Review Article

治疗神经退行性疾病中神经炎症的药物

卷 31, 期 14, 2024

发表于: 05 June, 2023

页: [1818 - 1829] 页: 12

弟呕挨: 10.2174/0929867330666230403125140

价格: $65

摘要

神经炎症与神经系统紊乱有关,是由多种因素引起的,包括病原体感染、脑损伤、有毒物质和自身免疫性疾病。星形胶质细胞和小胶质细胞在神经炎症中起关键作用。小胶质细胞是中枢神经系统(CNS)中的先天免疫细胞,在神经炎症诱导因子的作用下被激活。星形胶质细胞可以有促炎或抗炎反应,这取决于炎症环境所呈现的刺激类型。小胶质细胞在中枢神经系统内响应和传播外周炎症信号,引起大脑低度炎症。由此导致的神经元活动改变导致生理和行为障碍。因此,各种促炎细胞因子和生长因子的激活、合成和释放发生。这些事件导致许多神经退行性疾病,如阿尔茨海默病、帕金森病和本研究中讨论的多发性硬化症。在了解神经炎症机制和神经递质的参与后,本研究涵盖了用于治疗和管理这些神经退行性疾病的各种药物。这项研究有助于发现治疗神经退行性疾病的新药物分子。

关键词: 神经炎症,星形胶质细胞,小胶质细胞,阿尔茨海默病,帕金森病,多发性硬化症。

[1]
Ebert, S.E.; Jensen, P.; Ozenne, B.; Armand, S.; Svarer, C.; Stenbaek, D.S.; Moeller, K.; Dyssegaard, A.; Thomsen, G.; Steinmetz, J.; Forchhammer, B.H.; Knudsen, G.M.; Pinborg, L.H. Molecular imaging of neuroinflammation in patients after mild traumatic brain injury: a longitudinal 123 I- CLINDE single photon emission computed tomography study. Eur. J. Neurol., 2019, 26(12), 1426-1432.
[http://dx.doi.org/10.1111/ene.13971] [PMID: 31002206]
[2]
Ji, R.R.; Nackley, A.; Huh, Y.; Terrando, N.; Maixner, W. Neuroinflammation and central sensitization in chronic and widespread pain. Anesthesiology, 2018, 129(2), 343-366.
[http://dx.doi.org/10.1097/ALN.0000000000002130] [PMID: 29462012]
[3]
Leng, F.; Edison, P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat. Rev. Neurol., 2021, 17(3), 157-172.
[http://dx.doi.org/10.1038/s41582-020-00435-y] [PMID: 33318676]
[4]
Park, K.; Lee, S.J. Deciphering the star codings: astrocyte manipulation alters mouse behavior. Exp. Mol. Med., 2020, 52(7), 1028-1038.
[http://dx.doi.org/10.1038/s12276-020-0468-z] [PMID: 32665584]
[5]
Sofroniew, M.V. Astrocyte barriers to neurotoxic inflammation. Nat. Rev. Neurosci., 2015, 16(5), 249-263.
[http://dx.doi.org/10.1038/nrn3898] [PMID: 25891508]
[6]
Li, K. Reactive Astrocytes in Neurodegenerative Diseases. Aging Dis., 2018, 10.
[PMID: 31165009]
[7]
Rouach, N.; Koulakoff, A.; Abudara, V.; Willecke, K.; Giaume, C. Astroglial metabolic networks sustain hippocampal synaptic transmission. Science, 2008, 322(5907), 1551-1555.
[http://dx.doi.org/10.1126/science.1164022] [PMID: 19056987]
[8]
Jessen, N.A.; Munk, A.S.F.; Lundgaard, I.; Nedergaard, M. The glymphatic system: A beginner’s guide. Neurochem. Res., 2015, 40(12), 2583-2599.
[http://dx.doi.org/10.1007/s11064-015-1581-6] [PMID: 25947369]
[9]
Matejuk, A.; Ransohoff, R.M. Crosstalk between astrocytes and microglia: An overview. Front. Immunol., 2020, 11, 1416-1416.
[http://dx.doi.org/10.3389/fimmu.2020.01416] [PMID: 32765501]
[10]
Mattson, M.P.; Arumugam, T.V. Hallmarks of brain aging: Adaptive and pathological modification by metabolic states. Cell Metab., 2018, 27(6), 1176-1199.
[http://dx.doi.org/10.1016/j.cmet.2018.05.011] [PMID: 29874566]
[11]
Cekanaviciute, E.; Buckwalter, M.S. Astrocytes: Integrative regulators of neuroinflammation in stroke and other neurological diseases. Neurotherapeutics, 2016, 13(4), 685-701.
[http://dx.doi.org/10.1007/s13311-016-0477-8] [PMID: 27677607]
[12]
Tyzack, G.E.; Sitnikov, S.; Barson, D.; Adams-Carr, K.L.; Lau, N.K.; Kwok, J.C.; Zhao, C.; Franklin, R.J.M.; Karadottir, R.T.; Fawcett, J.W.; Lakatos, A. Astrocyte response to motor neuron injury promotes structural synaptic plasticity via STAT3-regulated TSP-1 expression. Nat. Commun., 2014, 5(1), 4294.
[http://dx.doi.org/10.1038/ncomms5294] [PMID: 25014177]
[13]
Colombo, E.; Farina, C. Astrocytes: Key regulators of neuroinflammation. Trends Immunol., 2016, 37(9), 608-620.
[http://dx.doi.org/10.1016/j.it.2016.06.006] [PMID: 27443914]
[14]
Mitchell, T.J.; John, S. Signal transducer and activator of transcription (STAT) signalling and T-cell lymphomas. Immunology, 2005, 114(3), 301-312.
[http://dx.doi.org/10.1111/j.1365-2567.2005.02091.x] [PMID: 15720432]
[15]
Klegeris, A. Targeting neuroprotective functions of astrocytes in neuroimmune diseases. Expert Opin. Ther. Targets, 2021, 25(4), 237-241.
[http://dx.doi.org/10.1080/14728222.2021.1915993] [PMID: 33836642]
[16]
Rothhammer, V.; Quintana, F.J. Control of autoimmune CNS inflammation by astrocytes. Semin. Immunopathol., 2015, 37(6), 625-638.
[http://dx.doi.org/10.1007/s00281-015-0515-3] [PMID: 26223505]
[17]
Palpagama, T.H.; Waldvogel, H.J.; Faull, R.L.M.; Kwakowsky, A. The role of microglia and astrocytes in huntington’s disease. Front. Mol. Neurosci., 2019, 12(258), 258.
[http://dx.doi.org/10.3389/fnmol.2019.00258] [PMID: 31708741]
[18]
Guo, S.; Wang, H.; Yin, Y. Microglia polarization from M1 to M2 in neurodegenerative diseases. Front. Aging Neurosci., 2022, 14, 815347.
[http://dx.doi.org/10.3389/fnagi.2022.815347] [PMID: 35250543]
[19]
Kwon, H.S.; Koh, S.H. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl. Neurodegener., 2020, 9(1), 42.
[http://dx.doi.org/10.1186/s40035-020-00221-2] [PMID: 33239064]
[20]
Gendelman, H.E. Neural immunity: Friend or foe? J. Neurovirol., 2002, 8(6), 474-479.
[http://dx.doi.org/10.1080/13550280290168631] [PMID: 12476342]
[21]
DiSabato, D.J.; Quan, N.; Godbout, J.P. Neuroinflammation: The devil is in the details. J. Neurochem., 2016, 139(S2), 136-153.
[http://dx.doi.org/10.1111/jnc.13607]
[22]
Bachiller, S.; Jiménez-Ferrer, I.; Paulus, A.; Yang, Y.; Swanberg, M.; Deierborg, T.; Boza-Serrano, A. Microglia in neurological diseases: A road map to brain-disease dependent-inflammatory response. Front. Cell. Neurosci., 2018, 12(488), 488.
[http://dx.doi.org/10.3389/fncel.2018.00488] [PMID: 30618635]
[23]
Harry, G.J.; Kraft, A.D. Neuroinflammation and microglia: considerations and approaches for neurotoxicity assessment. Expert Opin. Drug Metab. Toxicol., 2008, 4(10), 1265-1277.
[http://dx.doi.org/10.1517/17425255.4.10.1265] [PMID: 18798697]
[24]
Streit, W.J.; Mrak, R.E.; Griffin, W.S.T. Microglia and neuroinflammation: a pathological perspective. J. Neuroinflammation, 2004, 1(1), 14.
[http://dx.doi.org/10.1186/1742-2094-1-14] [PMID: 15285801]
[25]
Streit, W.J. Microglial senescence: does the brain’s immune system have an expiration date? Trends Neurosci., 2006, 29(9), 506-510.
[http://dx.doi.org/10.1016/j.tins.2006.07.001] [PMID: 16859761]
[26]
Davalos, D.; Grutzendler, J.; Yang, G.; Kim, J.V.; Zuo, Y.; Jung, S.; Littman, D.R.; Dustin, M.L.; Gan, W.B. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci., 2005, 8(6), 752-758.
[http://dx.doi.org/10.1038/nn1472] [PMID: 15895084]
[27]
Raivich, G. Like cops on the beat: the active role of resting microglia. Trends Neurosci., 2005, 28(11), 571-573.
[http://dx.doi.org/10.1016/j.tins.2005.09.001] [PMID: 16165228]
[28]
Wang, W-Y.; Tan, M.S.; Yu, J.T.; Tan, L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann. Transl. Med., 2015, 3(10), 136-136.
[PMID: 26207229]
[29]
Boche, D.; Perry, V.H.; Nicoll, J.A.R. Review: Activation patterns of microglia and their identification in the human brain. Neuropathol. Appl. Neurobiol., 2013, 39(1), 3-18.
[http://dx.doi.org/10.1111/nan.12011] [PMID: 23252647]
[30]
Sica, A.; Mantovani, A. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest., 2012, 122(3), 787-795.
[http://dx.doi.org/10.1172/JCI59643] [PMID: 22378047]
[31]
Shibata, M. Hypothalamic neuronal responses to cytokines. Yale J. Biol. Med., 1990, 63(2), 147-156.
[PMID: 2205055]
[32]
Bernheim, H.A.; Kluger, M.J. Fever: effect of drug-induced antipyresis on survival. Science, 1976, 193(4249), 237-239.
[http://dx.doi.org/10.1126/science.935867] [PMID: 935867]
[33]
Kempuraj, D.; Thangavel, R.; Selvakumar, G.P.; Zaheer, S.; Ahmed, M.E.; Raikwar, S.P.; Zahoor, H.; Saeed, D.; Natteru, P.A.; Iyer, S.; Zaheer, A. Brain and peripheral atypical inflammatory mediators potentiate neuroinflammation and neurodegeneration. Front. Cell. Neurosci., 2017, 11, 216-216.
[http://dx.doi.org/10.3389/fncel.2017.00216] [PMID: 28790893]
[34]
Park, B.S.; Lee, J.O. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp. Mol. Med., 2013, 45(12), e66-e66.
[http://dx.doi.org/10.1038/emm.2013.97] [PMID: 24310172]
[35]
Lu, Y.C.; Yeh, W.C.; Ohashi, P.S. LPS/TLR4 signal transduction pathway. Cytokine, 2008, 42(2), 145-151.
[http://dx.doi.org/10.1016/j.cyto.2008.01.006] [PMID: 18304834]
[36]
Vaure, C.Ã.; Liu, Y. A comparative review of toll-like receptor 4 expression and functionality in different animal species. Front. Immunol., 2014, 5(316), 316.
[http://dx.doi.org/10.3389/fimmu.2014.00316] [PMID: 25071777]
[37]
Soares, J.B.; Pimentel-Nunes, P.; Roncon-Albuquerque, R., Jr; Leite-Moreira, A. The role of lipopolysaccharide/toll-like receptor 4 signaling in chronic liver diseases. Hepatol. Int., 2010, 4(4), 659-672.
[http://dx.doi.org/10.1007/s12072-010-9219-x] [PMID: 21286336]
[38]
Wang, L.; Li, D.; Yang, K.; Hu, Y.; Zeng, Q. Toll-like receptor-4 and mitogen-activated protein kinase signal system are involved in activation of dendritic cells in patients with acute coronary syndrome. Immunology, 2008, 125(1), 122-130.
[http://dx.doi.org/10.1111/j.1365-2567.2008.02827.x] [PMID: 18373609]
[39]
Badshah, H.; Ali, T.; Kim, M.O. Osmotin attenuates LPS-induced neuroinflammation and memory impairments via the TLR4/NFκB signaling pathway. Sci. Rep., 2016, 6(1), 24493.
[http://dx.doi.org/10.1038/srep24493] [PMID: 27093924]
[40]
Guo, C.; Yang, L.; Wan, C.X.; Xia, Y.Z.; Zhang, C.; Chen, M.H.; Wang, Z.D.; Li, Z.R.; Li, X.M.; Geng, Y.D.; Kong, L.Y. Anti-neuroinflammatory effect of Sophoraflavanone G from Sophora alopecuroides in LPS-activated BV2 microglia by MAPK, JAK/STAT and Nrf2/HO-1 signaling pathways. Phytomedicine, 2016, 23(13), 1629-1637.
[http://dx.doi.org/10.1016/j.phymed.2016.10.007] [PMID: 27823627]
[41]
Maung, A.A.; Fujimi, S.; Miller, M.L.; MacConmara, M.P.; Mannick, J.A.; Lederer, J.A. Enhanced TLR4 reactivity following injury is mediated by increased p38 activation. J. Leukoc. Biol., 2005, 78(2), 565-573.
[http://dx.doi.org/10.1189/jlb.1204698] [PMID: 15857937]
[42]
Ahmed, M.B.; Islam, S.U.; Lee, Y.S. Decursin negatively regulates LPS-induced upregulation of the TLR4 and JNK signaling stimulated by the expression of PRP4 in vitro. Anim. Cells Syst., 2020, 24(1), 44-52.
[http://dx.doi.org/10.1080/19768354.2020.1726811] [PMID: 32158615]
[43]
Fukata, M.; Chen, A.; Klepper, A.; Krishnareddy, S.; Vamadevan, A.S.; Thomas, L.S.; Xu, R.; Inoue, H.; Arditi, M.; Dannenberg, A.J.; Abreu, M.T. Cox-2 is regulated by Toll-like receptor-4 (TLR4) signaling: Role in proliferation and apoptosis in the intestine. Gastroenterology, 2006, 131(3), 862-877.
[http://dx.doi.org/10.1053/j.gastro.2006.06.017] [PMID: 16952555]
[44]
Lee, J.Y.; Nam, J.H.; Nam, Y.; Nam, H.Y.; Yoon, G.; Ko, E.; Kim, S.B.; Bautista, M.R.; Capule, C.C.; Koyanagi, T.; Leriche, G.; Choi, H.G.; Yang, J.; Kim, J.; Hoe, H.S. The small molecule CA140 inhibits the neuroinflammatory response in wild-type mice and a mouse model of AD. J. Neuroinflammation, 2018, 15(1), 286.
[http://dx.doi.org/10.1186/s12974-018-1321-3] [PMID: 30309372]
[45]
Greenhill, C.J.; Rose-John, S.; Lissilaa, R.; Ferlin, W.; Ernst, M.; Hertzog, P.J.; Mansell, A.; Jenkins, B.J. IL-6 trans-signaling modulates TLR4-dependent inflammatory responses via STAT3. J. Immunol., 2011, 186(2), 1199-1208.
[http://dx.doi.org/10.4049/jimmunol.1002971] [PMID: 21148800]
[46]
Meraz-Ríos, M.A.; Toral-Rios, D.; Franco-Bocanegra, D.; Villeda-Hernández, J.; Campos-Peña, V. Inflammatory process in Alzheimer’s disease. Front. Integr. Nuerosci., 2013, 7, 59.
[47]
Dunn, N.; Mullee, M.; Perry, V.H.; Holmes, C. Association between dementia and infectious disease: evidence from a case-control study. Alzheimer Dis. Assoc. Disord., 2005, 19(2), 91-94.
[http://dx.doi.org/10.1097/01.wad.0000165511.52746.1f] [PMID: 15942327]
[48]
Ren, L.; Yi, J.; Yang, J.; Li, P.; Cheng, X.; Mao, P. Nonsteroidal anti-inflammatory drugs use and risk of Parkinson disease. Medicine (Baltimore), 2018, 97(37), e12172-e12172.
[http://dx.doi.org/10.1097/MD.0000000000012172] [PMID: 30212946]
[49]
Etminan, M.; Gill, S.; Samii, A. Effect of non-steroidal anti-inflammatory drugs on risk of Alzheimer’s disease: systematic review and meta-analysis of observational studies. BMJ, 2003, 327(7407), 128.
[http://dx.doi.org/10.1136/bmj.327.7407.128] [PMID: 12869452]
[50]
Lamkanfi, M.; Dixit, V.M. Inflammasomes and their roles in health and disease. Annu. Rev. Cell Dev. Biol., 2012, 28(1), 137-161.
[http://dx.doi.org/10.1146/annurev-cellbio-101011-155745] [PMID: 22974247]
[51]
Spooren, A.; Kolmus, K.; Laureys, G.; Clinckers, R.; De Keyser, J.; Haegeman, G.; Gerlo, S. Interleukin-6, a mental cytokine. Brain Res. Brain Res. Rev., 2011, 67(1-2), 157-183.
[http://dx.doi.org/10.1016/j.brainresrev.2011.01.002] [PMID: 21238488]
[52]
Qi, Y.; Zou, L.B.; Wang, L.H.; Jin, G.; Pan, J.J.; Chi, T.Y.; Ji, X.F. Xanthoceraside inhibits pro-inflammatory cytokine expression in Aβ25-35/IFN-γ-stimulated microglia through the TLR2 receptor, MyD88, nuclear factor-κB, and mitogen-activated protein kinase signaling pathways. J. Pharmacol. Sci., 2013, 122(4), 305-317.
[http://dx.doi.org/10.1254/jphs.13031FP] [PMID: 23966052]
[53]
Chen, H.; Shuai, L.; Lu, J. Folic acid supplementation mitigates Alzheimer's disease by reducing inflammation: A randomized controlled trial. Mediators Inflamm, 2016, 2016, 5912146.
[http://dx.doi.org/10.1155/2016/5912146]
[54]
Kumar, A.; Sharma, S. Donepezil, in StatPearls; StatPearls Publishing LLC: Treasure Island (FL), 2020.
[55]
Birks, J. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst. Rev., 2006, 2006(1), CD005593.
[PMID: 16437532]
[56]
Schneider, L.S.; Dagerman, K.S.; Higgins, J.P.; McShane, R. Lack of evidence for the efficacy of memantine in mild Alzheimer disease. Arch. Neurol., 2011, 68(8), 991-998.
[http://dx.doi.org/10.1001/archneurol.2011.69] [PMID: 21482915]
[57]
Touchon, J.; Bergman, H.; Bullock, R.; Rapatz, G.; Nagel, J.; Lane, R. Response to rivastigmine or donepezil in Alzheimer’s patients with symptoms suggestive of concomitant Lewy body pathology. Curr. Med. Res. Opin., 2006, 22(1), 49-59.
[http://dx.doi.org/10.1185/030079906X80279] [PMID: 16393430]
[58]
Fitzgerald, P.J.; Hale, P.J.; Ghimire, A.; Watson, B.O. The cholinesterase inhibitor donepezil has antidepressant-like properties in the mouse forced swim test. Transl. Psychiatry, 2020, 10(1), 255.
[http://dx.doi.org/10.1038/s41398-020-00928-w] [PMID: 32712627]
[59]
Forloni, G.; Balducci, C. Alzheimer’s disease, oligomers, and inflammation. J. Alzheimers Dis., 2018, 62(3), 1261-1276.
[http://dx.doi.org/10.3233/JAD-170819] [PMID: 29562537]
[60]
Kim, H.G.; Moon, M.; Choi, J.G.; Park, G.; Kim, A.J.; Hur, J.; Lee, K.T.; Oh, M.S. Donepezil inhibits the amyloid-beta oligomer-induced microglial activation in vitro and in vivo. Neurotoxicology, 2014, 40, 23-32.
[http://dx.doi.org/10.1016/j.neuro.2013.10.004] [PMID: 24189446]
[61]
Liu, Y.; Zhang, Y.; Zheng, X.; Fang, T.; Yang, X.; Luo, X.; Guo, A.; Newell, K.A.; Huang, X.F.; Yu, Y. Galantamine improves cognition, hippocampal inflammation, and synaptic plasticity impairments induced by lipopolysaccharide in mice. J. Neuroinflammation, 2018, 15(1), 112.
[http://dx.doi.org/10.1186/s12974-018-1141-5] [PMID: 29669582]
[62]
Wu, H.M.; Tzeng, N.S.; Qian, L.; Wei, S.J.; Hu, X.; Chen, S.H.; Rawls, S.M.; Flood, P.; Hong, J.S.; Lu, R.B. Novel neuroprotective mechanisms of memantine: increase in neurotrophic factor release from astroglia and anti-inflammation by preventing microglial activation. Neuropsychopharmacology, 2009, 34(10), 2344-2357.
[http://dx.doi.org/10.1038/npp.2009.64] [PMID: 19536110]
[63]
Nizri, E.; Irony-Tur-Sinai, M.; Faranesh, N.; Lavon, I.; Lavi, E.; Weinstock, M.; Brenner, T. Suppression of neuroinflammation and immunomodulation by the acetylcholinesterase inhibitor rivastigmine. J. Neuroimmunol., 2008, 203(1), 12-22.
[http://dx.doi.org/10.1016/j.jneuroim.2008.06.018] [PMID: 18692909]
[64]
Tansey, M.G.; Goldberg, M.S. Neuroinflammation in Parkinson’s disease: Its role in neuronal death and implications for therapeutic intervention. Neurobiol. Dis., 2010, 37(3), 510-518.
[http://dx.doi.org/10.1016/j.nbd.2009.11.004] [PMID: 19913097]
[65]
DeMaagd, G.; Philip, A. Parkinson's disease and its management: Part 1: Disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis. Pharm. Ther., 2015, 40(8), 504-532.
[PMID: 26236139]
[66]
Wang, Q.; Liu, Y.; Zhou, J. Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl. Neurodegener., 2015, 4(1), 19-19.
[http://dx.doi.org/10.1186/s40035-015-0042-0] [PMID: 26464797]
[67]
Tang, Y.; Le, W. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol. Neurobiol., 2016, 53(2), 1181-1194.
[http://dx.doi.org/10.1007/s12035-014-9070-5] [PMID: 25598354]
[68]
Lynch, M.A. Age-related neuroinflammatory changes negatively impact on neuronal function. Front. Aging Neurosci., 2010, 1(6), 6.
[http://dx.doi.org/10.3389/neuro.24.006.2009] [PMID: 20552057]
[69]
Tufekci, K.U. Chapter four - inflammation in Parkinson’s disease. Advances in protein chemistry and structural biology; Donev, R., Ed.; Academic Press, 2012, pp. 69-132.
[70]
Poewe, W.; Espay, A.J. Long duration response in Parkinson’s disease: levodopa revisited. Brain, 2020, 143(8), 2332-2335.
[http://dx.doi.org/10.1093/brain/awaa226] [PMID: 32844192]
[71]
Hershey, T.; Black, K.J.; Carl, J.L.; McGee-Minnich, L.; Snyder, A.Z.; Perlmutter, J.S. Long term treatment and disease severity change brain responses to levodopa in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry, 2003, 74(7), 844-851.
[http://dx.doi.org/10.1136/jnnp.74.7.844] [PMID: 12810765]
[72]
Poletti, M.; Bonuccelli, U. Acute and chronic cognitive effects of levodopa and dopamine agonists on patients with Parkinson’s disease: a review. Ther. Adv. Psychopharmacol., 2013, 3(2), 101-113.
[http://dx.doi.org/10.1177/2045125312470130] [PMID: 24167681]
[73]
Aarsland, D.; Ballard, C.; Walker, Z.; Bostrom, F.; Alves, G.; Kossakowski, K.; Leroi, I.; Pozo-Rodriguez, F.; Minthon, L.; Londos, E. Memantine in patients with Parkinson’s disease dementia or dementia with Lewy bodies: a double-blind, placebo-controlled, multicentre trial. Lancet Neurol., 2009, 8(7), 613-618.
[http://dx.doi.org/10.1016/S1474-4422(09)70146-2] [PMID: 19520613]
[74]
Rashid, U.; Ansari, F.L. Challenges in designing therapeutic agents for treating Alzheimer’s disease-from serendipity to rationality. In: Drug design and discovery in Alzheimer's disease; Atta ur, R.; Choudhary, M.I., Eds.; Elsevier, 2014; pp. 40-141.
[75]
McShane, R.; Maggie, J.W.; Emmert, R. Memantine for dementia. Cochrane Database Syst. Rev., 2019, 3(3), CD003154.
[http://dx.doi.org/10.1002/14651858.CD003154.pub6]
[76]
Rizzi, G.; Tan, K.R. Dopamine and acetylcholine, a circuit point of view in Parkinson’s disease. Front. Neural Circuits, 2017, 11(110), 110.
[http://dx.doi.org/10.3389/fncir.2017.00110] [PMID: 29311846]
[77]
Alshammari, T.M.; AlMutairi, E.N. Use of an entacapone- containing drug combination and risk of death: Analysis of the FDA AERS (FAERS) database. Saudi Pharm J., 2015, 23(1), 28-32.
[http://dx.doi.org/10.1016/j.jsps.2014.04.005] [PMID: 25685040]
[78]
Lecht, S.; Haroutiunian, S.; Hoffman, A.; Lazarovici, P. Rasagiline - a novel MAO B inhibitor in Parkinson’s disease therapy. Ther. Clin. Risk Manag., 2007, 3(3), 467-474.
[PMID: 18488080]
[79]
LeWitt, P.A.; Fahn, S. Levodopa therapy for Parkinson disease: A look backward and forward. Neurology, 2016, 86(14)(Suppl. 1), S3-S12.
[http://dx.doi.org/10.1212/WNL.0000000000002509] [PMID: 27044648]
[80]
Yan, Y.; Jiang, W.; Liu, L.; Wang, X.; Ding, C.; Tian, Z.; Zhou, R. Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell, 2015, 160(1-2), 62-73.
[http://dx.doi.org/10.1016/j.cell.2014.11.047] [PMID: 25594175]
[81]
Chen, H.; Jacobs, E.; Schwarzschild, M.A.; McCullough, M.L.; Calle, E.E.; Thun, M.J.; Ascherio, A. Nonsteroidal antiinflammatory drug use and the risk for Parkinson’s disease. Ann. Neurol., 2005, 58(6), 963-967.
[http://dx.doi.org/10.1002/ana.20682] [PMID: 16240369]
[82]
Naegele, M.; Martin, R. The good and the bad of neuroinflammation in multiple sclerosis. Handbook of Clinical Neurology; Goodin, D.S., Ed.; Elsevier, 2014, pp. 59-87.
[83]
Matthews, P.M. Chronic inflammation in multiple sclerosis - seeing what was always there. Nat. Rev. Neurol., 2019, 15(10), 582-593.
[http://dx.doi.org/10.1038/s41582-019-0240-y] [PMID: 31420598]
[84]
Frank-Cannon, T.C.; Alto, L.T.; McAlpine, F.E.; Tansey, M.G. Does neuroinflammation fan the flame in neurodegenerative diseases? Mol. Neurodegener., 2009, 4(1), 47-47.
[http://dx.doi.org/10.1186/1750-1326-4-47] [PMID: 19917131]
[85]
Wynn, D.R. Enduring clinical value of copaxone® (glatiramer acetate) in multiple sclerosis after 20 years of use. Mult. Scler. Int., 2019, 2019, 1-19.
[http://dx.doi.org/10.1155/2019/7151685] [PMID: 30775037]
[86]
Pjrek, E.; Winkler, D.; Dervic, K.; Aschauer, H.; Kasper, S. Psychosis as a possible side-effect of treatment with glatiramer acetate. Int. J. Neuropsychopharmacol., 2005, 8(3), 487-488.
[http://dx.doi.org/10.1017/S1461145705005304] [PMID: 15975191]
[87]
Mandal, P.; Gupta, A.; Fusi-Rubiano, W.; Keane, P.A.; Yang, Y. Fingolimod: therapeutic mechanisms and ocular adverse effects. Eye (Lond.), 2017, 31(2), 232-240.
[http://dx.doi.org/10.1038/eye.2016.258] [PMID: 27886183]
[88]
Gajofatto, A.; Turatti, M.; Monaco, S.; Benedetti, M.D. Clinical efficacy, safety, and tolerability of fingolimod for the treatment of relapsing-remitting multiple sclerosis. Drug Healthc. Patient Saf., 2015, 7, 157-167.
[http://dx.doi.org/10.2147/DHPS.S69640] [PMID: 26715860]
[89]
O’Connor, P.; Comi, G.; Freedman, M.S.; Miller, A.E.; Kappos, L.; Bouchard, J.P.; Lebrun-Frenay, C.; Mares, J.; Benamor, M.; Thangavelu, K.; Liang, J.; Truffinet, P.; Lawson, V.J.; Wolinsky, J.S. Long-term safety and efficacy of teriflunomide. Neurology, 2016, 86(10), 920-930.
[http://dx.doi.org/10.1212/WNL.0000000000002441] [PMID: 26865517]
[90]
Rafiee Zadeh, A.; Ghadimi, K.; Ataei, A.; Askari, M.; Sheikhinia, N.; Tavoosi, N.; Falahatian, M. Mechanism and adverse effects of multiple sclerosis drugs: a review article. Part 2. Int. J. Physiol. Pathophysiol. Pharmacol., 2019, 11(4), 105-114.
[PMID: 31523358]
[91]
Deeks, E.D. Cladribine tablets: A review in relapsing MS. CNS Drugs, 2018, 32(8), 785-796.
[http://dx.doi.org/10.1007/s40263-018-0562-0] [PMID: 30105527]
[92]
Minton, K. Cladribine hope for multiple sclerosis. Nat. Rev. Immunol., 2009, 9(6), 387-387.
[http://dx.doi.org/10.1038/nri2579]
[93]
Carlström, K.E.; Ewing, E.; Granqvist, M.; Gyllenberg, A.; Aeinehband, S.; Enoksson, S.L.; Checa, A.; Badam, T.V.S.; Huang, J.; Gomez-Cabrero, D.; Gustafsson, M.; Al Nimer, F.; Wheelock, C.E.; Kockum, I.; Olsson, T.; Jagodic, M.; Piehl, F. Therapeutic efficacy of dimethyl fumarate in relapsing-remitting multiple sclerosis associates with ROS pathway in monocytes. Nat. Commun., 2019, 10(1), 3081.
[http://dx.doi.org/10.1038/s41467-019-11139-3] [PMID: 31300673]
[94]
Toumi, M.; Jadot, G. Economic impact of new active substance status on EU payers’ budgets: example of dimethyl fumarate (Tecfidera®) for multiple sclerosis. J. Mark. Access Health Policy, 2014, 2(1), 23932.
[http://dx.doi.org/10.3402/jmahp.v2.23932] [PMID: 27226838]
[95]
Foroughipour, M.; Gazeran, S. Effectiveness and side effects of dimethyl fumarate in multiple sclerosis after 12 months of follow up: An Iranian clinical trial. Iran. J. Neurol., 2019, 18(4), 154-158.
[PMID: 32117551]
[96]
Diaz, R.A.; Doss, S.; Burke, M.J.; George, E.; Adler, A.I. Alemtuzumab for relapsing-remitting multiple sclerosis. Lancet Neurol., 2014, 13(9), 869-870.
[http://dx.doi.org/10.1016/S1474-4422(14)70184-X] [PMID: 25285344]
[97]
Guarnera, C.; Bramanti, P.; Mazzon, E. Alemtuzumab: a review of efficacy and risks in the treatment of relapsing remitting multiple sclerosis. Ther. Clin. Risk Manag., 2017, 13, 871-879.
[http://dx.doi.org/10.2147/TCRM.S134398] [PMID: 28761351]
[98]
Huggett, B. How Tysabri survived. Nat. Biotechnol., 2009, 27(11), 986-986.
[http://dx.doi.org/10.1038/nbt1109-986] [PMID: 19898447]
[99]
Hoepner, R.; Faissner, S.; Salmen, A.; Gold, R.; Chan, A. Efficacy and side effects of natalizumab therapy in patients with multiple sclerosis. J. Cent. Nerv. Syst. Dis., 2014, 6, JCNSD.S14049.
[http://dx.doi.org/10.4137/JCNSD.S14049] [PMID: 24855407]
[100]
Ali, Z.K.; Baker, D.E. Formulary drug review: Ocrelizumab. Hosp. Pharm., 2017, 52(9), 599-606.
[http://dx.doi.org/10.1177/0018578717731733] [PMID: 29276296]
[101]
Aschenbrenner, D.S. Two new drugs approved for multiple sclerosis. Am. J. Nurs., 2019, 119(7), 22-23.
[http://dx.doi.org/10.1097/01.NAJ.0000569436.66670.b3]
[102]
Marriott, J.J.; Miyasaki, J.M.; Gronseth, G.; O’Connor, P.W. Evidence Report: The efficacy and safety of mitoxantrone (Novantrone) in the treatment of multiple sclerosis: Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology, 2010, 74(18), 1463-1470.
[http://dx.doi.org/10.1212/WNL.0b013e3181dc1ae0] [PMID: 20439849]
[103]
Scott, L.J.; Figgitt, D.P. Mitoxantrone. CNS Drugs, 2004, 18(6), 379-396.
[http://dx.doi.org/10.2165/00023210-200418060-00010] [PMID: 15089110]
[104]
David, O.J.; Kovarik, J.M.; Schmouder, R.L. Clinical pharmacokinetics of fingolimod. Clin. Pharmacokinet., 2012, 51(1), 15-28.
[http://dx.doi.org/10.2165/11596550-000000000-00000] [PMID: 22149256]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy