Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Mini-Review Article

GPR18 and GPR55-related Ligands Serving as Antagonists or Agonists: Current Situation, Challenges and Perspectives

Author(s): Linjie Zhang, Yiwen Fang, Sijing Hang, Wenhui Wu, Ruilong Sheng and Ruihua Guo*

Volume 19, Issue 9, 2023

Published on: 27 April, 2023

Page: [838 - 847] Pages: 10

DOI: 10.2174/1573406419666230406095220

Price: $65

Abstract

GPCR superfamily, the largest known family of membrane receptors, consists of six classes from A to F. GPR18 and GPR55, δ-branch of A class, had been reported to have no confirmed endogenous ligand and were named as “orphan receptors”. Previous studies suggest that both GPR18 and GPR55 are possibly related to the migration and proliferation of cancer cells, macrophages and other inflammation-associated immune cells. Thus, they may be potential targets for inflammation, cancer and analgesia therapy. In this paper, we aimed to summarize the chemical structures and bioactivities of the agonists and antagonists of GPR18 and GPR55; moreover, we have briefly discussed the challenges and future perspectives in this field. This review will be beneficial for further design and synthesis of efficient agonists and antagonists towards GPR18 and GPR55- related disease treatment.

Keywords: GPR18, GPR55, antagonist, agonist, cannabinoid receptor, orphan receptors.

Graphical Abstract
[1]
Thompson, M.D.; Burnham, W.M.; Cole, D.E.C. The G protein-coupled receptors: Pharmacogenetics and disease. Crit. Rev. Clin. Lab. Sci., 2005, 42, 311-389.
[2]
Lefkowitz, R.J. Historical review: A brief history and personal retrospective of seven-transmembrane receptors. Trends Pharmacol. Sci., 2004, 25(8), 413-422.
[http://dx.doi.org/10.1016/j.tips.2004.06.006] [PMID: 15276710]
[3]
Santos, R.; Ursu, O.; Gaulton, A.; Bento, A.P.; Donadi, R.S.; Bologa, C.G.; Karlsson, A.; Al-Lazikani, B.; Hersey, A.; Oprea, T.I.; Overington, J.P. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov., 2017, 16(1), 19-34.
[http://dx.doi.org/10.1038/nrd.2016.230] [PMID: 27910877]
[4]
Stadel, J.; Wilson, S.; Bergsma, D.J. Orphan G protein-coupled receptors: a neglected opportunity for pioneer drug discovery. Trends Pharmacol. Sci., 1997, 18(11), 430-437.
[http://dx.doi.org/10.1016/S0165-6147(97)01117-6] [PMID: 9426471]
[5]
Fredriksson, R.; Lagerström, M.C.; Lundin, L.G.; Schiöth, H.B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol., 2003, 63(6), 1256-1272.
[http://dx.doi.org/10.1124/mol.63.6.1256] [PMID: 12761335]
[6]
Gantz, I.; Muraoka, A.; Yang, Y.K.; Samuelson, L.C.; Zimmerman, E.M.; Cook, H.; Yamada, T. Cloning and chromosomal localization of a gene (GPR18) encoding a novel seven transmembrane receptor highly expressed in spleen and testis. Genomics, 1997, 42(3), 462-466.
[http://dx.doi.org/10.1006/geno.1997.4752] [PMID: 9205118]
[7]
Samuelson, L.C.; Swanberg, L.J.; Gantz, I. Mapping of the novel G protein-coupled receptor Gprl8 to distal mouse chromosome 14. Mamm. Genome, 1996, 7(12), 920-921.
[http://dx.doi.org/10.1007/s003359900272] [PMID: 8995768]
[8]
Chiang, N.; Dalli, J.; Colas, R.A.; Serhan, C.N. Identification of resolvin D2 receptor mediating resolution of infections and organ protection. J. Exp. Med., 2015, 212(8), 1203-1217.
[http://dx.doi.org/10.1084/jem.20150225] [PMID: 26195725]
[9]
Ye, Y.; Scheff, N.N.; Bernabé, D.; Salvo, E.; Ono, K.; Liu, C.; Veeramachaneni, R.; Viet, C.T.; Viet, D.T.; Dolan, J.C.; Schmidt, B.L. Anti-cancer and analgesic effects of resolvin D2 in oral squamous cell carcinoma. Neuropharmacology, 2018, 139, 182-193.
[http://dx.doi.org/10.1016/j.neuropharm.2018.07.016] [PMID: 30009833]
[10]
Siddiqui, Y.D.; Omori, K.; Ito, T.; Yamashiro, K.; Nakamura, S.; Okamoto, K.; Ono, M.; Yamamoto, T.; Van Dyke, T.E.; Takashiba, S. Resolvin D2 induces resolution of periapical inflammation and promotes healing of periapical lesions in rat periapical periodontitis. Front. Immunol., 2019, 10, 307.
[http://dx.doi.org/10.3389/fimmu.2019.00307] [PMID: 30863409]
[11]
Wang, X.; Sumida, H.; Cyster, J.G. GPR18 is required for a normal CD8αα intestinal intraepithelial lymphocyte compartment. J. Exp. Med., 2014, 211(12), 2351-2359.
[http://dx.doi.org/10.1084/jem.20140646] [PMID: 25348153]
[12]
Takenouchi, R.; Inoue, K.; Kambe, Y.; Miyata, A. N-arachidonoyl glycine induces macrophage apoptosis via GPR18. Biochem. Biophys. Res. Commun., 2012, 418(2), 366-371.
[http://dx.doi.org/10.1016/j.bbrc.2012.01.027] [PMID: 22266325]
[13]
Chiang, N.; de la Rosa, X.; Libreros, S.; Serhan, C.N. Novel resolvin D2 receptor axis in infectious inflammation. J. Immunol., 2017, 198(2), 842-851.
[http://dx.doi.org/10.4049/jimmunol.1601650] [PMID: 27994074]
[14]
McHugh, D.; Hu, S.S.J.; Rimmerman, N.; Juknat, A.; Vogel, Z.; Walker, J.M.; Bradshaw, H.B. N-arachidonoyl glycine, an abundant endogenous lipid, potently drives directed cellular migration through GPR18, the putative abnormal cannabidiol receptor. BMC Neurosci., 2010, 11(1), 44.
[http://dx.doi.org/10.1186/1471-2202-11-44] [PMID: 20346144]
[15]
McHugh, D.; Wager-Miller, J.; Page, J.; Bradshaw, H.B. siRNA knockdown of GPR18 receptors in BV-2 microglia attenuates N-arachidonoyl glycine-induced cell migration. J. Mol. Signal., 2012, 7(1), 10.
[http://dx.doi.org/10.1186/1750-2187-7-10] [PMID: 22834922]
[16]
Qin, Y.; Verdegaal, E.M.E.; Siderius, M.; Bebelman, J.P.; Smit, M.J.; Leurs, R.; Willemze, R.; Tensen, C.P.; Osanto, S. Quantitative expression profiling of G-protein- coupled receptors (GPCRs) in metastatic melanoma: constitutively active orphan GPCR GPR18 as novel drug target. Pigment Cell Melanoma Res., 2011, 24, 207-218.
[http://dx.doi.org/10.1111/j.1755-148X.2010.00781.x] [PMID: 20880198]
[17]
Flegel, C.; Vogel, F.; Hofreuter, A.; Wojcik, S.; Schoeder, C. Kieć-Kononowicz, K.; Brockmeyer, N.H.; Müller, C.E.; Becker, C.; Altmüller, J.; Hatt, H.; Gisselmann, G. Characterization of non-olfactory GPCRs in human sperm with a focus on GPR18. Sci. Rep., 2016, 6(1), 32255.
[http://dx.doi.org/10.1038/srep32255] [PMID: 27572937]
[18]
Jablonski, K.A.; Amici, S.A.; Webb, L.M.; Ruiz-Rosado, J.D.; Popovich, P.G.; Partida-Sanchez, S.; Guerau-de-Arellano, M. Novel Markers to Delineate Murine M1 and M2 Macrophages. PLoS One, 2015, 10(12), e0145342.
[http://dx.doi.org/10.1371/journal.pone.0145342] [PMID: 26699615]
[19]
McHugh, D. Page, J.; Dunn, E.; Bradshaw, H.B. Δ9-Tetrahydrocannabinol and N-arachidonyl glycine are full agonists at GPR18 receptors and induce migration in human endometrial HEC-1B cells. Br. J. Pharmacol., 2012, 165(8), 2414-2424.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01497.x] [PMID: 21595653]
[20]
McHugh, D. GPR18 in microglia: implications for the CNS and endocannabinoid system signalling. Br. J. Pharmacol., 2012, 167(8), 1575-1582.
[http://dx.doi.org/10.1111/j.1476-5381.2012.02019.x] [PMID: 22563843]
[21]
Morales, P.; Lago-Fernandez, A.; Hurst, D.P.; Sotudeh, N.; Brailoiu, E.; Reggio, P.H.; Abood, M.E.; Jagerovic, N. Therapeutic exploitation of GPR18: Beyond the cannabinoids? J. Med. Chem., 2020, 63(23), 14216-14227.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00926] [PMID: 32914978]
[22]
Park, J.; Langmead, C.J.; Riddy, D.M. New advances in targeting the resolution of inflammation: Implications for specialized pro-resolving mediator GPCR drug discovery. ACS Pharmacol. Transl. Sci., 2020, 3(1), 88-106.
[http://dx.doi.org/10.1021/acsptsci.9b00075] [PMID: 32259091]
[23]
Sotudeh, N.; Morales, P.; Hurst, D.P.; Lynch, D.L.; Reggio, P.H. Towards a molecular understanding of the cannabinoid related orphan receptor GPR18: A focus on its constitutive activity. Int. J. Mol. Sci., 2019, 20(9), 2300.
[http://dx.doi.org/10.3390/ijms20092300] [PMID: 31075933]
[24]
Zuo, G.; Zhang, D.; Mu, R.; Shen, H.; Li, X.; Wang, Z.; Li, H.; Chen, G. Resolvin D2 protects against cerebral ischemia/reperfusion injury in rats. Mol. Brain, 2018, 11(1), 9.
[http://dx.doi.org/10.1186/s13041-018-0351-1] [PMID: 29439730]
[25]
Nazir, M.; Harms, H.; Loef, I.; Kehraus, S.; El Maddah, F.; Arslan, I.; Rempel, V.; Müller, C.; König, G. GPR18 inhibiting amauromine and the novel triterpene glycoside auxarthonoside from the sponge-derived fungus Auxarthron reticulatum. Planta Med., 2015, 81(12/13), 1141-1145.
[http://dx.doi.org/10.1055/s-0035-1545979] [PMID: 26287693]
[26]
Liu, B.; Song, S.; Jones, P.M.; Persaud, S.J. GPR55: From orphan to metabolic regulator? Pharmacol. Ther., 2015, 145, 35-42.
[http://dx.doi.org/10.1016/j.pharmthera.2014.06.007] [PMID: 24972076]
[27]
Kremshofer, J.; Siwetz, M.; Berghold, V.M.; Lang, I.; Huppertz, B.; Gauster, M. A role for GPR55 in human placental venous endothelial cells. Histochem. Cell Biol., 2015, 144(1), 49-58.
[http://dx.doi.org/10.1007/s00418-015-1321-7] [PMID: 25869640]
[28]
Harms, H.; Rempel, V.; Kehraus, S.; Kaiser, M.; Hufendiek, P.; Müller, C.E.; König, G.M. Indoloditerpenes from a marine-derived fungal strain of Dichotomomyces cejpii with antagonistic activity at GPR18 and cannabinoid receptors. J. Nat. Prod., 2014, 77(3), 673-677.
[http://dx.doi.org/10.1021/np400850g] [PMID: 24471526]
[29]
Meza-Aviña, M.E.; Lingerfelt, M.A.; Console-Bram, L.M.; Gamage, T.F.; Sharir, H.; Gettys, K.E.; Hurst, D.P.; Kotsikorou, E.; Shore, D.M.; Caron, M.G.; Rao, N.; Barak, L.S.; Abood, M.E.; Reggio, P.H.; Croatt, M.P. Design, synthesis, and analysis of antagonists of GPR55: Piperidine-substituted 1,3,4-oxadiazol-2-ones. Bioorg. Med. Chem. Lett., 2016, 26(7), 1827-1830.
[http://dx.doi.org/10.1016/j.bmcl.2016.02.030] [PMID: 26916440]
[30]
Schoeder, C.T.; Meyer, A.; Mahardhika, A.B.; Thimm, D.; Blaschke, T.; Funke, M.; Müller, C.E. Development of chromen-4-one derivatives as (Ant)agonists for the lipid-activated G protein- coupled receptor GPR55 with tunable efficacy. ACS Omega, 2019, 4(2), 4276-4295.
[http://dx.doi.org/10.1021/acsomega.8b03695]
[31]
Pertwee, R.G. Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol. Ther., 1997, 74(2), 129-180.
[http://dx.doi.org/10.1016/S0163-7258(97)82001-3] [PMID: 9336020]
[32]
Núñez, E.; Benito, C.; Pazos, M.R.; Barbachano, A.; Fajardo, O.; González, S.; Tolón, R.M.; Romero, J. Cannabinoid CB 2 receptors are expressed by perivascular microglial cells in the human brain: An immunohistochemical study. Synapse, 2004, 53(4), 208-213.
[http://dx.doi.org/10.1002/syn.20050] [PMID: 15266552]
[33]
Van Sickle, M.D.; Duncan, M.; Kingsley, P.J.; Mouihate, A.; Urbani, P.; Mackie, K.; Stella, N.; Makriyannis, A.; Piomelli, D.; Davison, J.S.; Marnett, L.J.; Di Marzo, V.; Pittman, Q.J.; Patel, K.D.; Sharkey, K.A. Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science, 2005, 310(5746), 329-332.
[http://dx.doi.org/10.1126/science.1115740] [PMID: 16224028]
[34]
Fernandez, T.J.; De Maria, M.; Lobingier, B.T. A cellular perspective of bias at G protein coupled receptors. Protein Sci., 2020, 29(6), 1345-1354.
[http://dx.doi.org/10.1002/pro.3872] [PMID: 32297394]
[35]
Elsebai, M.F.; Rempel, V.; Schnakenburg, G.; Kehraus, S.; Müller, C.E.; König, G.M. Identification of a potent and selective cannabinoid CB1 receptor antagonist from Auxarthron reticulatum. ACS Med. Chem. Lett., 2011, 2(11), 866-869.
[http://dx.doi.org/10.1021/ml200183z] [PMID: 24900275]
[36]
Ansar Ahmed, S.; Gogal, R.M., Jr; Walsh, J.E. A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to [3H]thymidine incorporation assay. J. Immunol. Methods, 1994, 170(2), 211-224.
[http://dx.doi.org/10.1016/0022-1759(94)90396-4] [PMID: 8157999]
[37]
Huber, W.; Koella, J.C. A comparison of three methods of estimating EC50 in studies of drug resistance of malaria parasites. Acta Trop., 1993, 55(4), 257-261.
[http://dx.doi.org/10.1016/0001-706X(93)90083-N] [PMID: 8147282]
[38]
Pacher, P.; Bátkai, S.; Kunos, G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol. Rev., 2006, 58(3), 389-462.
[http://dx.doi.org/10.1124/pr.58.3.2] [PMID: 16968947]
[39]
Hohmann, A.G.; Tsou, K.; Walker, J.M. Cannabinoid suppression of noxious heat-evoked activity in wide dynamic range neurons in the lumbar dorsal horn of the rat. J. Neurophysiol., 1999, 81(2), 575-583.
[http://dx.doi.org/10.1152/jn.1999.81.2.575] [PMID: 10036261]
[40]
Huang, Y.C.; Wang, S.J.; Chiou, L.C.; Gean, P.W. Mediation of amphetamine-induced long-term depression of synaptic transmission by CB1 cannabinoid receptors in the rat amygdala. J. Neurosci., 2003, 23(32), 10311-10320.
[http://dx.doi.org/10.1523/JNEUROSCI.23-32-10311.2003] [PMID: 14614090]
[41]
Ibrahim, M.M.; Deng, H.; Zvonok, A.; Cockayne, D.A.; Kwan, J.; Mata, H.P.; Vanderah, T.W.; Lai, J.; Porreca, F.; Makriyannis, A.; Malan, T.P. Jr Activation of CB 2 cannabinoid receptors by AM1241 inhibits experimental neuropathic pain: Pain inhibition by receptors not present in the CNS. Proc. Natl. Acad. Sci., 2003, 100(18), 10529-10533.
[http://dx.doi.org/10.1073/pnas.1834309100] [PMID: 12917492]
[42]
Ibrahim, M.M.; Porreca, F.; Lai, J.; Albrecht, P.J.; Rice, F.L.; Khodorova, A.; Davar, G.; Makriyannis, A. CB2 cannabinoid receptor activation produces antinociception by stimulating peripheral release of endogenous opioids. Proc. Natl. Acad. Sci., 2005, 102, 3093-3098.
[43]
Marsicano, G.; Goodenough, S.; Monory, K.; Hermann, H.; Eder, M.; Cannich, A.; Azad, S.C.; Cascio, M.G.; Gutiérrez, S.O.; van der Stelt, M.; López-Rodríguez, M.L.; Casanova, E.; Schütz, G.; Zieglgänsberger, W.; Di Marzo, V.; Behl, C.; Lutz, B. CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science, 2003, 302(5642), 84-88.
[http://dx.doi.org/10.1126/science.1088208] [PMID: 14526074]
[44]
Rempel, V.; Atzler, K.; Behrenswerth, A.; Karcz, T.; Schoeder, C.; Hinz, S.; Kaleta, M.; Thimm, D.; Kiec-Kononowicz, K.; Müller, C.E. Bicyclic imidazole-4-one derivatives: a new class of antagonists for the orphan G protein-coupled receptors GPR18 and GPR55. MedChemComm, 2014, 5(5), 632-649.
[http://dx.doi.org/10.1039/C3MD00394A]
[45]
Alexander, S.P.H. 2012 cannabinoid themed section. Br. J. Pharmacol., 2012, 167(8), 1573-1574.
[http://dx.doi.org/10.1111/j.1476-5381.2012.02238.x] [PMID: 23194253]
[46]
Console-Bram, L.; Marcu, J.; Abood, M.E. Cannabinoid receptors: nomenclature and pharmacological principles. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2012, 38(1), 4-15.
[http://dx.doi.org/10.1016/j.pnpbp.2012.02.009] [PMID: 22421596]
[47]
Schoeder, C.T.; Kaleta, M.; Mahardhika, A.B.; Olejarz-Maciej, A.; Łażewska, D.; Kieć-Kononowicz, K.; Müller, C.E. Structure-activity relationships of imidazothiazinones and analogs as antagonists of the cannabinoid-activated orphan G protein-coupled receptor GPR18. Eur. J. Med. Chem., 2018, 155, 381-397.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.050] [PMID: 29902723]
[48]
Console-Bram, L.; Brailoiu, E.; Brailoiu, G.C.; Sharir, H.; Abood, M.E. Activation of GPR18 by cannabinoid compounds: a tale of biased agonism. Br. J. Pharmacol., 2014, 171(16), 3908-3917.
[http://dx.doi.org/10.1111/bph.12746] [PMID: 24762058]
[49]
Finlay, D.B.; Joseph, W.R.; Grimsey, N.L.; Glass, M. GPR18 undergoes a high degree of constitutive trafficking but is unresponsive to N-Arachidonoyl Glycine. PeerJ, 2016, 4, e1835.
[http://dx.doi.org/10.7717/peerj.1835] [PMID: 27018161]
[50]
Schoeder, C.T.; Mahardhika, A.B.; Drabczyńska, A.; Kieć-Kononowicz, K.; Müller, C.E. Discovery of tricyclic xanthines as agonists of the cannabinoid-activated orphan G- protein-coupled receptor GPR18. ACS Med. Chem. Lett., 2020, 11(10), 2024-2031.
[http://dx.doi.org/10.1021/acsmedchemlett.0c00208] [PMID: 33062188]
[51]
Hess, C.; Schoeder, C.T.; Pillaiyar, T.; Madea, B.; Müller, C.E. Pharmacological evaluation of synthetic cannabinoids identified as constituents of spice. Forensic Toxicol., 2016, 34(2), 329-343.
[http://dx.doi.org/10.1007/s11419-016-0320-2] [PMID: 27429655]
[52]
Kohno, M.; Hasegawa, H.; Inoue, A.; Muraoka, M.; Miyazaki, T.; Oka, K.; Yasukawa, M. Identification of N-arachidonylglycine as the endogenous ligand for orphan G-protein-coupled receptor GPR18. Biochem. Biophys. Res. Commun., 2006, 347(3), 827-832.
[http://dx.doi.org/10.1016/j.bbrc.2006.06.175] [PMID: 16844083]
[53]
Munro, S.; Thomas, K.L.; Abu-Shaar, M. Molecular characterization of a peripheral receptor for cannabinoids. Nature, 1993, 365(6441), 61-65.
[http://dx.doi.org/10.1038/365061a0] [PMID: 7689702]
[54]
Yan, Y.X.; Boldt-Houle, D.M.; Tillotson, B.P.; Gee, M.A.; D’Eon, B.J.; Chang, X.J.; Olesen, C.E.M.; Palmer, M.A.J. Cell-based high-throughput screening assay system for monitoring G protein-coupled receptor activation using β-galactosidase enzyme complementation technology. SLAS Discov., 2002, 7(5), 451-459.
[http://dx.doi.org/10.1177/108705702237677] [PMID: 14599361]
[55]
McHugh, D. Roskowski, D.; Xie, S.; Bradshaw, H.B. Δ9-THC and N-arachidonoyl glycine regulate BV-2 microglial morphology and cytokine release plasticity: implications for signaling at GPR18. Front. Pharmacol., 2014, 4, 162.
[http://dx.doi.org/10.3389/fphar.2013.00162] [PMID: 24427137]
[56]
Grabiec, U.; Hohmann, T.; Ghadban, C.; Rothgänger, C.; Wong, D.; Antonietti, A.; Groth, T.; Mackie, K.; Dehghani, F. Protective effect of N-arachidonoyl glycine-GPR18 signaling after excitotoxical lesion in murine organotypic hippocampal slice cultures. Int. J. Mol. Sci., 2019, 20(6), 1266.
[http://dx.doi.org/10.3390/ijms20061266] [PMID: 30871175]
[57]
Peters, M.F.; Scott, C.W. Evaluating cellular impedance assays for detection of GPCR pleiotropic signaling and functional selectivity. SLAS Discov., 2009, 14(3), 246-255.
[http://dx.doi.org/10.1177/1087057108330115] [PMID: 19211780]
[58]
Lee, P.H.; Gao, A.; van Staden, C.; Ly, J.; Salon, J.; Xu, A.; Fang, Y.; Verkleeren, R. Evaluation of dynamic mass redistribution technology for pharmacological studies of recombinant and endogenously expressed g protein-coupled receptors. Assay Drug Dev. Technol., 2008, 6(1), 83-94.
[http://dx.doi.org/10.1089/adt.2007.126] [PMID: 18336088]
[59]
Pertwee, R.G.; Howlett, A.C.; Abood, M.E.; Alexander, S.P.H.; Di Marzo, V.; Elphick, M.R.; Greasley, P.J.; Hansen, H.S.; Kunos, G.; Mackie, K.; Mechoulam, R.; Ross, R.A. Cannabinoid receptors and their ligands: Beyond CB1 and CB2. Pharmacol. Rev., 2010, 62(4), 588-631.
[http://dx.doi.org/10.1124/pr.110.003004] [PMID: 21079038]
[60]
Staton, P.C.; Hatcher, J.P.; Walker, D.J.; Morrison, A.D.; Shapland, E.M.; Hughes, J.P.; Chong, E.; Mander, P.K.; Green, P.J.; Billinton, A.; Fulleylove, M.; Lancaster, H.C.; Smith, J.C.; Bailey, L.T.; Wise, A.; Brown, A.J.; Richardson, J.C.; Chessell, I.P. The putative cannabinoid receptor GPR55 plays a role in mechanical hyperalgesia associated with inflammatory and neuropathic pain. Pain, 2008, 139(1), 225-236.
[http://dx.doi.org/10.1016/j.pain.2008.04.006] [PMID: 18502582]
[61]
Kotsikorou, E.; Sharir, H.; Shore, D.M.; Hurst, D.P.; Lynch, D.L.; Madrigal, K.E.; Heynen-Genel, S.; Milan, L.B.; Chung, T.D.Y.; Seltzman, H.H.; Bai, Y.; Caron, M.G.; Barak, L.S.; Croatt, M.P.; Abood, M.E.; Reggio, P.H. Identification of the GPR55 antagonist binding site using a novel set of high-potency GPR55 selective ligands. Biochemistry, 2013, 52(52), 9456-9469.
[http://dx.doi.org/10.1021/bi4008885] [PMID: 24274581]
[62]
George, A.; Kleinschnitz, C.; Zelenka, M.; Brinkhoff, J.; Stoll, G.; Sommer, C. Wallerian degeneration after crush or chronic constriction injury of rodent sciatic nerve is associated with a depletion of endoneurial interleukin-10 protein. Exp. Neurol., 2004, 188(1), 187-191.
[http://dx.doi.org/10.1016/j.expneurol.2004.02.011] [PMID: 15191815]
[63]
LaBuda, C.J.; Koblish, M.; Little, P.J. Cannabinoid CB2 receptor agonist activity in the hindpaw incision. Eur. J. Pharmacol., 2005, 527(1-3), 172-174.
[http://dx.doi.org/10.1016/j.ejphar.2005.10.020] [PMID: 16316653]
[64]
Lauckner, J.E.; Jensen, J.B.; Chen, H.Y.; Lu, H.C.; Hille, B.; Mackie, K. GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proc. Natl. Acad. Sci. USA, 2008, 105(7), 2699-2704.
[http://dx.doi.org/10.1073/pnas.0711278105] [PMID: 18263732]
[65]
Rempel, V.; Volz, N.; Gläser, F.; Nieger, M.; Bräse, S.; Müller, C.E. Antagonists for the orphan G-protein-coupled receptor GPR55 based on a coumarin scaffold. J. Med. Chem., 2013, 56(11), 4798-4810.
[http://dx.doi.org/10.1021/jm4005175] [PMID: 23679955]
[66]
Behrenswerth, A.; Volz, N.; Toräng, J.; Hinz, S.; Bräse, S.; Müller, C.E. Synthesis and pharmacological evaluation of coumarin derivatives as cannabinoid receptor antagonists and inverse agonists. Bioorg. Med. Chem., 2009, 17(7), 2842-2851.
[http://dx.doi.org/10.1016/j.bmc.2009.02.027] [PMID: 19278853]
[67]
Landsman, R.S.; Burkey, T.H.; Consroe, P.; Roeske, W.R.; Yamamura, H.I. SR141716A is an inverse agonist at the human cannabinoid CB1 receptor. Eur. J. Pharmacol., 1997, 334(1), R1-R2.
[http://dx.doi.org/10.1016/S0014-2999(97)01160-6] [PMID: 9346339]
[68]
Anavi-Goffer, S.; Baillie, G.; Irving, A.J.; Gertsch, J.; Greig, I.R.; Pertwee, R.G.; Ross, R.A. Modulation of L-α-lysophosphatidylinositol/GPR55 mitogen-activated protein kinase (MAPK) signaling by cannabinoids. J. Biol. Chem., 2012, 287(1), 91-104.
[http://dx.doi.org/10.1074/jbc.M111.296020] [PMID: 22027819]
[69]
Rempel, V.; Fuchs, A.; Hinz, S.; Karcz, T.; Lehr, M.; Koetter, U.; Müller, C.E. Magnolia extract, magnolol, and metabolites: Activation of cannabinoid CB2 receptors and blockade of the related GPR55. ACS Med. Chem. Lett., 2013, 4(1), 41-45.
[http://dx.doi.org/10.1021/ml300235q] [PMID: 24900561]
[70]
Metz, S.A. Lysophosphatidylinositol, but not lysophosphatidic acid, stimulates insulin release. Biochem. Biophys. Res. Commun., 1986, 138(2), 720-727.
[http://dx.doi.org/10.1016/S0006-291X(86)80556-3] [PMID: 3527169]
[71]
Falasca, M.; Silletta, M.G.; Carvelli, A.; Di Francesco, A.L.; Fusco, A.; Ramakrishna, V.; Corda, D. Signalling pathways involved in the mitogenic action of lysophosphatidylinositol. Oncogene, 1995, 10(11), 2113-2124.
[PMID: 7784056]
[72]
Oka, S.; Nakajima, K.; Yamashita, A.; Kishimoto, S.; Sugiura, T. Identification of GPR55 as a lysophosphatidylinositol receptor. Biochem. Biophys. Res. Commun., 2007, 362(4), 928-934.
[http://dx.doi.org/10.1016/j.bbrc.2007.08.078] [PMID: 17765871]
[73]
Oka, S.; Toshida, T.; Maruyama, K.; Nakajima, K.; Yamashita, A.; Sugiura, T. 2-Arachidonoyl-sn-glycero-3-phosphoinositol: a possible natural ligand for GPR55. J. Biochem., 2008, 145(1), 13-20.
[http://dx.doi.org/10.1093/jb/mvn136] [PMID: 18845565]
[74]
Guy, A.T.; Nagatsuka, Y.; Ooashi, N.; Inoue, M.; Nakata, A.; Greimel, P.; Inoue, A.; Nabetani, T.; Murayama, A.; Ohta, K.; Ito, Y.; Aoki, J.; Hirabayashi, Y.; Kamiguchi, H. Glycerophospholipid regulation of modality-specific sensory axon guidance in the spinal cord. Science, 2015, 349(6251), 974-977.
[http://dx.doi.org/10.1126/science.aab3516] [PMID: 26315437]
[75]
Kotsikorou, E.; Madrigal, K.E.; Hurst, D.P.; Sharir, H.; Lynch, D.L.; Heynen-Genel, S.; Milan, L.B.; Chung, T.D.Y.; Seltzman, H.H.; Bai, Y.; Caron, M.G.; Barak, L.; Abood, M.E.; Reggio, P.H. Identification of the GPR55 agonist binding site using a novel set of high-potency GPR55 selective ligands. Biochemistry, 2011, 50(25), 5633-5647.
[http://dx.doi.org/10.1021/bi200010k] [PMID: 21534610]
[76]
Morales, P.; Whyte, L.S.; Chicharro, R.; Gómez-Cañas, M.; Pazos, M.R.; Goya, P.; Irving, A.J.; Fernández-Ruiz, J.; Ross, R.A.; Jagerovic, N. Identification of novel GPR55 modulators using cell-impedance-based label-free technology. J. Med. Chem., 2016, 59(5), 1840-1853.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01331] [PMID: 26789378]
[77]
Yrjölä, S.; Parkkari, T.; Navia-Paldanius, D.; Laitinen, T.; Kaczor, A.A.; Kokkola, T.; Adusei-Mensah, F.; Savinainen, J.R.; Laitinen, J.T.; Poso, A.; Alexander, A.; Penman, J.; Stott, L.; Anskat, M.; Irving, A.J.; Nevalainen, T.J. Potent and selective N-(4-sulfamoylphenyl)thiourea-based GPR55 agonists. Eur. J. Med. Chem., 2016, 107, 119-132.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.050] [PMID: 26575458]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy