Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Research Article

Antimicrobial Resistance of Clinical Klebsiella pneumoniae Isolates: Involvement of AcrAB and OqxAB Efflux Pumps

Author(s): Osman Albarri, Manaf AlMatar*, Işil Var and Fatih Köksal

Volume 17, 2024

Published on: 13 July, 2023

Article ID: e310323215266 Pages: 12

DOI: 10.2174/1874467217666230331081434

open_access

Abstract

Background: Over the last several decades, the AcrAB and OqxAB efflux pumps have been found to cause multidrug resistance (MDR) in various bacteria, most notably Klebsiella pneumoniae. Antibiotic resistance surges with increased expression of the acrAB and oqxAB efflux pumps.

Methods: In accordance with CLSI guidelines, a disk diffusion test was carried out using 50 K. pneumoniae isolates obtained from various clinical samples. CT was computed in treated samples and compared to a susceptible ciprofloxacin strain (A111). The final finding is presented as the fold change in the target gene's expression in treated samples relative to a control sample (A111), normalized to a reference gene. As ΔΔCT = 0 and 2 to the power of 0 = 1, relative gene expression for reference samples is often set to 1

Results: The highest rates of resistance were recognized with cefotaxime (100%), cefuroxime (100%), cefepime (100%), levofloxacin (98%), trimethoprimsulfamethoxazole (80%), and gentamicin (72%), whereas imipenem (34%) had the lowest rates. Overexpression of acrA and acrB, oqxA and oqxB, regulators marA, soxS, and rarA were greater in ciprofloxacin-resistant isolates compared to the reference strain (strain A111). There was also a moderate connection between ciprofloxacin MIC and acrAB gene expression and a moderate connection between ciprofloxacin MIC and oqxAB gene expression.

Conclusion: This work provides a deeper knowledge of the role of efflux pump genes, particularly acrAB and oqxAB, as well as transcriptional regulators marA, soxS, and rarA, in bacterial resistance to ciprofloxacin.

Keywords: Klebsiella pneumoniae, Efflux pumps, Ciprofloxacin, CCCP, RT-PCR, Antimicrobial.

[1]
AlMatar, M.; Albarri, O.; Makky, E.A.; Var, I.; Köksal, F. An overview of the activities of cefiderocol against sensitive and multidrug-resistant (MDR) bacteria. Mini Rev. Med. Chem., 2020, 20(18), 1908-1916.
[http://dx.doi.org/10.2174/1389557520666200818211405] [PMID: 32811410]
[2]
AlMatar, M.; Albarri, O.; Makky, E.A.; Var, I.; Köksal, F. A glance on the role of bacterial siderophore from the perspectives of medical and biotechnological approaches. Curr. Drug Targets, 2020, 21(13), 1326-1343.
[http://dx.doi.org/10.2174/1389450121666200621193018] [PMID: 32564749]
[3]
Giske, C.G.; Monnet, D.L.; Cars, O.; Carmeli, Y. Clinical and economic impact of common multidrug-resistant gram-negative bacilli. Antimicrob. Agents Chemother., 2008, 52(3), 813-821.
[http://dx.doi.org/10.1128/AAC.01169-07] [PMID: 18070961]
[4]
Osman, A.; Işıl, V.; Fatih, K. Microbial siderophores: Potential medicinal applications of the siderophores. J. Biotechnol. Sci. Res, 2019, 6, 32-40.
[5]
Hansen, L.H.; Jensen, L.B.; Sørensen, H.I.; Sørensen, S.J. Substrate specificity of the OqxAB multidrug resistance pump in Escherichia coli and selected enteric bacteria. J. Antimicrob. Chemother., 2007, 60(1), 145-147.
[http://dx.doi.org/10.1093/jac/dkm167] [PMID: 17526501]
[6]
Norman, A.; Hansen, L.H.; She, Q.; Sørensen, S.J. Nucleotide sequence of pOLA52: A conjugative IncX1 plasmid from Escherichia coli which enables biofilm formation and multidrug efflux. Plasmid, 2008, 60(1), 59-74.
[http://dx.doi.org/10.1016/j.plasmid.2008.03.003] [PMID: 18440636]
[7]
Rodríguez-Martínez, J.M.; Díaz de Alba, P.; Briales, A.; Machuca, J.; Lossa, M.; Fernández-Cuenca, F.; Rodríguez, B.J.; Martínez-Martínez, L.; Pascual, A. Contribution of OqxAB efflux pumps to quinolone resistance in extended-spectrum- -lactamase-producing Klebsiella pneumoniae. J. Antimicrob. Chemother., 2013, 68(1), 68-73.
[http://dx.doi.org/10.1093/jac/dks377] [PMID: 23011289]
[8]
Szabo, O.; Kocsis, B.; Szabo, N.; Kristof, K.; Szabo, D. Contribution of OqxAB efflux pump in selection of fluoroquinolone-resistant Klebsiella pneumoniae. Can. J. Infect. Dis. Med. Microbiol., 2018, 2018, 1-5.
[http://dx.doi.org/10.1155/2018/4271638] [PMID: 30344799]
[9]
Wong, M.H.Y.; Chan, E.W.C.; Chen, S. Evolution and dissemination of OqxAB-like efflux pumps, an emerging quinolone resistance determinant among members of Enterobacteriaceae. Antimicrob. Agents Chemother., 2015, 59(6), 3290-3297.
[http://dx.doi.org/10.1128/AAC.00310-15] [PMID: 25801572]
[10]
Hasdemir, U.O.; Chevalier, J.; Nordmann, P.; Pagès, J.M. Detection and prevalence of active drug efflux mechanism in various multidrug-resistant Klebsiella pneumoniae strains from Turkey. J. Clin. Microbiol., 2004, 42(6), 2701-2706.
[http://dx.doi.org/10.1128/JCM.42.6.2701-2706.2004] [PMID: 15184455]
[11]
Mazzariol, A.; Tokue, Y.; Kanegawa, T.M.; Cornaglia, G.; Nikaido, H. High-level fluoroquinolone-resistant clinical isolates of Escherichia coli overproduce multidrug efflux protein AcrA. Antimicrob. Agents Chemother., 2000, 44(12), 3441-3443.
[http://dx.doi.org/10.1128/AAC.44.12.3441-3443.2000] [PMID: 11083655]
[12]
Mahon, C.R.; Lehman, D.C.; Manuselis, G. Textbook of diagnostic microbiology-e-book; Elsevier Health Sciences, 2018.
[13]
Dehnamaki, M.; Ghane, M.; Babaeekhou, L. Detection of OqxAB and QepA efflux pumps and their association with antibiotic resistance in Klebsiella pneumoniae isolated from urinary tract infection. Int. J. Infect, 2020, 7(4), e107397.
[http://dx.doi.org/10.5812/iji.107397]
[14]
Schwalbe, R.; Steele-Moore, L.; Goodwin, A.C. Antimicrobial susceptibility testing protocols; Crc Press, 2007.
[http://dx.doi.org/10.1201/9781420014495]
[15]
Dufour, P.; Colon, M. The tetrazolium reduction method for assessing the viability of individual bacterial cells in aquatic environments: Improvements, performance and applications. Hydrobiologia, 1992, 232(3), 211-218.
[http://dx.doi.org/10.1007/BF00013706]
[16]
Razavi, S.; Mirnejad, R.; Babapour, E. Involvement of AcrAB and OqxAB efflux pumps in antimicrobial resistance of clinical isolates of Klebsiella pneumonia. Appl. Biotechnol. Rep., 2020, 7, 251-257.
[17]
Wand, M.E.; Darby, E.M.; Blair, J.M.A.; Sutton, J.M. Contribution of the efflux pump AcrAB-TolC to the tolerance of chlorhexidine and other biocides in Klebsiella spp. J. Med. Microbiol., 2022, 71(3), 001496.
[http://dx.doi.org/10.1099/jmm.0.001496] [PMID: 35324422]
[18]
AlMatar, M.; Var, I.; Kayar, B.; Köksal, F. Differential expression of resistant and efflux pump genes in MDR-TB isolates. Endocr Metab Immune Disord Drug Targets, 2020, 20(2), 271-287.
[http://dx.doi.org/10.2174/1871530319666191009153834] [PMID: 31595857]
[19]
Albarri, O.; AlMatar, M.; Öcal, M.M.; Köksal, F. Overexpression of efflux pumps AcrAB and OqxAB contributes to ciprofloxacin resistance in clinical isolates of K. pneumonia. Curr. Protein Pept. Sci., 2022, 23(5), 356-368.
[http://dx.doi.org/10.2174/1389203723666220630162920] [PMID: 35786184]
[20]
Zheng, J.; Lin, Z.; Sun, X.; Lin, W.; Chen, Z.; Wu, Y.; Qi, G.; Deng, Q.; Qu, D.; Yu, Z. Overexpression of OqxAB and MacAB efflux pumps contributes to eravacycline resistance and heteroresistance in clinical isolates of Klebsiella pneumoniae. Emerg. Microbes Infect., 2018, 7(1), 1-11.
[http://dx.doi.org/10.1038/s41426-018-0141-y] [PMID: 30068997]
[21]
Livak, K. J.; Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 2001, 25(4), 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[22]
Mohd Asri, N.A.; Ahmad, S.; Mohamud, R.; Mohd Hanafi, N.; Mohd Zaidi, N.F.; Irekeola, A.A.; Shueb, R.H.; Yee, L.C.; Mohd Noor, N.; Mustafa, F.H.; Yean, C.Y.; Yusof, N.Y. Global prevalence of nosocomial multidrug-resistant Klebsiella pneumoniae: a systematic review and meta-analysis. Antibiotics, 2021, 10(12), 1508.
[http://dx.doi.org/10.3390/antibiotics10121508] [PMID: 34943720]
[23]
Ashayeri-Panah, M.; Feizabadi, M.M.; Eftekhar, F. Correlation of multi-drug resistance, integron and blaESBL gene carriage with genetic fingerprints of extended-spectrum β-lactamase producing Klebsiella pneumoniae. Jundishapur J. Microbiol., 2014, 7(2), e8747.
[http://dx.doi.org/10.5812/jjm.8747] [PMID: 25147670]
[24]
Poirel, L.; Özdamar, M.; Ocampo-Sosa, A.A.; Türkoglu, S.; Ozer, U.G.; Nordmann, P. NDM-1-producing Klebsiella pneumoniae now in Turkey. Antimicrob. Agents Chemother., 2012, 56(5), 2784-2785.
[http://dx.doi.org/10.1128/AAC.00150-12] [PMID: 22391536]
[25]
Yousefi Mashouf, R.; Alijani, P.; Saidijam, M.; Alikhani, M.Y.; Rashidi, H. Study of antibiotic resistance pattern and phenotypic detection of ESBLs in Klebsiella pneumoniae strains isolated from clinical samples and determination of minimum inhibitory concentrations of imipenem and ceftazidim antibiotics. Avicenna J. Med. Biotechnol., 2014, 20, 295-302.
[26]
Hashemi, A.; Fallah, F.; Taherpour, A.; Goudarzi, H.; Erfanimanesh, S.; Taki, E. Evaluation of genetic pattern and determination of oqxA gene expression levels among clinical isolates of Klebsiella pneumoniae strains. J. Mazandaran Univ. Med. Sci., 2014, 24, 48-61.
[27]
Liu, B.T.; Wang, X.M.; Liao, X.P.; Sun, J.; Zhu, H.Q.; Chen, X.Y.; Liu, Y.H. Plasmid-mediated quinolone resistance determinants oqxAB and aac(6′)-Ib-cr and extended-spectrum -lactamase gene blaCTX-M-24 co-located on the same plasmid in one Escherichia coli strain from China. J. Antimicrob. Chemother., 2011, 66(7), 1638-1639.
[http://dx.doi.org/10.1093/jac/dkr172] [PMID: 21546384]
[28]
Mahamoud, A.; Chevalier, J.; Alibert-Franco, S.; Kern, W.V.; Pagès, J.M. Antibiotic efflux pumps in Gram-negative bacteria: the inhibitor response strategy. J. Antimicrob. Chemother., 2007, 59(6), 1223-1229.
[http://dx.doi.org/10.1093/jac/dkl493] [PMID: 17229832]
[29]
Meletis, G.; Exindari, M.; Vavatsi, N.; Sofianou, D.; Diza, E. Mechanisms responsible for the emergence of carbapenem resistance in Pseudomonas aeruginosa. Hippokratia, 2012, 16(4), 303-307.
[PMID: 23935307]
[30]
Wasfi, R.; Elkhatib, W.F.; Ashour, H.M. Molecular typing and virulence analysis of multidrug resistant Klebsiella pneumoniae clinical isolates recovered from Egyptian hospitals. Sci. Rep., 2016, 6(1), 38929.
[http://dx.doi.org/10.1038/srep38929] [PMID: 28004732]
[31]
Bialek-Davenet, S.; Lavigne, J.P.; Guyot, K.; Mayer, N.; Tournebize, R.; Brisse, S.; Leflon-Guibout, V.; Nicolas-Chanoine, M.H. Differential contribution of AcrAB and OqxAB efflux pumps to multidrug resistance and virulence in Klebsiella pneumoniae. J. Antimicrob. Chemother., 2015, 70(1), 81-88.
[http://dx.doi.org/10.1093/jac/dku340] [PMID: 25193085]
[32]
Xu, H.; Zhou, Y.; Zhai, X.; Du, Z.; Wu, H.; Han, Y.; Huo, C.; Chen, Y. Emergence and characterization of tigecycline resistance in multidrug-resistant Klebsiella pneumoniae isolates from blood samples of patients in intensive care units in northern China. J. Med. Microbiol., 2016, 65(8), 751-759.
[http://dx.doi.org/10.1099/jmm.0.000299] [PMID: 27324378]
[33]
Farivar, A.S.; Nowroozi, J.; Eslami, G.; Sabokbar, A.; Hashemi, A. The study of antibiotic resistance among Klebsiella pneumoniae and expression level of oqxA and acrA genes by using real-time PCR. Resen. Med., 2016, 40, 42-48.
[34]
Cattoir, V.; Poirel, L.; Rotimi, V.; Soussy, C.J.; Nordmann, P. Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. J. Antimicrob. Chemother., 2007, 60(2), 394-397.
[http://dx.doi.org/10.1093/jac/dkm204] [PMID: 17561500]
[35]
Khoshnood, S.; Heidary, M.; Hashemi, A.; Shahi, F.; Saki, M.; Kouhsari, E.; Eslami, G.; Goudarzi, H. Involvement of the AcrAB efflux pump in ciprofloxacin resistance in clinical Klebsiella pneumoniae isolates. Infect. Disord. Drug Targets, 2021, 21(4), 564-571.
[http://dx.doi.org/10.2174/1871526520999200905121220] [PMID: 32888276]
[36]
Veleba, M.; De Majumdar, S.; Hornsey, M.; Woodford, N.; Schneiders, T. Genetic characterization of tigecycline resistance in clinical isolates of Enterobacter cloacae and Enterobacter aerogenes. J. Antimicrob. Chemother., 2013, 68(5), 1011-1018.
[http://dx.doi.org/10.1093/jac/dks530] [PMID: 23349441]
[37]
Papst, L.; Beović, B.; Pulcini, C.; Durante-Mangoni, E.; Rodríguez-Baño, J.; Kaye, K.S.; Daikos, G.L.; Raka, L.; Paul, M.; Abbo, L.; Abgueguen, P.; Almirante, B.; Azzini, A.M.; Bani-Sadr, F.; Bassetti, M.; Ben-Ami, R.; Beović, B.; Béraud, G.; Botelho-Nevers, E.; Bou, G.; Boutoille, D.; Cabié, A.; Cacopardo, B.; Cascio, A.; Cassir, N.; Castelli, F.; Cecala, M.; Charmillon, A.; Chirouze, C.; Cisneros, J.M.; Colmenero, J.D.; Coppola, N.; Corcione, S.; Daikos, G.L.; Dalla, G.D.; De la Calle, C.C.; Delobel, P.; Di Caprio, D.; Durante, M.E.; Dupon, M.; Ettahar, N.; Falagas, M.E.; Falcone, M.; Fariñas, M.C.; Faure, E.; Forestier, E.; Foti, G.; Gallagher, J.; Gattuso, G.; Gendrin, V.; Gentile, I.; Giacobbe, D.R.; Gogos, C.A.; Grandiere Perez, L.; Hansmann, Y.; Horcajada, J.P.; Iacobello, C.; Jacob, J.T.; Justo, J.A.; Kernéis, S.; Komnos, A.; Kotnik, K.B.; Lebeaux, D.; Le Berre, R.; Lechiche, C.; Le Moxing, V.; Lescure, F.X.; Libanore, M.; Martinot, M.; Merino de, L.E.; Mondain, V.; Mondello, P.; Montejo, M.; Mootien, J.; Muñoz, P.; Nir-Paz, R.; Pan, A.; Paño-Pardo, J.R.; Patel, G.; Paul, M.; Pérez Rodríguez, M.T.; Piroth, L.; Pogue, J.; Potoski, B.A.; Pourcher, V.; Pyrpasopoulou, A.; Rahav, G.; Rizzi, M.; Rodríguez-Baño, J.; Salavert, M.; Scheetz, M.; Sims, M.; Spahija, G.; Stefani, S.; Stefos, A.; Tamma, P.D.; Tattevin, P.; Tedesco, A.; Torre-Cisneros, J.; Tripolitsioti, P.; Tsiodras, S.; Uomo, G.; Verdon, R.; Viale, P.; Vitrat, V.; Weinberger, M.; Wiener-Well, Y. Antibiotic treatment of infections caused by carbapenem-resistant Gram-negative bacilli: An international ESCMID cross-sectional survey among infectious diseases specialists practicing in large hospitals. Clin. Microbiol. Infect., 2018, 24(10), 1070-1076.
[http://dx.doi.org/10.1016/j.cmi.2018.01.015] [PMID: 29410094]
[38]
Ruzin, A.; Visalli, M.A.; Keeney, D.; Bradford, P.A. Influence of transcriptional activator RamA on expression of multidrug efflux pump AcrAB and tigecycline susceptibility in Klebsiella pneumoniae. Antimicrob. Agents Chemother., 2005, 49(3), 1017-1022.
[http://dx.doi.org/10.1128/AAC.49.3.1017-1022.2005] [PMID: 15728897]
[39]
Chen, Y.; Hu, D.; Zhang, Q.; Liao, X.P.; Liu, Y.H.; Sun, J. Efflux pump overexpression contributes to tigecycline heteroresistance in Salmonella enterica serovar Typhimurium. Front. Cell. Infect. Microbiol., 2017, 7, 37.
[http://dx.doi.org/10.3389/fcimb.2017.00037] [PMID: 28261566]
[40]
Zhong, X.; Xu, H.; Chen, D.; Zhou, H.; Hu, X.; Cheng, G. First emergence of acrAB and oqxAB mediated tigecycline resistance in clinical isolates of Klebsiella pneumoniae pre-dating the use of tigecycline in a Chinese hospital. PLoS One, 2014, 9(12), e115185.
[http://dx.doi.org/10.1371/journal.pone.0115185] [PMID: 25503276]
[41]
Juan, C.H.; Huang, Y.W.; Lin, Y.T.; Yang, T.C.; Wang, F.D. Risk factors, outcomes, and mechanisms of tigecycline-nonsusceptible Klebsiella pneumoniae bacteremia. Antimicrob. Agents Chemother., 2016, 60(12), 7357-7363.
[http://dx.doi.org/10.1128/AAC.01503-16] [PMID: 27697759]
[42]
Zhang, C.Z.; Chang, M.X.; Yang, L.; Liu, Y.Y.; Chen, P.X.; Jiang, H.X. Upregulation of AcrEF in quinolone resistance development in Escherichia coli when AcrAB-TolC function is impaired. Microb. Drug Resist., 2018, 24(1), 18-23.
[http://dx.doi.org/10.1089/mdr.2016.0207] [PMID: 28520511]

© 2024 Bentham Science Publishers | Privacy Policy