Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Effect of Apigenin on Neurodegenerative Diseases

Author(s): Kajal Gaur and Yasir Hasan Siddique*

Volume 23, Issue 4, 2024

Published on: 24 May, 2023

Page: [468 - 475] Pages: 8

DOI: 10.2174/1871527322666230406082625

Price: $65

conference banner
Abstract

Neurodegenerative diseases (NDDs), such as Alzheimer's and Parkinson's, are the most frequent age-related illnesses affecting millions worldwide. No effective medication for NDDs is known to date and current disease management approaches include neuroprotection strategies with the hope of maintaining and improving the function of neurons. Such strategies will not provide a cure on their own but are likely to delay disease progression by reducing the production of neurotoxic chemicals such as reactive oxygen species (ROS) and related inflammatory chemicals. Natural compounds such as flavonoids that provide neuroprotection via numerous mechanisms have attracted much attention in recent years. This review discusses evidence from different research models and clinical trials on the therapeutic potential of one promising flavonoid, apigenin, and how it can be helpful for NDDs in the future prospects. We have also discussed its chemistry, mechanism of action, and possible benefits in various examples of NDDs.

Keywords: Apigenin, neurodegenerative disease, reactive oxygen species, oxidative stress, antioxidant, reactive oxygen species (ROS).

Graphical Abstract
[1]
Cho E, Park M. Palmitoylation in Alzheimer’s disease and other neurodegenerative diseases. Pharmacol Res 2016; 111: 133-51.
[http://dx.doi.org/10.1016/j.phrs.2016.06.008] [PMID: 27293050]
[2]
Karnati HK, Panigrahi MK, Gutti RK, Greig NH, Tamargo IA. miRNAs: Key players in neurodegenerative disorders and epilepsy. J Alzheimers Dis 2015; 48(3): 563-80.
[http://dx.doi.org/10.3233/JAD-150395] [PMID: 26402105]
[3]
Koric L, Guedj E, Habert MO, et al. Molecular imaging in the diagnosis of Alzheimer’s disease and related disorders. Rev Neurol 2016; 172(12): 725-34.
[http://dx.doi.org/10.1016/j.neurol.2016.10.009] [PMID: 27866729]
[4]
Pugazhenthi S, Qin L, Reddy PH. Common neurodegenerative pathways in obesity, diabetes, and Alzheimer’s disease. Biochim Biophys Acta Mol Basis Dis 2017; 1863(5): 1037-45.
[http://dx.doi.org/10.1016/j.bbadis.2016.04.017] [PMID: 27156888]
[5]
Nesto R. C-reactive protein, its role in inflammation, Type 2 diabetes and cardiovascular disease, and the effects of insulin-sensitizing treatment with thiazolidinediones. Diabet Med 2004; 21(8): 810-7.
[http://dx.doi.org/10.1111/j.1464-5491.2004.01296.x] [PMID: 15270782]
[6]
Selkoe DJ. Normal and abnormal biology of the beta-amyloid precursor protein. Annu Rev Neurosci 1994; 17(1): 489-517.
[http://dx.doi.org/10.1146/annurev.ne.17.030194.002421] [PMID: 8210185]
[7]
Chen G, Chen KS, Knox J, et al. A learning deficit related to age and β-amyloid plaques in a mouse model of Alzheimer’s disease. Nature 2000; 408(6815): 975-9.
[http://dx.doi.org/10.1038/35050103] [PMID: 11140684]
[8]
Walsh DM, Klyubin I, Fadeeva JV, et al. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 2002; 416(6880): 535-9.
[http://dx.doi.org/10.1038/416535a] [PMID: 11932745]
[9]
Gandhi S, Wood NW. Molecular pathogenesis of Parkinson’s disease. Hum Mol Genet 2005; 14(18): 2749-55.
[http://dx.doi.org/10.1093/hmg/ddi308]
[10]
Han JY, Ahn SY, Kim CS, et al. Protection of apigenin against kainate-induced excitotoxicity by anti-oxidative effects. Biol Pharm Bull 2012; 35(9): 1440-6.
[http://dx.doi.org/10.1248/bpb.b110686] [PMID: 22975493]
[11]
Liu R, Zhang T, Yang H, Lan X, Ying J, Du G. The flavonoid apigenin protects brain neurovascular coupling against amyloid-β-induced toxicity in mice. J Alzheimers Dis 2011; 24(1): 85-100.
[http://dx.doi.org/10.3233/JAD-2010-101593] [PMID: 21297270]
[12]
Thomas MB. The systematic identification of flavonoids. Berlin, Germany: Springer Verlag 1970.
[13]
Salehi B, Venditti A, Sharifi-Rad M, et al. The therapeutic potential of apigenin. Int J Mol Sci 2019; 20(6): 1305.
[http://dx.doi.org/10.3390/ijms20061305] [PMID: 30875872]
[14]
Alqasoumi SI, Farraj AI, Abdel-Kader MS. Study of the hepatoprotective effect of Juniperus phoenicea constituents. Pak J Pharm Sci 2013; 26(5): 999-1008.
[PMID: 24035959]
[15]
Venditti A, Maggi F, Quassinti L, et al. Bioactive constituents of Juniperus turbinata Guss. from La Maddalena Archipelago. Chem Biodivers 2018; 15(8): e1800148.
[http://dx.doi.org/10.1002/cbdv.201800148] [PMID: 29790302]
[16]
Chemical Sources International (2000). All chemical suppliers for apigenin. Chem Sources Chemical Search 2000.
[17]
McKay DL, Blumberg JB. A review of the bioactivity and potential health benefits of chamomile tea (Matricaria recutita L.). Phytother Res 2006; 20(7): 519-30.
[http://dx.doi.org/10.1002/ptr.1900] [PMID: 16628544]
[18]
Miean KH, Mohamed S. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J Agric Food Chem 2001; 49(6): 3106-12.
[http://dx.doi.org/10.1021/jf000892m] [PMID: 11410016]
[19]
Srivastava JK, Gupta S. Antiproliferative and apoptotic effects of chamomile extract in various human cancer cells. J Agric Food Chem 2007; 55(23): 9470-8.
[http://dx.doi.org/10.1021/jf071953k] [PMID: 17939735]
[20]
Shankar E, Goel A, Gupta K, Gupta S. Plant flavone apigenin: An emerging anticancer agent. Curr Pharmacol Rep 2017; 3(6): 423-46.
[http://dx.doi.org/10.1007/s40495-017-0113-2] [PMID: 29399439]
[21]
Bevilacqua L, Buiarelli F, Coccioli F, Jasionowska R. Identification of compounds in wine by HPLC-tandem mass spectrometry. Ann Chim 2004; 94(9-10): 679-90.
[http://dx.doi.org/10.1002/adic.200490085] [PMID: 15506618]
[22]
Gerhäuser C. Beer constituents as potential cancer chemopreventive agents. Eur J Cancer 2005; 41(13): 1941-54.
[http://dx.doi.org/10.1016/j.ejca.2005.04.012] [PMID: 15953717]
[23]
Švehlíková V, Bennett RN, Mellon FA, et al. Isolation, identification and stability of acylated derivatives of apigenin 7-O-glucoside from chamomile (Chamomilla recutita [L. Rauschert). Phytochemistry 2004; 65(16): 2323-32.
[http://dx.doi.org/10.1016/j.phytochem.2004.07.011] [PMID: 15381003]
[24]
Siddiqui MS, Thodey K, Trenchard I, Smolke CD. Advancing secondary metabolite biosynthesis in yeast with synthetic biology tools. FEMS Yeast Res 2012; 12(2): 144-70.
[http://dx.doi.org/10.1111/j.1567-1364.2011.00774.x] [PMID: 22136110]
[25]
Luo Y, Li BZ, Liu D, et al. Engineered biosynthesis of natural products in heterologous hosts. Chem Soc Rev 2015; 44(15): 5265-90.
[http://dx.doi.org/10.1039/C5CS00025D] [PMID: 25960127]
[26]
Seo YJ, Kim BS, Chun SY, Park YK, Kang KS, Kwon TG. Apoptotic effects of genistein, biochanin-A and apigenin on LNCaP and PC-3 cells by p21 through transcriptional inhibition of polo-like kinase-1. J Korean Med Sci 2011; 26(11): 1489-94.
[http://dx.doi.org/10.3346/jkms.2011.26.11.1489] [PMID: 22065906]
[27]
Chauthe SK, Sharma RJ, Aqil F, Gupta RC, Singh IP. Quantitative NMR: An applicable method for quantitative analysis of medicinal plant extracts and herbal products. Phytochem Anal 2012; 23(6): 689-96.
[http://dx.doi.org/10.1002/pca.2375] [PMID: 22707000]
[28]
Seijas JA, Vázquez-Tato MP, Carballido-Reboredo R. Solvent-free synthesis of functionalized flavones under microwave irradiation. J Org Chem 2005; 70(7): 2855-8.
[http://dx.doi.org/10.1021/jo048685z] [PMID: 15787587]
[29]
Verma AK, Pratap R. Chemistry of biologically important flavones. Tetrahedron 2012; 68(41): 8523-38.
[http://dx.doi.org/10.1016/j.tet.2012.06.097]
[30]
Liu Y, Song X, He J, Zheng X, Wu H. Synthetic derivatives of chrysin and their biological activities. Med Chem Res 2014; 23(2): 555-63.
[http://dx.doi.org/10.1007/s00044-013-0711-4]
[31]
Zhang Z, Yang M, Wang T, et al. Cysteamine alleviates early brain injury via reducing oxidative stress and apoptosis in a rat experimental subarachnoid hemorrhage model. Cell Mol Neurobiol 2015; 35(4): 543-53.
[http://dx.doi.org/10.1007/s10571-014-0150-x] [PMID: 25527033]
[32]
Ruan QJ, Ruan W, Zhang F, Qian Z. Targeting NAD+ degradation: The therapeutic potential of flavonoids for Alzheimer’s disease and cognitive frailty. Pharmacol Res 2017.
[http://dx.doi.org/10.1016/j.phrs.2017.08.010] [PMID: 28847709]
[33]
Han Y, Zhang T, Su J, et al. Apigenin attenuates oxidative stress and neuronal apoptosis in early brain injury following subarachnoid hemorrhage. J Clin Neurosci 2017; 40: 157-62.
[http://dx.doi.org/10.1016/j.jocn.2017.03.003] [PMID: 28342702]
[34]
Harman D. Aging: A theory based on free radical and radiation chemistry. J Gerontol 1956; 11(3): 298-300.
[http://dx.doi.org/10.1093/geronj/11.3.298] [PMID: 13332224]
[35]
Münch G, Venigalla M, Sonego S, Gyengesi E. Curcumin and Apigenin-novel and promising therapeutics against chronic neuroinflammation in Alzheimer′s disease. Neural Regen Res 2015; 10(8): 1181-5.
[http://dx.doi.org/10.4103/1673-5374.162686] [PMID: 26487830]
[36]
Smolinski AT, Pestka JJ. Modulation of lipopolysaccharide-induced proinflammatory cytokine production in vitro and in vivo by the herbal constituents apigenin (chamomile), ginsenoside Rb1 (ginseng) and parthenolide (feverfew). Food Chem Toxicol 2003; 41(10): 1381-90.
[http://dx.doi.org/10.1016/S0278-6915(03)00146-7] [PMID: 12909272]
[37]
Zhang F, Li F, Chen G. Neuroprotective effect of apigenin in rats after contusive spinal cord injury. Neurol Sci 2014; 35(4): 583-8.
[http://dx.doi.org/10.1007/s10072-013-1566-7] [PMID: 24166720]
[38]
Zhao L, Wang JL, Liu R, Li XX, Li JF, Zhang L. Neuroprotective, anti-amyloidogenic and neurotrophic effects of apigenin in an Alzheimer’s disease mouse model. Molecules 2013; 18(8): 9949-65.
[http://dx.doi.org/10.3390/molecules18089949] [PMID: 23966081]
[39]
Mattson MP. Pathways towards and away from Alzheimer’s disease. Nature 2004; 430(7000): 631-9.
[http://dx.doi.org/10.1038/nature02621] [PMID: 15295589]
[40]
Haass C, Lemere CA, Capell A, et al. The Swedish mutation causes early-onset Alzheimer’s disease by β-secretase cleavage within the secretory pathway. Nat Med 1995; 1(12): 1291-6.
[http://dx.doi.org/10.1038/nm1295-1291] [PMID: 7489411]
[41]
De Strooper B, Iwatsubo T, Wolfe MS. Presenilins and γ-secretase: Structure, function, and role in Alzheimer Disease. Cold Spring Harb Perspect Med 2012; 2(1): a006304-4.
[http://dx.doi.org/10.1101/cshperspect.a006304] [PMID: 22315713]
[42]
Balez R, Steiner N, Engel M, et al. Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer’s disease. Sci Rep 2016; 6(1): 31450.
[http://dx.doi.org/10.1038/srep31450] [PMID: 27514990]
[43]
Ha SK, Lee P, Park JA, et al. Apigenin inhibits the production of NO and PGE2 in microglia and inhibits neuronal cell death in a middle cerebral artery occlusion-induced focal ischemia mice model. Neurochem Int 2008; 52(4-5): 878-86.
[http://dx.doi.org/10.1016/j.neuint.2007.10.005] [PMID: 18037535]
[44]
Liang H, Sonego S, Gyengesi E, et al. Anti-Inflammatory and neuroprotective effect of apigenin: studies in the GFAP-IL6 mouse model of chronic neuroinflammation. Free Radic Biol Med 2017; 108: S10.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.04.064]
[45]
Popović M, Caballero-Bleda M, Benavente-García O, Castillo J. The flavonoid apigenin delays forgetting of passive avoidance conditioning in rats. J Psychopharmacol 2014; 28(5): 498-501.
[http://dx.doi.org/10.1177/0269881113512040] [PMID: 24284476]
[46]
Malar D, Devi K. Dietary polyphenols for treatment of Alzheimer’s disease-future research and development. Curr Pharm Biotechnol 2014; 15(4): 330-42.
[http://dx.doi.org/10.2174/1389201015666140813122703] [PMID: 25312617]
[47]
Alsadat AM, Nikbakht F, Nia HH, et al. GSK-3β as a target for apigenin-induced neuroprotection against Aβ 25-35 in a rat model of Alzheimer’s disease. Neuropeptides 2021; 90: 102200.
[http://dx.doi.org/10.1016/j.npep.2021.102200]
[48]
Dourado NS, Souza CS, de Almeida MMA, et al. Neuroimmunomodulatory and neuroprotective effects of the flavonoid apigenin in in vitro models of neuroinflammation associated with Alzheimer’s disease. Front Aging Neurosci 2020; 12: 119.
[http://dx.doi.org/10.3389/fnagi.2020.00119] [PMID: 32499693]
[49]
Goodman RB, Pugin J, Lee JS, Matthay MA. Cytokine-mediated inflammation in acute lung injury. Cytokine Growth Factor Rev 2003; 14(6): 523-35.
[http://dx.doi.org/10.1016/S1359-6101(03)00059-5] [PMID: 14563354]
[50]
Kang SS, Lee JY, Choi YK, Kim GS, Han BH. Neuroprotective effects of flavones on hydrogen peroxide-induced apoptosis in SH-SY5Y neuroblostoma cells. Bioorg Med Chem Lett 2004; 14(9): 2261-4.
[http://dx.doi.org/10.1016/j.bmcl.2004.02.003] [PMID: 15081021]
[51]
Feany MB, Bender WW. A drosophila model of Parkinson’s disease. Nature 2000; 404(6776): 394-8.
[http://dx.doi.org/10.1038/35006074] [PMID: 10746727]
[52]
Winklhofer KF, Haass C. Mitochondrial dysfunction in Parkinson’s disease. Biochim Biophys Acta Mol Basis Dis 2010; 1802(1): 29-44.
[http://dx.doi.org/10.1016/j.bbadis.2009.08.013]
[53]
Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 2000; 3(12): 1301-6.
[http://dx.doi.org/10.1038/81834] [PMID: 11100151]
[54]
Anusha C, Sumathi T. Protective role of apigenin against rotenone induced model of Parkinson’s Disease: Behavioral study. Int J Toxicol Pharmacol Res 2016; 8(2): 79-82.
[55]
Patil SP, Jain PD, Sancheti JS, Ghumatkar PJ, Tambe R, Sathaye S. RETRACTED: Neuroprotective and neurotrophic effects of Apigenin and Luteolin in MPTP induced parkinsonism in mice. Neuropharmacology 2014; 86: 192-202.
[http://dx.doi.org/10.1016/j.neuropharm.2014.07.012] [PMID: 25087727]
[56]
Zhou J, Sun Y, Zhao X, Deng Z, Pu X. 3-O-demethylswerti-punicoside inhibits MPP+-induced oxidative stress and apoptosis in PC12 cells. Brain Res 2013; 1508: 53-62.
[http://dx.doi.org/10.1016/j.brainres.2013.02.049] [PMID: 23499562]
[57]
Liu W, Kong S, Xie Q, et al. Protective effects of apigenin against 1-methyl-4-phenylpyridinium ion-induced neurotoxicity in PC12 cells. Int J Mol Med 2015; 35(3): 739-46.
[http://dx.doi.org/10.3892/ijmm.2014.2056] [PMID: 25573459]
[58]
Siddique YH, Jyoti S. Alteration in biochemical parameters in the brain of transgenic Drosophila melanogaster model of Parkinson’s disease exposed to apigenin. Integr Med Res 2017; 6(3): 245-53.
[http://dx.doi.org/10.1016/j.imr.2017.04.003] [PMID: 28951838]
[59]
Kiernan MC, Vucic S, Cheah BC, et al. Amyotrophic lateral sclerosis. Lancet 2011; 377(9769): 942-55.
[http://dx.doi.org/10.1016/S0140-6736(10)61156-7] [PMID: 21296405]
[60]
Elamin M, Bede P, Byrne S, et al. Cognitive changes predict functional decline in ALS: A population-based longitudinal study. Neurology 2013; 80(17): 1590-7.
[http://dx.doi.org/10.1212/WNL.0b013e31828f18ac] [PMID: 23553481]
[61]
Singh A, Upadhayay S, Mehan S. Inhibition of c-JNK/p38MAPK signaling pathway by Apigenin prevents neurobehavioral and neurochemical defects in ethidium bromide-induced experimental model of multiple sclerosis in rats: Evidence from CSF, blood plasma and brain samples. Phytomedicine Plus 2021; 1(4): 100139.
[http://dx.doi.org/10.1016/j.phyplu.2021.100139]
[62]
Yadav RK, Mehan S, Sahu R, et al. Protective effects of apigenin on methylmercury-induced behavioral/neurochemical abnormalities and neurotoxicity in rats. Hum Exp Toxicol 2022; 41.
[http://dx.doi.org/10.1177/09603271221084276] [PMID: 35373622]
[63]
Sehba FA, Hou J, Pluta RM, Zhang JH. The importance of early brain injury after subarachnoid hemorrhage. Prog Neurobiol 2012; 97(1): 14-37.
[http://dx.doi.org/10.1016/j.pneurobio.2012.02.003] [PMID: 22414893]
[64]
Hasegawa Y, Suzuki H, Sozen T, Altay O, Zhang JH. Apoptotic mechanisms for neuronal cells in early brain injury after subarachnoid hemorrhage. In:Early Brain Injury or Cerebral Vasospasm. Springer 2011; pp. 43-8.
[http://dx.doi.org/10.1007/978-3-7091-0353-1_8]
[65]
Méndez-Armenta M, Nava-Ruíz C, Juárez-Rebollar D, Rodríguez-Martínez E, Yescas Gómez P. Oxidative stress associated with neuronal apoptosis in experimental models of epilepsy. Oxid Med Cell Longev 2014; 2014: 293689.
[66]
Kapur S, Roy P, Daskalakis J, Remington G, Zipursky R. Increased dopamine d(2) receptor occupancy and elevated prolactin level associated with addition of haloperidol to clozapine. Am J Psychiatry 2001; 158(2): 311-4.
[http://dx.doi.org/10.1176/appi.ajp.158.2.311] [PMID: 11156818]
[67]
Choi AY, Choi JH, Lee JY, et al. Apigenin protects HT22 murine hippocampal neuronal cells against endoplasmic reticulum stress-induced apoptosis. Neurochem Int 2010; 57(2): 143-52.
[http://dx.doi.org/10.1016/j.neuint.2010.05.006] [PMID: 20493918]
[68]
Jameie SB, Pirasteh A, Naseri A, et al. β-Amyloid formation, memory, and learning decline following long-term ovariectomy and its inhibition by systemic administration of apigenin and β-estradiol. Basic Clin Neurosci 2021; 12(3): 383-94.
[PMID: 34917297]
[69]
Combs CK, Karlo JC, Kao SC, Landreth GE. β-Amyloid stimulation of microglia and monocytes results in TNFalpha-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J Neurosci 2001; 21(4): 1179-88.
[http://dx.doi.org/10.1523/JNEUROSCI.21-04-01179.2001] [PMID: 11160388]
[70]
Kim M, Jung J, Jeong NY, Chung HJ. The natural plant flavonoid apigenin is a strong antioxidant that effectively delays peripheral neurodegenerative processes. Anat Sci Int 2019; 94(4): 285-94.
[http://dx.doi.org/10.1007/s12565-019-00486-2] [PMID: 30949912]
[71]
Siddique YH, Rahul AG, Afzal M, et al. Beneficial effects of apigenin on the transgenic Drosophila model of Alzheimer's disease. Chem Biol Interact 2022. 366(110120): 0009-2797
[72]
Sang Z, Wang K, Shi J, et al. Apigenin-rivastigmine hybrids as multi-target-directed liagnds for the treatment of Alzheimer’s disease. Eur J Med Chem 2020; 187: 111958.
[http://dx.doi.org/10.1016/j.ejmech.2019.111958] [PMID: 31865014]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy