Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Perspective

Nutritional Support System (NSS) as a New Therapeutic Strategy for Cerebral Palsy

Author(s): Fernando Leal-Martinez, Guadalupe Jimenez Ramirez and Antonio Ibarra*

Volume 23, Issue 3, 2024

Published on: 22 May, 2023

Page: [271 - 277] Pages: 7

DOI: 10.2174/1871527322666230330124124

Open Access Journals Promotions 2
Abstract

Cerebral palsy (CP) is part of a group of nonprogressive motor disorders. The disease affects movement and posture and constitutes the most frequent cause of motor disability in childhood. CP is characterized by spasticity, reflecting lesions in the pyramidal pathway. Treatment is currently focused on physical rehabilitation, and the annual progression of the disease is 2-3%. About 60% of these patients present severe degrees of malnutrition associated with dysphagia, gastrointestinal abnormalities, malabsorption, increased metabolism, and depression. These alterations promote sarcopenia functional dependence and affect the quality of life and delay the evolution of motor skills. Currently, there is evidence that the supplementation of several nutrients, dietary correction, and probiotics can improve neurological response by stimulating neuroplasticity, neuroregeneration, neurogenesis, and myelination. This therapeutic strategy could shorten the response period to treatment and increase both gross and fine motor skills. The interaction of nutrients and functional foods integrating a Nutritional Support System (NSS) has shown greater efficiency in neurological stimulation than when nutrients are supplied separately. The most studied elements in the neurological response are glutamine, arginine, zinc, selenium, cholecalciferol, nicotinic acid, thiamine, pyridoxine, folate, cobalamin, Spirulina, omega-3 fatty acids, ascorbic acid, glycine, tryptophan, and probiotics. The NSS represents a therapeutic alternative that will restore neurological function in patients with spasticity and pyramidal pathway lesions, both characteristics of patients with CP.

Keywords: Nutritional support system, therapeutic strategy, cerebral palsy, neurological function, NSS, CP.

Next »
[1]
Holm VA. The causes of cerebral palsy. A contemporary perspective. JAMA 1982; 247(10): 1473-7.
[http://dx.doi.org/10.1001/jama.1982.03320350071039] [PMID: 7057542]
[2]
Tao D, Zhong T, Pang W. li X. Saccharomyces boulardii improves the behaviour and emotions of spastic cerebral palsy rats through the gut-brain axis pathway. BMC Neurosci 2021; 22(1): 76.
[http://dx.doi.org/10.1186/s12868-021-00679-4] [PMID: 34876019]
[3]
Rouse DJ. Magnesium sulfate for the prevention of cerebral palsy. Am J Obstet Gynecol 2009; 200(6): 610-2.
[http://dx.doi.org/10.1016/j.ajog.2009.04.004] [PMID: 19482114]
[4]
CDC Data and statistics for Cerebral Palsy. 2022. Available from: https://www.cdc.gov/ncbddd/cp/data.html
[5]
Jahan I, Muhit M, Hardianto D, et al. Epidemiology of Malnutrition among Children with Cerebral Palsy in Low- and Middle-Income Countries: Findings from the Global LMIC CP Register. Nutrients 2021; 13(11): 3676.
[http://dx.doi.org/10.3390/nu13113676] [PMID: 34835932]
[6]
Blair E, Langdon K, McIntyre S, Lawrence D, Watson L. Survival and mortality in cerebral palsy: Observations to the sixth decade from a data linkage study of a total population register and National Death Index. BMC Neurol 2019; 19(1): 111.
[http://dx.doi.org/10.1186/s12883-019-1343-1] [PMID: 31164086]
[7]
Monbaliu E, Himmelmann K, Lin JP, et al. Clinical presentation and management of dyskinetic cerebral palsy. Lancet Neurol 2017; 16(9): 741-9.
[http://dx.doi.org/10.1016/S1474-4422(17)30252-1] [PMID: 28816119]
[8]
Scarpato E, Staiano A, Molteni M, Terrone G, Mazzocchi A, Agostoni C. Nutritional assessment and intervention in children with cerebral palsy: A practical approach. Int J Food Sci Nutr 2017; 68(6): 763-70.
[http://dx.doi.org/10.1080/09637486.2017.1289502] [PMID: 28276905]
[9]
Snell RS. Clinical neuroanatomy. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins 2010.
[10]
Pavone P, Gulizia C, Le Pira A, et al. Cerebral palsy and epilepsy in children: Clinical perspectives on a common comorbidity. Children 2020; 8(1): 16.
[http://dx.doi.org/10.3390/children8010016] [PMID: 33396243]
[11]
Tillberg E, Isberg B, Persson JKE. Hemiplegic (unilateral) cerebral palsy in northern Stockholm: Clinical assessment, brain imaging, EEG, epilepsy and aetiologic background factors. BMC Pediatr 2020; 20(1): 116.
[http://dx.doi.org/10.1186/s12887-020-1955-z] [PMID: 32164572]
[12]
Zelnik N, Konopnicki M, Bennett-Back O, Castel-Deutsch T, Tirosh E. Risk factors for epilepsy in children with cerebral palsy. Eur J Paediatr Neurol 2010; 14(1): 67-72.
[http://dx.doi.org/10.1016/j.ejpn.2009.06.002] [PMID: 19576827]
[13]
Afifi AK, Bergman RA. Functional neuroanatomy: Text and atlas. Mcgraw-hill 2011.
[14]
Colver A, Fairhurst C, Pharoah POD. Cerebral palsy. Lancet 2014; 383(9924): 1240-9.
[http://dx.doi.org/10.1016/S0140-6736(13)61835-8] [PMID: 24268104]
[15]
Novak I, Morgan C. Are structural magnetic resonance imaging and general movements assessment sufficient for early, accurate diagnosis of cerebral palsy?—Reply. JAMA Pediatr 2018; 172(2): 199.
[http://dx.doi.org/10.1001/jamapediatrics.2017.4815] [PMID: 29279897]
[16]
Dyńka D, Kowalcze K, Paziewska A. The role of ketogenic diet in the treatment of neurological diseases. Nutrients 2022; 14(23): 5003.
[http://dx.doi.org/10.3390/nu14235003] [PMID: 36501033]
[17]
Irfannuddin I, Sarahdeaz SFP, Murti K, Santoso B, Koibuchi N. The effect of ketogenic diets on neurogenesis and apoptosis in the dentate gyrus of the male rat hippocampus. J Physiol Sci 2021; 71(1): 3.
[http://dx.doi.org/10.1186/s12576-020-00786-7] [PMID: 33461486]
[18]
Park HR, Park M, Choi J, Park KY, Chung HY, Lee J. A high-fat diet impairs neurogenesis: Involvement of lipid peroxidation and brain-derived neurotrophic factor. Neurosci Lett 2010; 482(3): 235-9.
[http://dx.doi.org/10.1016/j.neulet.2010.07.046] [PMID: 20670674]
[19]
Lee J, Duan W, Mattson MP. Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. J Neurochem 2002; 82(6): 1367-75.
[http://dx.doi.org/10.1046/j.1471-4159.2002.01085.x] [PMID: 12354284]
[20]
Kurtz P, Rocha EEM. Nutrition therapy, glucose control, and brain metabolism in traumatic brain injury: A multimodal monitoring approach. Front Neurosci 2020; 14: 190.
[http://dx.doi.org/10.3389/fnins.2020.00190] [PMID: 32265626]
[21]
McDougall A, Bayley M, Munce SEP. The ketogenic diet as a treatment for traumatic brain injury: A scoping review. Brain Inj 2018; 32(4): 416-22.
[http://dx.doi.org/10.1080/02699052.2018.1429025] [PMID: 29359959]
[22]
Greco T, Glenn TC, Hovda DA, Prins ML. Ketogenic diet decreases oxidative stress and improves mitochondrial respiratory complex activity. J Cereb Blood Flow Metab 2016; 36(9): 1603-13.
[http://dx.doi.org/10.1177/0271678X15610584] [PMID: 26661201]
[23]
Mark I, Hey G, Colliander R, McCracken B, Casauay J, Lucke-Wold B. The role of G-tube placement for neurologic injury patients. Biomed Sci Clin Res 1(1): 1-10.
[24]
Nahm NJ, Graham HK, Gormley ME Jr, Georgiadis AG. Management of hypertonia in cerebral palsy. Curr Opin Pediatr 2018; 30(1): 57-64.
[http://dx.doi.org/10.1097/MOP.0000000000000567] [PMID: 29135566]
[25]
Hogan SE. Energy requirements of children with cerebral palsy. Can J Diet Pract Res 2004; 65(3): 124-30.
[http://dx.doi.org/10.3148/65.3.2004.124] [PMID: 15363117]
[26]
Le Roy OC, Rebollo GMJ, Moraga MF, Díaz Sm X, Castillo-Durán C. Nutrition of children with selected neurological illnesses: An update. Rev Chil Pediatr 2010; 81(2): 103-13.
[http://dx.doi.org/10.4067/S0370-41062010000200002]
[27]
Culley WJ, Middleton TO. Caloric requirements of mentally retarded children with and without motor dysfunction. J Pediatr 1969; 75(3): 380-4.
[http://dx.doi.org/10.1016/S0022-3476(69)80262-3] [PMID: 5804183]
[28]
Schofield WN. Predicting basal metabolic rate, new standards and review of previous work. Hum Nutr Clin Nutr 1985; 39 (Suppl. 1): 5-41.
[PMID: 4044297]
[29]
Krick J, Murphy PE, Markham JFB, Shapiro BK. A proposed formula for calculating energy needs of children with cerebral palsy. Dev Med Child Neurol 1992; 34(6): 481-7.
[http://dx.doi.org/10.1111/j.1469-8749.1992.tb11468.x] [PMID: 1612207]
[30]
Bell KL, Samson-Fang L. Nutritional management of children with cerebral palsy. Eur J Clin Nutr 2013; 67 (Suppl. 2): S13-6.
[http://dx.doi.org/10.1038/ejcn.2013.225] [PMID: 24301003]
[31]
Moe-Byrne T, Brown JV, McGuire W. Glutamine supplementation to prevent morbidity and mortality in preterm infants. Cochrane Database Syst Rev 2016; 4(4): CD001457.
[PMID: 27089158]
[32]
Jayakumar AR, Norenberg MD. Glutamine synthetase: Role in neurological disorders. Adv Neurobiol 2016; 13: 327-50.
[http://dx.doi.org/10.1007/978-3-319-45096-4_13] [PMID: 27885636]
[33]
Virarkar M, Alappat L, Bradford PG, Awad AB. L-arginine and nitric oxide in CNS function and neurodegenerative diseases. Crit Rev Food Sci Nutr 2013; 53(11): 1157-67.
[http://dx.doi.org/10.1080/10408398.2011.573885] [PMID: 24007420]
[34]
Carvajal Aguilera KG. NPA. Papel inmunomodulador y antioxidante del Zinc y Selenio en el tratamiento coadyuvante de infecciones respiratorias graves. Revista de Educación Bioquímica 2016; 35: 3-10.
[35]
Khor GL, Misra S. Micronutrient interventions on cognitive performance of children aged 5-15 years in developing countries. Asia Pac J Clin Nutr 2012; 21(4): 476-86.
[PMID: 23017305]
[36]
Hasani M, Djalalinia S, Sharifi F, et al. Effect of selenium supplementation on lipid profile: A systematic review and meta-analysis. Horm Metab Res 2018; 50(10): 715-27.
[http://dx.doi.org/10.1055/a-0749-6655] [PMID: 30312982]
[37]
Dominiak A, Wilkaniec A. Wroczyński P, Adamczyk A. Selenium in the therapy of neurological diseases. Where is it going? Curr Neuropharmacol 2016; 14(3): 282-99.
[http://dx.doi.org/10.2174/1570159X14666151223100011] [PMID: 26549649]
[38]
Gasperi V, Sibilano M, Savini I, Catani M. Niacin in the central nervous system: An update of biological aspects and clinical applications. Int J Mol Sci 2019; 20(4): 974.
[http://dx.doi.org/10.3390/ijms20040974] [PMID: 30813414]
[39]
Shingo AS, Kito S. Effects of nicotine on neurogenesis and plasticity of hippocampal neurons. J Neural Transm (Vienna) 2005; 112(11): 1475-8.
[http://dx.doi.org/10.1007/s00702-005-0370-2] [PMID: 16245069]
[40]
Crupi R, Marino A, Cuzzocrea S. n-3 fatty acids: Role in neurogenesis and neuroplasticity. Curr Med Chem 2013; 20(24): 2953-63.
[http://dx.doi.org/10.2174/09298673113209990140] [PMID: 23746276]
[41]
Cao D, Kevala K, Kim J, et al. Docosahexaenoic acid promotes hippocampal neuronal development and synaptic function. J Neurochem 2009; 111(2): 510-21.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06335.x] [PMID: 19682204]
[42]
DeLuca GC, Kimball SM, Kolasinski J, Ramagopalan SV, Ebers GC. Review: The role of vitamin D in nervous system health and disease. Neuropathol Appl Neurobiol 2013; 39(5): 458-84.
[http://dx.doi.org/10.1111/nan.12020] [PMID: 23336971]
[43]
Latimer CS, Brewer LD, Searcy JL, et al. Vitamin D prevents cognitive decline and enhances hippocampal synaptic function in aging rats. Proc Natl Acad Sci USA 2014; 111(41): E4359-66.
[http://dx.doi.org/10.1073/pnas.1404477111] [PMID: 25267625]
[44]
Gezen-Ak D, Dursun E, Yilmazer S. The effects of vitamin D receptor silencing on the expression of LVSCC-A1C and LVSCC-A1D and the release of NGF in cortical neurons. PLoS One 2011; 6(3): e17553.
[http://dx.doi.org/10.1371/journal.pone.0017553] [PMID: 21408608]
[45]
Casamassima F, Hay AC, Benedetti A, Lattanzi L, Cassano GB, Perlis RH. L-type calcium channels and psychiatric disorders: A brief review. Am J Med Genet B Neuropsychiatr Genet 2010; 153B(8): 1373-90.
[http://dx.doi.org/10.1002/ajmg.b.31122] [PMID: 20886543]
[46]
Lucke-Wold BP, Logsdon AF, Nguyen L, et al. Supplements, nutrition, and alternative therapies for the treatment of traumatic brain injury. Nutr Neurosci 2018; 21(2): 79-91.
[http://dx.doi.org/10.1080/1028415X.2016.1236174] [PMID: 27705610]
[47]
Einat H, Yuan P, Gould TD, et al. The role of the extracellular signal-regulated kinase signaling pathway in mood modulation. J Neurosci 2003; 23(19): 7311-6.
[http://dx.doi.org/10.1523/JNEUROSCI.23-19-07311.2003] [PMID: 12917364]
[48]
Mattson MP. Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol Rev 1997; 77(4): 1081-132.
[http://dx.doi.org/10.1152/physrev.1997.77.4.1081] [PMID: 9354812]
[49]
Alkasir R, Li J, Li X, Jin M, Zhu B. Human gut microbiota: The links with dementia development. Protein Cell 2017; 8(2): 90-102.
[http://dx.doi.org/10.1007/s13238-016-0338-6] [PMID: 27866330]
[50]
Strandwitz P. Neurotransmitter modulation by the gut microbiota Brain research 2018; 1693(Pt B): 128-33.
[http://dx.doi.org/ 10.1016/j.brainres.2018.03.015]
[51]
Patil J, Matte A, Nissbrandt H, Mallard C, Sandberg M. Sustained effects of neonatal systemic lipopolysaccharide on IL-1β and Nrf2 in adult rat substantia nigra are partly normalized by a spirulina enriched diet. Neuroimmunomodulation 2016; 23(4): 250-9.
[http://dx.doi.org/10.1159/000452714] [PMID: 27931028]
[52]
Hwang JH, Lee IT, Jeng KC, et al. Spirulina prevents memory dysfunction, reduces oxidative stress damage and augments antioxidant activity in senescence-accelerated mice. J Nutr Sci Vitaminol (Tokyo) 2011; 57(2): 186-91.
[http://dx.doi.org/10.3177/jnsv.57.186] [PMID: 21697639]
[53]
Fried R. Superoxide dismutase activity in the nervous system. J Neurosci Res 1979; 4(5-6): 435-41.
[http://dx.doi.org/10.1002/jnr.490040511] [PMID: 522198]
[54]
Cian R, Drago S, de Medina F, Martínez-Augustin O. Proteins and carbohydrates from red seaweeds: Evidence for beneficial effects on gut function and microbiota. Mar Drugs 2015; 13(8): 5358-83.
[http://dx.doi.org/10.3390/md13085358] [PMID: 26308006]
[55]
Wu A, Ying Z, Schubert D, Gomez-Pinilla F. Brain and spinal cord interaction: A dietary curcumin derivative counteracts locomotor and cognitive deficits after brain trauma. Neurorehabil Neural Repair 2011; 25(4): 332-42.
[http://dx.doi.org/10.1177/1545968310397706] [PMID: 21343524]
[56]
Liu Y, Dargusch R, Maher P, Schubert D. A broadly neuroprotective derivative of curcumin. J Neurochem 2008; 105(4): 1336-45.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05236.x] [PMID: 18208543]
[57]
Hassanein SMA, Deifallah SM, Bastawy HA. Efficacy of oral magnesium therapy in the treatment of chronic constipation in spastic cerebral palsy children: A randomized controlled trial. World J Pediatr 2021; 17(1): 92-8.
[http://dx.doi.org/10.1007/s12519-020-00401-0] [PMID: 33481179]
[58]
Leal-Martínez F, Franco D, Peña-Ruiz A, et al. Effect of a nutritional support system (diet and supplements) for improving gross motor function in cerebral palsy: an exploratory randomized controlled clinical trial. Foods 2020; 9(10): 1449.
[http://dx.doi.org/10.3390/foods9101449] [PMID: 33066040]
[59]
Tamtaji OR, Heidari-soureshjani R, Mirhosseini N, et al. Probiotic and selenium co-supplementation, and the effects on clinical, metabolic and genetic status in Alzheimer’s disease: A randomized, double-blind, controlled trial. Clin Nutr 2019; 38(6): 2569-75.
[http://dx.doi.org/10.1016/j.clnu.2018.11.034] [PMID: 30642737]
[60]
Tamtaji OR, Taghizadeh M, Daneshvar Kakhaki R, et al. Clinical and metabolic response to probiotic administration in people with Parkinson’s disease: A randomized, double-blind, placebo-controlled trial. Clin Nutr 2019; 38(3): 1031-5.
[http://dx.doi.org/10.1016/j.clnu.2018.05.018] [PMID: 29891223]
[61]
Rebelo F, Mansur IR, Miglioli TC, Meio MDB, Junior SCG. Dietary and nutritional interventions in children with cerebral palsy: A systematic literature review. PLoS One 2022; 17(7): e0271993.
[http://dx.doi.org/10.1371/journal.pone.0271993]
[62]
Kilpinen-Loisa P, Nenonen H, Pihko H, Mäkitie O. High-dose vitamin D supplementation in children with cerebral palsy or neuromuscular disorder. Neuropediatrics 2007; 38(4): 167-72.
[http://dx.doi.org/10.1055/s-2007-990266] [PMID: 18058622]
[63]
Paz Soldán RS, Condori Bustillos R, Sejas Claros A, Huayhua Mexicano R, Calla Domaire P. Mezcla lipídica para mejorar el desarrollo psicomotriz en niños menores de 5 años con parálisis cerebral infantil. Revista Cientifica Ciencia Medica 2018; 21(2): 21-8.
[http://dx.doi.org/10.51581/rccm.v21i2.70]
[64]
Patrick J, Boland M, Stoski D, Murray GE. Rapid correction of wasting in children with cerebral palsy. Dev Med Child Neurol 1986; 28(6): 734-9.
[http://dx.doi.org/10.1111/j.1469-8749.1986.tb03925.x] [PMID: 3102303]
[65]
Mlinda SJ, Leyna GH, Massawe A. The effect of a practical nutrition education programme on feeding skills of caregivers of children with cerebral palsy at Muhimbili National Hospital, in Tanzania. Child Care Health Dev 2018; 44(3): 452-61.
[http://dx.doi.org/10.1111/cch.12553] [PMID: 29383754]
[66]
García Contreras A, Vásquez Garibay E, Sánchez Ramírez C, Fafutis Morris M, Delgado Rizo V. Lactobacillus reuteri DSM 17938 and agave inulin in children with cerebral palsy and chronic constipation: a double-blind randomized placebo controlled clinical trial. Nutrients 2020; 12(10): 2971.
[http://dx.doi.org/10.3390/nu12102971] [PMID: 32998471]
[67]
Sousa KT, Ferreira GB, Santos AT, et al. Assessment of nutritional status and frequency of complications associated to feeding in patients with spastic quadriplegic cerebral palsy. Rev Paul Pediatr 2020; 38: e2018410.
[http://dx.doi.org/10.1590/1984-0462/2020/38/2018410] [PMID: 32401853]
[68]
Araújo LA, Silva LR, Mendes FAA. Digestive tract neural control and gastrointestinal disorders in cerebral palsy. J Pediatr 2012; 88(6): 455-64.
[http://dx.doi.org/10.2223/JPED.2241] [PMID: 23269445]

© 2024 Bentham Science Publishers | Privacy Policy