID: 10383517]
[74]
González, C.A.; López-Carrillo, L. Helicobacter pylori, nutrition and smoking interactions: Their impact in gastric carcinogenesis. Scand. J. Gastroenterol., 2010, 45(1), 6-14.
[http://dx.doi.org/10.3109/00365520903401959] [PMID: 20030576]
[75]
Park, Y.; Lee, H.; Lim, J.W.; Kim, H. Inhibitory effect of β-carotene on Helicobacter pylori-induced TRAF expression and hyper-proliferation in gastric epithelial cells. Antioxidants, 2019, 8(12), 637.
[http://dx.doi.org/10.3390/antiox8120637] [PMID: 31835889]
[76]
Hwang, H.; Dwyer, J.; Russell, R.M. Diet, Helicobacter pylori infection, food preservation and gastric cancer risk: Are there new roles for preventative factors? Nutr. Rev., 1994, 52(3), 75-83.
[http://dx.doi.org/10.1111/j.1753-4887.1994.tb01394.x] [PMID: 8015750]
[77]
Kim, H.J.; Kim, M.K.; Chang, W.K.; Choi, H.S.; Choi, B.Y.; Lee, S.S. Effect of nutrient intake and Helicobacter pylori infection on gastric cancer in Korea: A case-control study. Nutr. Cancer, 2005, 52(2), 138-146.
[http://dx.doi.org/10.1207/s15327914nc5202_4] [PMID: 16201845]
[78]
Abnet, C.C.; Qiao, Y.L.; Dawsey, S.M.; Buckman, D.W.; Yang, C.S.; Blot, W.J.; Dong, Z.W.; Taylor, P.R.; Mark, S.D. Prospective study of serum retinol, beta-carotene, beta-cryptoxanthin, and lutein/zeaxanthin and esophageal and gastric cancers in China. Cancer Causes Control, 2003, 14(7), 645-655.
[http://dx.doi.org/10.1023/A:1025619608851] [PMID: 14575362]
[79]
Yang, T.; Yang, X.; Wang, X.; Wang, Y.; Song, Z. The role of tomato products and lycopene in the prevention of gastric cancer: A meta-analysis of epidemiologic studies. Med. Hypotheses, 2013, 80(4), 383-388.
[http://dx.doi.org/10.1016/j.mehy.2013.01.005] [PMID: 23352874]
[80]
Grabowska, M.; Wawrzyniak, D.; Rolle, K. Chomczyński, P.; Oziewicz, S.; Jurga, S.; Barciszewski, J. Let food be your medicine: Nutraceutical properties of lycopene. Food Funct., 2019, 10(6), 3090-3102.
[http://dx.doi.org/10.1039/C9FO00580C] [PMID: 31120074]
[81]
Luo, C.; Wu, X.G. Lycopene enhances antioxidant enzyme activities and immunity function in N-methyl-N'-nitro-N-nitrosoguanidine-enduced gastric cancer rats. Int. J. Mol. Sci., 2011, 12(5), 3340-3351.
[http://dx.doi.org/10.3390/ijms12053340] [PMID: 21686188]
[82]
Kim, M.J.; Kim, H. Anticancer effect of lycopene in gastric carcinogenesis. J. Cancer Prev., 2015, 20(2), 92-96.
[http://dx.doi.org/10.15430/JCP.2015.20.2.92] [PMID: 26151041]
[83]
Velmurugan, B.; Bhuvaneswari, V.; Nagini, S. Antiperoxidative effects of lycopene during N-methyl-N′-nitro-N-nitrosoguanidine-induced gastric carcinogenesis. Fitoterapia, 2002, 73(7-8), 604-611.
[http://dx.doi.org/10.1016/S0367-326X(02)00216-2] [PMID: 12490218]
[84]
Costa-Rodrigues, J.; Pinho, O.; Monteiro, P.R.R. Can lycopene be considered an effective protection against cardiovascular disease? Food Chem., 2018, 245, 1148-1153.
[http://dx.doi.org/10.1016/j.foodchem.2017.11.055] [PMID: 29287334]
[85]
Song, B.; Liu, K.; Gao, Y.; Zhao, L.; Fang, H.; Li, Y.; Pei, L.; Xu, Y. Lycopene and risk of cardiovascular diseases: A meta-analysis of observational studies. Mol. Nutr. Food Res., 2017, 61(9), 1601009.
[http://dx.doi.org/10.1002/mnfr.201601009] [PMID: 28318092]
[86]
Zhou, S.; Zhang, R.; Bi, T.; Lu, Y.; Jiang, L. Inhibitory effect of lycopene against the growth of human gastric cancer cells. Afr. J. Tradit. Complement. Altern. Med., 2016, 13(4), 184-190.
[http://dx.doi.org/10.21010/ajtcam.v13i4.24] [PMID: 28852735]
[87]
Zhang, B.; Gu, Y. Low expression of ERK signaling pathway affecting proliferation, cell cycle arrest and apoptosis of human gastric HGC-27 cells line. Mol. Biol. Rep., 2014, 41(6), 3659-3669.
[http://dx.doi.org/10.1007/s11033-014-3230-6] [PMID: 24554029]
[88]
Han, H.; Lim, J.W.; Kim, H. Lycopene Inhibits activation of epidermal growth factor receptor and expression of cyclooxygenase-2 in gastric cancer cells. Nutrients, 2019, 11(9), 2113.
[http://dx.doi.org/10.3390/nu11092113] [PMID: 31491956]
[89]
Kim, M.; Kim, S.H.; Lim, J.W.; Kim, H. Lycopene induces apoptosis by inhibiting nuclear translocation of β-catenin in gastric cancer cells. J. Physiol. Pharmacol., 2019, 70(4)
[PMID: 31741457]
[90]
Park, B.; Lim, J.W.; Kim, H. Lycopene treatment inhibits activation of Jak1/Stat3 and Wnt/β-catenin signaling and attenuates hyperproliferation in gastric epithelial cells. Nutr. Res., 2019, 70, 70-81.
[http://dx.doi.org/10.1016/j.nutres.2018.07.010] [PMID: 30098838]
[91]
Jia, Y.P.; Sun, L.; Yu, H.S.; Liang, L.P.; Li, W.; Ding, H.; Song, X.B.; Zhang, L.J. The pharmacological effects of lutein and zeaxanthin on visual disorders and cognition diseases. Molecules, 2017, 22(4), 610.
[http://dx.doi.org/10.3390/molecules22040610] [PMID: 28425969]
[92]
Giordano, E.; Quadro, L. Lutein, zeaxanthin and mammalian development: Metabolism, functions and implications for health. Arch. Biochem. Biophys., 2018, 647, 33-40.
[http://dx.doi.org/10.1016/j.abb.2018.04.008] [PMID: 29654731]
[93]
Johnson, E.J. Role of lutein and zeaxanthin in visual and cognitive function throughout the lifespan. Nutr. Rev., 2014, 72(9), 605-612.
[http://dx.doi.org/10.1111/nure.12133] [PMID: 25109868]
[94]
Wu, M.; Feng, Z.; Deng, Y.; Zhong, C.; Liu, Y.; Liu, J.; Zhao, X.; Fu, Y. Liquid antisolvent precipitation: An effective method for ocular targeting of lutein esters. Int. J. Nanomedicine, 2019, 14, 2667-2681.
[http://dx.doi.org/10.2147/IJN.S194068] [PMID: 31043780]
[95]
Sindhu, E.R.; Kuttan, R. Carotenoid lutein protects rats from gastric ulcer induced by ethanol. J. Basic Clin. Physiol. Pharmacol., 2012, 23(1), 33-37.
[http://dx.doi.org/10.1515/jbcpp-2011-0032] [PMID: 22865447]
[96]
Borlinghaus, J.; Albrecht, F.; Gruhlke, M.; Nwachukwu, I.; Slusarenko, A. Allicin: Chemistry and biological properties. Molecules, 2014, 19(8), 12591-12618.
[http://dx.doi.org/10.3390/molecules190812591] [PMID: 25153873]
[97]
Luo, R.; Fang, D.; Hang, H.; Tang, Z. The mechanism in gastric cancer chemoprevention by allicin. Anticancer. Agents Med. Chem., 2016, 16(7), 802-809.
[http://dx.doi.org/10.2174/1871520616666151111115443] [PMID: 26555611]
[98]
Ayaz, E.; Alpsoy, H.C. Garlic (Allium sativum) and traditional medicine. Turkiye Parazitol. Derg., 2007, 31(2), 145-149.
[PMID: 17594659]
[99]
Zhang, W.; Ha, M.; Gong, Y.; Xu, Y.; Dong, N.; Yuan, Y. Allicin induces apoptosis in gastric cancer cells through activation of both extrinsic and intrinsic pathways. Oncol. Rep., 2010, 24(6), 1585-1592.
[PMID: 21042755]
[100]
Sun, L.; Wang, X. Effects of allicin on both telomerase activity and apoptosis in gastric cancer SGC-7901 cells. World J. Gastroenterol., 2003, 9(9), 1930-1934.
[http://dx.doi.org/10.3748/wjg.v9.i9.1930] [PMID: 12970878]
[101]
Zhang, Z.D.; Li, Y.; Jiao, Z.K. Effect of local application of allicin via gastroscopy on cell proliferation and apoptosis of progressive gastric carcinoma Chinese J. Integrat. Trad. Western Medic., 2008, 28(2), 108-110.
[102]
Tao, M.; Gao, L.; Pan, J.; Wang, X. Study on the inhibitory effect of allicin on human gastric cancer cell line sgc-7901 and its mechanism. Afr. J. Tradit. Complement. Altern. Med., 2013, 11(1), 176-179.
[http://dx.doi.org/10.4314/ajtcam.v11i1.28] [PMID: 24653574]
[103]
Vanduchova, A.; Anzenbacher, P.; Anzenbacherova, E. Isothiocyanate from Broccoli, sulforaphane, and its properties. J. Med. Food, 2019, 22(2), 121-126.
[http://dx.doi.org/10.1089/jmf.2018.0024] [PMID: 30372361]
[104]
Choi, Y.H. ROS-mediated activation of AMPK plays a critical role in sulforaphane-induced apoptosis and mitotic arrest in AGS human gastric cancer cells. Gen. Physiol. Biophys., 2018, 37(2), 129-140.
[http://dx.doi.org/10.4149/gpb_2017026] [PMID: 29593120]
[105]
Jiang, X.; Liu, Y.; Ma, L.; Ji, R.; Qu, Y.; Xin, Y.; Lv, G. Chemopreventive activity of sulforaphane. Drug Des. Devel. Ther., 2018, 12, 2905-2913.
[http://dx.doi.org/10.2147/DDDT.S100534] [PMID: 30254420]
[106]
Fahey, J.W.; Haristoy, X.; Dolan, P.M.; Kensler, T.W.; Scholtus, I.; Stephenson, K.K.; Talalay, P.; Lozniewski, A. Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[ a]pyrene-induced stomach tumors. Proc. Natl. Acad. Sci. USA, 2002, 99(11), 7610-7615.
[http://dx.doi.org/10.1073/pnas.112203099] [PMID: 12032331]
[107]
Yanaka, A. Sulforaphane enhances protection and repair of gastric mucosa against oxidative stress in vitro, and demonstrates anti-inflammatory effects on Helicobacter pylori-infected gastric mucosae in mice and human subjects. Curr. Pharm. Des., 2011, 17(16), 1532-1540.
[http://dx.doi.org/10.2174/138161211796196945] [PMID: 21548875]
[108]
Yanaka, A.; Fahey, J.W.; Fukumoto, A.; Nakayama, M.; Inoue, S.; Zhang, S.; Tauchi, M.; Suzuki, H.; Hyodo, I.; Yamamoto, M. Dietary sulforaphane-rich broccoli sprouts reduce colonization and attenuate gastritis in Helicobacter pylori-infected mice and humans. Cancer Prev. Res., 2009, 2(4), 353-360.
[http://dx.doi.org/10.1158/1940-6207.CAPR-08-0192] [PMID: 19349290]
[109]
Rauf, A.; Patel, S.; Imran, M.; Maalik, A.; Arshad, M.U.; Saeed, F.; Mabkhot, Y.N.; Al-Showiman, S.S.; Ahmad, N.; Elsharkawy, E. Honokiol: An anticancer lignan. Biomed. Pharmacother., 2018, 107, 555-562.
[http://dx.doi.org/10.1016/j.biopha.2018.08.054] [PMID: 30114639]
[110]
Xia, S.; Lin, H.; Liu, H.; Lu, Z.; Wang, H.; Fan, S.; Li, N. Honokiol attenuates sepsis-associated acute kidney injury via the inhibition of oxidative stress and inflammation. Inflammation, 2019, 42(3), 826-834.
[http://dx.doi.org/10.1007/s10753-018-0937-x] [PMID: 30680694]
[111]
Liao, K.; Sun, L. Roles of the Hsp90-calcineurin pathway in the antifungal activity of Honokiol. J. Microbiol. Biotechnol., 2018, 28(7), 1086-1093.
[http://dx.doi.org/10.4014/jmb.1801.01024] [PMID: 29913547]
[112]
Talarek, S.; Listos, J.; Barreca, D.; Tellone, E.; Sureda, A.; Nabavi, S.F.; Braidy, N.; Nabavi, S.M. Neuroprotective effects of honokiol: From chemistry to medicine. Biofactors, 2017, 43(6), 760-769.
[http://dx.doi.org/10.1002/biof.1385] [PMID: 28817221]
[113]
Liu, S.H.; Wang, K.B.; Lan, K.H.; Lee, W.J.; Pan, H.C.; Wu, S.M.; Peng, Y.C.; Chen, Y.C.; Shen, C.C.; Cheng, H.C.; Liao, K.K.; Sheu, M.L. Calpain/SHP-1 interaction by honokiol dampening peritoneal dissemination of gastric cancer in nu/nu mice. PLoS One, 2012, 7(8), e43711.
[http://dx.doi.org/10.1371/journal.pone.0043711] [PMID: 22937084]
[114]
Sheu, M.L.; Liu, S.H.; Lan, K.H. Honokiol induces calpain-mediated glucose-regulated protein-94 cleavage and apoptosis in human gastric cancer cells and reduces tumor growth. PLoS One, 2007, 2(10), e1096.
[http://dx.doi.org/10.1371/journal.pone.0001096] [PMID: 17971859]
[115]
Liu, S.H.; Lee, W.J.; Lai, D.W.; Wu, S.M.; Liu, C.Y.; Tien, H.R.; Chiu, C.S.; Peng, Y.C.; Jan, Y.J.; Chao, T.H.; Pan, H.C.; Sheu, M.L. Honokiol confers immunogenicity by dictating calreticulin exposure, activating ER stress and inhibiting epithelial-to-mesenchymal transition. Mol. Oncol., 2015, 9(4), 834-849.
[http://dx.doi.org/10.1016/j.molonc.2014.12.009] [PMID: 25619450]
[116]
Yan, B.; Peng, Z.Y. Honokiol induces cell cycle arrest and apoptosis in human gastric carcinoma MGC-803 cell line. Int. J. Clin. Exp. Med., 2015, 8(4), 5454-5461.
[PMID: 26131123]
[117]
Liu, J.; Lee, J.; Salazar Hernandez, M.A.; Mazitschek, R.; Ozcan, U. Treatment of obesity with celastrol. Cell, 2015, 161(5), 999-1011.
[http://dx.doi.org/10.1016/j.cell.2015.05.011] [PMID: 26000480]
[118]
Venkatesha, S.H.; Dudics, S.; Astry, B.; Moudgil, K.D. Control of autoimmune inflammation by celastrol, a natural triterpenoid. Pathog. Dis., 2016, 74(6), ftw059.
[http://dx.doi.org/10.1093/femspd/ftw059] [PMID: 27405485]
[119]
Sha, M.; Ye, J.; Zhang, L.; Luan, Z.; Chen, Y.; Huang, J. Celastrol induces apoptosis of gastric cancer cells by miR-21 inhibiting PI3K/Akt-NF-κB signaling pathway. Pharmacology, 2014, 93(1-2), 39-46.
[http://dx.doi.org/10.1159/000357683] [PMID: 24434352]
[120]
Sha, M.; Ye, J.; Zhang, L.; Luan, Z.; Chen, Y. Celastrol induces apoptosis of gastric cancer cells by miR-146a inhibition of NF-κB activity. Cancer Cell Int., 2013, 13(1), 50.
[http://dx.doi.org/10.1186/1475-2867-13-50] [PMID: 23706078]
[121]
Sha, M.; Ye, J.; Luan, Z.; Guo, T.; Wang, B.; Huang, J. Celastrol induces cell cycle arrest by microRNA-21-mTOR-mediated inhibition p27 protein degradation in gastric cancer. Cancer Cell Int., 2015, 15(1), 101.
[http://dx.doi.org/10.1186/s12935-015-0256-3] [PMID: 26500453]
[122]
Cheng, C.; Dong, W. Aloe-emodin induces endoplasmic reticulum stress-dependent apoptosis in colorectal cancer cells. Med. Sci. Monit., 2018, 24, 6331-6339.
[http://dx.doi.org/10.12659/MSM.908400] [PMID: 30199885]
[123]
Guo, J.; Xiao, B.; Liu, Q.; Gong, Z.; Le, Y. Suppression of C-myc expression associates with anti-proliferation of aloe-emodin on gastric cancer cells. Cancer Invest., 2008, 26(4), 369-374.
[http://dx.doi.org/10.1080/07357900701788130] [PMID: 18443957]
[124]
Chen, R.; Zhang, J.; Hu, Y.; Wang, S.; Chen, M.; Wang, Y. Potential antineoplastic effects of Aloe-emodin: A comprehensive review. Am. J. Chin. Med., 2014, 42(2), 275-288.
[http://dx.doi.org/10.1142/S0192415X14500189] [PMID: 24707862]
[125]
Acevedo-Duncan, M.; Russell, C.; Patel, S.; Patel, R. Aloe-emodin modulates PKC isozymes, inhibits proliferation, and induces apoptosis in U-373MG glioma cells. Int. Immunopharmacol., 2004, 4(14), 1775-1784.
[http://dx.doi.org/10.1016/j.intimp.2004.07.012] [PMID: 15531293]
[126]
Guo, J.; Xiao, B.; Zhang, S.; Liu, D.; Liao, Y.; Sun, Q. Growth inhibitory effects of gastric cancer cells with an increase in S phase and alkaline phosphatase activity repression by aloe-emodin. Cancer Biol. Ther., 2007, 6(1), 85-88.
[http://dx.doi.org/10.4161/cbt.6.1.3553] [PMID: 17172820]
[127]
Chihara, T.; Shimpo, K.; Beppu, H.; Yamamoto, N.; Kaneko, T.; Wakamatsu, K.; Sonoda, S. Effects of aloe-emodin and emodin on proliferation of the MKN45 human gastric cancer cell line. Asian Pac. J. Cancer Prev., 2015, 16(9), 3887-3891.
[http://dx.doi.org/10.7314/APJCP.2015.16.9.3887] [PMID: 25987055]
[128]
Tian, J.; Liu, Y.; Chen, K. Ginkgo biloba extract in vascular protection: Molecular mechanisms and clinical applications. Curr. Vasc. Pharmacol., 2017, 15(6), 532-548.
[PMID: 28707602]
[129]
Li, Y.; Zhang, Y.; Wen, M.; Zhang, J.; Zhao, X.; Zhao, Y.; Deng, J. Ginkgo biloba extract prevents acute myocardial infarction and suppresses the inflammation- and apoptosis-regulating p38 mitogen-activated protein kinases, nuclear factor-κB and B-cell lymphoma 2 signaling pathways. Mol. Med. Rep., 2017, 16(3), 3657-3663.
[http://dx.doi.org/10.3892/mmr.2017.6999] [PMID: 28713946]
[130]
Singh, S.K.; Srivastav, S.; Castellani, R.J.; Plascencia-Villa, G.; Perry, G. Neuroprotective and antioxidant effect of Ginkgo biloba extract against AD and other neurological disorders. Neurotherapeutics, 2019, 16(3), 666-674.
[http://dx.doi.org/10.1007/s13311-019-00767-8] [PMID: 31376068]
[131]
Qian, Y.; Xia, L.; Shi, W.; Sun, J.J.; Sun, Y.Q. The effect of EGB on proliferation of gastric carcinoma SGC7901 cells. Clin. Transl. Oncol., 2016, 18(5), 521-526.
[http://dx.doi.org/10.1007/s12094-015-1399-3] [PMID: 26489423]
[132]
Liu, S.Q.; Xu, C.Y.; Qin, M.B.; Tan, L.; Zhuge, C.F.; Mao, Y.B.; Lai, M.Y.; Huang, J. Ginkgo biloba extract enhances chemotherapy sensitivity and reverses chemoresistance through suppression of the KSR1-mediated ERK1/2 pathway in gastric cancer cells. Oncol. Rep., 2015, 33(6), 2871-2882.
[http://dx.doi.org/10.3892/or.2015.3923] [PMID: 25962735]
[133]
Fu, Z.; Lin, L.; Liu, S.; Qin, M.; He, S.; Zhu, L.; Huang, J. Ginkgo Biloba extract inhibits metastasis and ERK/Nuclear Factor kappa B (NF-κB) signaling pathway in gastric cancer. Med. Sci. Monit., 2019, 25, 6836-6845.
[http://dx.doi.org/10.12659/MSM.915146] [PMID: 31509521]
[134]
Iwasaki, Y.; Matsui, T.; Arakawa, Y. The protective and hormonal effects of proanthocyanidin against gastric mucosal injury in Wistar rats. J. Gastroenterol., 2004, 39(9), 831-837.
[http://dx.doi.org/10.1007/s00535-004-1399-5] [PMID: 15565401]
[135]
Rossi, M.; Rosato, V.; Bosetti, C.; Lagiou, P.; Parpinel, M.; Bertuccio, P.; Negri, E.; La Vecchia, C. Flavonoids, proanthocyanidins, and the risk of stomach cancer. Cancer Causes Control, 2010, 21(10), 1597-1604.
[http://dx.doi.org/10.1007/s10552-010-9588-4] [PMID: 20521092]
[136]
Nie, C.; Zhou, J.; Qin, X.; Shi, X.; Zeng, Q.; Liu, J.; Yan, S.; Zhang, L. Reduction of apoptosis by proanthocyanidin-induced autophagy in the human gastric cancer cell line MGC-803. Oncol. Rep., 2016, 35(2), 649-658.
[http://dx.doi.org/10.3892/or.2015.4419] [PMID: 26572257]
[137]
Lim, S.C.; Hwang, H.; Han, S.I. Ellagic acid inhibits extracellular acidity-induced invasiveness and expression of COX1, COX2, snail, twist 1, and c-myc in gastric carcinoma cells. Nutrients, 2019, 11(12), 3023.
[http://dx.doi.org/10.3390/nu11123023] [PMID: 31835645]
[138]
Jang, M.G.; Ko, H.C.; Kim, S.J. Effects of p-coumaric acid on microRNA expression profiles in SNU-16 human gastric cancer cells. Genes Genomics, 2020, 42(7), 817-825.
[http://dx.doi.org/10.1007/s13258-020-00944-6] [PMID: 32462517]
[139]
Najafi, M.; Mortezaee, K.; Rahimifard, M.; Farhood, B.; Haghi-Aminjan, H. The role of curcumin/curcuminoids during gastric cancer chemotherapy: A systematic review of non-clinical study. Life Sci., 2020, 257, 118051.
[http://dx.doi.org/10.1016/j.lfs.2020.118051] [PMID: 32634426]
[140]
Mann, J. Natural products in cancer chemotherapy: Past, present and future. Nat. Rev. Cancer, 2002, 2(2), 143-148.
[http://dx.doi.org/10.1038/nrc723] [PMID: 12635177]
[141]
Cao, A.L.; Tang, Q.F.; Zhou, W.C.; Qiu, Y.Y.; Hu, S.J.; Yin, P.H. Ras/ERK signaling pathway is involved in curcumin-induced cell cycle arrest and apoptosis in human gastric carcinoma AGS cells. J. Asian Nat. Prod. Res., 2015, 17(1), 56-63.
[http://dx.doi.org/10.1080/10286020.2014.951923] [PMID: 25492214]
[142]
Uehara, Y.; Inoue, M.; Fukuda, K.; Yamakoshi, H.; Hosoi, Y.; Kanda, H.; Oshima, M.; Iwabuchi, Y.; Shibata, H. Inhibition of β-catenin and STAT3 with a curcumin analog suppresses gastric carcinogenesis in vivo. Gastric Cancer, 2015, 18(4), 774-783.
[http://dx.doi.org/10.1007/s10120-014-0434-3] [PMID: 25331984]
[143]
Choudhary, S.; Singh, P.K.; Verma, H.; Singh, H.; Silakari, O. Success stories of natural product-based hybrid molecules for multi-factorial diseases. Eur. J. Med. Chem., 2018, 151, 62-97.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.057] [PMID: 29605809]
[144]
Salminen, A.; Lehtonen, M.; Suuronen, T.; Kaarniranta, K.; Huuskonen, J. Terpenoids: Natural inhibitors of NF-κB signaling with anti-inflammatory and anticancer potential. Cell. Mol. Life Sci., 2008, 65(19), 2979-2999.
[http://dx.doi.org/10.1007/s00018-008-8103-5] [PMID: 18516495]
[145]
Lee, C.Y.; Yang, J.J.; Lee, S.S.; Chen, C.J.; Huang, Y.C.; Huang, K.H.; Kuan, Y.H. Protective effect of Ginkgo biloba leaves extract, EGb761, on endotoxin-induced acute lung injury via a JNK- and Akt-dependent NFκB pathway. J. Agric. Food Chem., 2014, 62(27), 6337-6344.
[http://dx.doi.org/10.1021/jf501913b] [PMID: 24956234]
[146]
Wang, R.; Shao, X.; Yang, J.; Liu, Z.; Chew, L.; Shao, Y. Ginkgo biloba extract mechanism inhibits hepatocellular carcinoma through the nuclear factor-κB/p53 signaling pathway. J. environ pathology, toxicology and oncology: Official organ Int. Soc. Environment. Toxicol Cancer, 2020, 39(2), 179-189.
[147]
Zhang, L.; Li, G.; Tao, S.; Xia, P.; Chaudhry, N.; Kaura, S.; Stone, S.S.; Liu, M. Ginkgo biloba extract reduces cardiac and brain inflammation in rats fed a HFD and exposed to chronic mental stress through NF-κB inhibition. Mediators Inflamm., 2022, 2022, 1-15.
[http://dx.doi.org/10.1155/2022/2408598] [PMID: 35677735]
[148]
Palozza, P.; Serini, S.; Torsello, A.; Di Nicuolo, F.; Maggiano, N.; Ranelletti, F.O.; Wolf, F.I.; Calviello, G. Mechanism of activation of caspase cascade during beta-carotene-induced apoptosis in human tumor cells. Nutr. Cancer, 2003, 47(1), 76-87.
[http://dx.doi.org/10.1207/s15327914nc4701_10] [PMID: 14769541]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy