Research Article

不同细胞类型背景下乳腺癌和前列腺癌血管生成关键基因的鉴定

卷 31, 期 12, 2024

发表于: 12 May, 2023

页: [1595 - 1605] 页: 11

弟呕挨: 10.2174/0929867330666230331101458

价格: $65

摘要

简介:血管生成涉及新血管的发育。 生化信号在体内启动这一过程,随后血管内壁内皮细胞的迁移、生长和分化。 这个过程对于癌细胞和肿瘤的生长至关重要。 材料和方法:我们通过编写一系列基因开始我们的分析,这些基因对人类血管生成相关表型具有经过验证的影响。 在这里,我们在先前发表的来自前列腺癌和乳腺癌样本的单细胞 RNA-Seq 数据的背景下研究了血管生成相关基因的表达模式。 结果:利用蛋白质-蛋白质相互作用网络,我们展示了血管生成相关基因的不同模块如何在不同细胞类型中过度表达。 在我们的结果中,ACKR1、AQP1 和 EGR1 等基因在两种研究的癌症类型中表现出强烈的细胞类型依赖性过度表达模式,这可能有助于前列腺癌和乳腺癌患者的诊断和随访 。 结论:我们的工作证明了不同细胞类型中的不同生物过程如何促进血管生成过程,这可以为靶向抑制血管生成过程的潜在应用提供线索。

关键词: 血管生成、乳腺癌、前列腺癌、系统生物学、EGR1、ACKR1。

« Previous
[1]
Rawla, P. Epidemiology of prostate cancer. World J. Oncol., 2019, 10(2), 63-89.
[http://dx.doi.org/10.14740/wjon1191] [PMID: 31068988]
[2]
Mousavi, S.M.; Montazeri, A.; Mohagheghi, M.A.; Jarrahi, A.M.; Harirchi, I.; Najafi, M.; Ebrahimi, M. Breast cancer in Iran: An epidemiological review. Breast J., 2007, 13(4), 383-391.
[http://dx.doi.org/10.1111/j.1524-4741.2007.00446.x] [PMID: 17593043]
[3]
Rahimi, M.; Behjati, F.; Khorram Khorshid, H.R.; Karimlou, M.; Keyhani, E. The relationship between KIT copy number variation, protein expression, and angiogenesis in sporadic breast cancer. Rep. Biochem. Mol. Biol., 2020, 9(1), 40-49.
[http://dx.doi.org/10.29252/rbmb.9.1.40] [PMID: 32821750]
[4]
De Jong, J.S.; Van Diest, P.J.; A Baak Hot spot microvessel density and the mitotic activity index are strong additional prognostic indicators in invasive breast cancer. Histopathology, 2000, 36(4), 306-312.
[http://dx.doi.org/10.1046/j.1365-2559.2000.00850.x] [PMID: 10759944]
[5]
Folkman, J.; Hanahan. D. Switch to the angiogenic phenotype during tumorigenesis. Princess Takamatsu Symp., 1991, 22(339-347).
[PMID: 1726933]
[6]
Jászai, J.; Schmidt, M. Trends and challenges in tumor anti-angiogenic therapies. Cells, 2019, 8(9), 1102.
[http://dx.doi.org/10.3390/cells8091102] [PMID: 31540455]
[7]
Weis, S.M.; Cheresh, D.A. Tumor angiogenesis: Molecular pathways and therapeutic targets. Nat. Med., 2011, 17(11), 1359-1370.
[http://dx.doi.org/10.1038/nm.2537] [PMID: 22064426]
[8]
Wu, S.Z.; Roden, D.L.; Al-Eryani, G.; Bartonicek, N.; Harvey, K.; Cazet, A.S.; Chan, C.L.; Junankar, S.; Hui, M.N.; Millar, E.A.; Beretov, J.; Horvath, L.; Joshua, A.M.; Stricker, P.; Wilmott, J.S.; Quek, C.; Long, G.V.; Scolyer, R.A.; Yeung, B.Z.; Segara, D.; Mak, C.; Warrier, S.; Powell, J.E.; O’Toole, S.; Lim, E.; Swarbrick, A. Cryopreservation of human cancers conserves tumour heterogeneity for single-cell multi-omics analysis. Genome Med., 2021, 13(1), 81.
[http://dx.doi.org/10.1186/s13073-021-00885-z] [PMID: 33971952]
[9]
Stuart, T.; Butler, A.; Hoffman, P.; Hafemeister, C.; Papalexi, E.; Mauck, W.M., III; Hao, Y.; Stoeckius, M.; Smibert, P.; Satija, R. Comprehensive integration of single-cell data. Cell, 2019, 177(7), 1888-1902.e21.
[http://dx.doi.org/10.1016/j.cell.2019.05.031] [PMID: 31178118]
[10]
Eden, E.; Navon, R.; Steinfeld, I.; Lipson, D.; Yakhini, Z. GOrilla: A tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics, 2009, 10(1), 48.
[http://dx.doi.org/10.1186/1471-2105-10-48] [PMID: 19192299]
[11]
Supek, F.; Bošnjak, M.; Škunca, N.; Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One, 2011, 6(7), e21800.
[http://dx.doi.org/10.1371/journal.pone.0021800] [PMID: 21789182]
[12]
Jensen, L.J.; Kuhn, M.; Stark, M.; Chaffron, S.; Creevey, C.; Muller, J.; Doerks, T.; Julien, P.; Roth, A.; Simonovic, M.; Bork, P.; von Mering, C. STRING 8-a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res., 2009, 37(Suppl. 1), D412-D416.
[http://dx.doi.org/10.1093/nar/gkn760] [PMID: 18940858]
[13]
Solimando, A.G.; Summa, S.D.; Vacca, A.; Ribatti, D. Cancer-associated angiogenesis: The endothelial cell as a checkpoint for immunological patrolling. Cancers, 2020, 12(11), 3380.
[http://dx.doi.org/10.3390/cancers12113380] [PMID: 33203154]
[14]
Jiang, X.; Wang, J.; Deng, X.; Xiong, F.; Zhang, S.; Gong, Z.; Li, X.; Cao, K.; Deng, H.; He, Y.; Liao, Q.; Xiang, B.; Zhou, M.; Guo, C.; Zeng, Z.; Li, G.; Li, X.; Xiong, W. The role of microenvironment in tumor angiogenesis. J. Exp. Clin. Cancer Res., 2020, 39(1), 204.
[http://dx.doi.org/10.1186/s13046-020-01709-5] [PMID: 32993787]
[15]
Bhome, R.; Bullock, M.D.; Al Saihati, H.A.; Goh, R.W.; Primrose, J.N.; Sayan, A.E.; Mirnezami, A.H. A top-down view of the tumor microenvironment: Structure, cells and signaling. Front. Cell Dev. Biol., 2015, 3, 33.
[http://dx.doi.org/10.3389/fcell.2015.00033] [PMID: 26075202]
[16]
Eyerich, K.; Dimartino, V.; Cavani, A. IL-17 and IL-22 in immunity: Driving protection and pathology. Eur. J. Immunol., 2017, 47(4), 607-614.
[http://dx.doi.org/10.1002/eji.201646723] [PMID: 28295238]
[17]
Queen, D.; Ediriweera, C.; Liu, L. Function and regulation of IL-36 signaling in inflammatory diseases and cancer development. Front. Cell Dev. Biol., 2019, 7, 317.
[http://dx.doi.org/10.3389/fcell.2019.00317] [PMID: 31867327]
[18]
Lu, T.; Ramakrishnan, R.; Altiok, S.; Youn, J.I.; Cheng, P.; Celis, E.; Pisarev, V.; Sherman, S.; Sporn, M.B.; Gabrilovich, D. Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J. Clin. Invest., 2011, 121(10), 4015-4029.
[http://dx.doi.org/10.1172/JCI45862] [PMID: 21911941]
[19]
Sarhan, D.; Hippen, K.L.; Lemire, A.; Hying, S.; Luo, X.; Lenvik, T.; Curtsinger, J.; Davis, Z.; Zhang, B.; Cooley, S.; Cichocki, F.; Blazar, B.R.; Miller, J.S. Adaptive NK cells resist regulatory T-cell suppression driven by IL37. Cancer Immunol. Res., 2018, 6(7), 766-775.
[http://dx.doi.org/10.1158/2326-6066.CIR-17-0498] [PMID: 29784636]
[20]
Ren, D.; Hua, Y.; Yu, B.; Ye, X.; He, Z.; Li, C. Predictive biomarkers and mechanisms underlying resistance to PD1/PD-L1 blockade cancer immunotherapy. Mol. Cancer, 2020, 19(1), 1-19.
[PMID: 31901224]
[21]
Duan, S.; Guo, W.; Xu, Z.; He, Y.; Liang, C.; Mo, Y.; Wang, Y.; Xiong, F.; Guo, C.; Li, Y.; Li, X.; Li, G.; Zeng, Z.; Xiong, W.; Wang, F. Natural killer group 2D receptor and its ligands in cancer immune escape. Mol. Cancer, 2019, 18(1), 29.
[http://dx.doi.org/10.1186/s12943-019-0956-8] [PMID: 30813924]
[22]
Aktaş, O.N.; Öztürk, A.B.; Erman, B.; Erus, S.; Tanju, S.; Dilege, Ş. Role of natural killer cells in lung cancer. J. Cancer Res. Clin. Oncol., 2018, 144(6), 997-1003.
[http://dx.doi.org/10.1007/s00432-018-2635-3] [PMID: 29616326]
[23]
Butt, A.Q.; Mills, K.H.G. Immunosuppressive networks and checkpoints controlling antitumor immunity and their blockade in the development of cancer immunotherapeutics and vaccines. Oncogene, 2014, 33(38), 4623-4631.
[http://dx.doi.org/10.1038/onc.2013.432] [PMID: 24141774]
[24]
Hanahan, D.; Coussens, L.M. Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell, 2012, 21(3), 309-322.
[http://dx.doi.org/10.1016/j.ccr.2012.02.022] [PMID: 22439926]
[25]
Wang, M.; Zhao, J.; Zhang, L.; Wei, F.; Lian, Y.; Wu, Y.; Gong, Z.; Zhang, S.; Zhou, J.; Cao, K.; Li, X.; Xiong, W.; Li, G.; Zeng, Z.; Guo, C. Role of tumor microenvironment in tumorigenesis. J. Cancer, 2017, 8(5), 761-773.
[http://dx.doi.org/10.7150/jca.17648] [PMID: 28382138]
[26]
Barsky, S.H.; Karlin, N.J. Myoepithelial cells: Autocrine and paracrine suppressors of breast cancer progression. J. Mammary Gland Biol. Neoplasia, 2005, 10(3), 249-260.
[http://dx.doi.org/10.1007/s10911-005-9585-5] [PMID: 16807804]
[27]
Liang, Y.; Hyder, S.M. Proliferation of endothelial and tumor epithelial cells by progestin-induced vascular endothelial growth factor from human breast cancer cells: Paracrine and autocrine effects. Endocrinology, 2005, 146(8), 3632-3641.
[http://dx.doi.org/10.1210/en.2005-0103] [PMID: 15845615]
[28]
Kalluri, R.; Weinberg, R.A. The basics of epithelial-mesenchymal transition. J. Clin. Invest., 2009, 119(6), 1420-1428.
[http://dx.doi.org/10.1172/JCI39104] [PMID: 19487818]
[29]
Thiery, J.P. Epithelial–mesenchymal transitions in tumour progression. Nat. Rev. Cancer, 2002, 2(6), 442-454.
[http://dx.doi.org/10.1038/nrc822] [PMID: 12189386]
[30]
Yu, D.; Ye, T.; Xiang, Y.; Shi, Z.; Zhang, J.; Lou, B.; Zhang, F.; Chen, B.; Zhou, M. Quercetin inhibits epithelial–mesenchymal transition, decreases invasiveness and metastasis, and reverses IL-6 induced epithelial–mesenchymal transition, expression of MMP by inhibiting STAT3 signaling in pancreatic cancer cells. OncoTargets Ther., 2017, 10, 4719-4729.
[http://dx.doi.org/10.2147/OTT.S136840] [PMID: 29026320]
[31]
Horejs, C.M. Basement membrane fragments in the context of the epithelial-to-mesenchymal transition. Eur. J. Cell Biol., 2016, 95(11), 427-440.
[http://dx.doi.org/10.1016/j.ejcb.2016.06.002] [PMID: 27397693]
[32]
Wang, F.T.; Sun, W.; Zhang, J.T.; Fan, Y.Z. Cancer-associated fibroblast regulation of tumor neo-angiogenesis as a therapeutic target in cancer (Review). Oncol. Lett., 2019, 17(3), 3055-3065.
[http://dx.doi.org/10.3892/ol.2019.9973] [PMID: 30867734]
[33]
Wu, S.Z.; Roden, D.L.; Wang, C.; Holliday, H.; Harvey, K.; Cazet, A.S.; Murphy, K.J.; Pereira, B.; Al-Eryani, G.; Bartonicek, N.; Hou, R.; Torpy, J.R.; Junankar, S.; Chan, C.L.; Lam, C.E.; Hui, M.N.; Gluch, L.; Beith, J.; Parker, A.; Robbins, E.; Segara, D.; Mak, C.; Cooper, C.; Warrier, S.; Forrest, A.; Powell, J.; O’Toole, S.; Cox, T.R.; Timpson, P.; Lim, E.; Liu, X.S.; Swarbrick, A. Stromal cell diversity associated with immune evasion in human triple‐negative breast cancer. EMBO J., 2020, 39(19), e104063.
[http://dx.doi.org/10.15252/embj.2019104063] [PMID: 32790115]
[34]
Massara, M.; Bonavita, O.; Mantovani, A.; Locati, M.; Bonecchi, R. Atypical chemokine receptors in cancer: Friends or foes? J. Leukoc. Biol., 2016, 99(6), 927-933.
[http://dx.doi.org/10.1189/jlb.3MR0915-431RR] [PMID: 26908826]
[35]
Tomita, Y.; Dorward, H.; Yool, A.; Smith, E.; Townsend, A.; Price, T.; Hardingham, J. Role of aquaporin 1 signalling in cancer development and progression. Int. J. Mol. Sci., 2017, 18(2), 299.
[http://dx.doi.org/10.3390/ijms18020299] [PMID: 28146084]
[36]
Wang, B.; Guo, H.; Yu, H.; Chen, Y.; Xu, H.; Zhao, G. The role of the transcription factor EGR1 in cancer. Front. Oncol., 2021, 11, 642547.
[http://dx.doi.org/10.3389/fonc.2021.642547] [PMID: 33842351]
[37]
Sikder, H.A.; Devlin, M.K.; Dunlap, S.; Ryu, B.; Alani, R.M. Id proteins in cell growth and tumorigenesis. Cancer Cell, 2003, 3(6), 525-530.
[http://dx.doi.org/10.1016/S1535-6108(03)00141-7] [PMID: 12842081]
[38]
Lin, Y-W.; Weng, X-F.; Huang, B-L.; Guo, H-P.; Xu, Y-W.; Peng, Y-H. IGFBP-1 in cancer: Expression, molecular mechanisms, and potential clinical implications. Am. J. Transl. Res., 2021, 13(3), 813-832.
[PMID: 33841624]
[39]
Baxter, R.C. Signalling pathways involved in antiproliferative effects of IGFBP-3: A review. Mol. Pathol., 2001, 54(3), 145-148.
[http://dx.doi.org/10.1136/mp.54.3.145] [PMID: 11376125]
[40]
Park, S.; Sorenson, C.M.; Sheibani, N. PECAM-1 isoforms, eNOS and endoglin axis in regulation of angiogenesis. Clin. Sci., 2015, 129(3), 217-234.
[http://dx.doi.org/10.1042/CS20140714] [PMID: 25976664]
[41]
He, Z.; Bateman, A. Progranulin (granulin-epithelin precursor, PC-cell-derived growth factor, acrogranin) mediates tissue repair and tumorigenesis. J. Mol. Med., 2003, 81(10), 600-612.
[http://dx.doi.org/10.1007/s00109-003-0474-3] [PMID: 12928786]
[42]
Vlaicu, S.I.; Tatomir, A.; Rus, V.; Rus, H. Role of C5b-9 and RGC-32 in cancer. Front. Immunol., 2019, 10, 1054.
[http://dx.doi.org/10.3389/fimmu.2019.01054] [PMID: 31156630]
[43]
Xing, Y.; Ye, Y.; Zuo, H.; Li, Y. Progress on the function and application of thymosin β4. Front. Endocrinol., 2021, 12, 767785.
[http://dx.doi.org/10.3389/fendo.2021.767785]
[44]
Elamin, Y.Y.; Rafee, S.; Osman, N.; O Byrne, K.J.; Gately, K. Thymidine phosphorylase in cancer; enemy or friend? Cancer Microenviron., 2016, 9(1), 33-43.
[http://dx.doi.org/10.1007/s12307-015-0173-y] [PMID: 26298314]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy