Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

Coumarin as a Privileged and Medicinally Important Scaffold in the Treatment of Tuberculosis

Author(s): Vaibhav Gupta, Ramesh Ambatwar, Neeru Bhanwala and Gopal L. Khatik*

Volume 23, Issue 16, 2023

Published on: 20 April, 2023

Page: [1489 - 1502] Pages: 14

DOI: 10.2174/1568026623666230330084058

Price: $65

Abstract

Coumarin and its derivatives, which are abundant in nature, have a significant role in medicinal chemistry due to their ability to bind with different targets or receptors. In addition, these possess a wide range of biological activity. Thus coumarin-based scaffold has inspired even further research into coumarin and its substituted derivatives, allowing for the creation of a huge variety of structurally different substituted products. In recent, these were reported to have potent antitubercular activity. Tuberculosis (TB) is a serious deadly infectious bacterial disease caused by grampositive Mycobacterium tuberculosis. This review discusses various developments going on in the field of medicinal chemistry towards designing, synthesizing, and discovering coumarin-based antitubercular agents all across the globe.

Keywords: Coumarin, Natural product, Tuberculosis, Anti-tubercular, Mycobacterium tuberculosis, Bis-coumarin.

Graphical Abstract
[1]
World Health Organization (WHO). Tuberculosis. 2021. https://www.who.int/news-room/fact-sheets/detail/tuberculosis Accessed on Oct 10, 2022.
[2]
Hu, Y.Q.; Xu, Z.; Zhang, S.; Wu, X.; Ding, J.W.; Lv, Z.S.; Feng, L.S. Recent developments of coumarin-containing derivatives and their anti-tubercular activity. Eur. J. Med. Chem., 2017, 136, 122-130.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.004] [PMID: 28494250]
[3]
Lawn, S.D.; Zumla, A.I. Tuberculosis. Lancet, 2011, 378(9785), 57-72.
[http://dx.doi.org/10.1016/S0140-6736(10)62173-3] [PMID: 21420161]
[4]
Lin, P.L.; Flynn, J.L. Understanding latent tuberculosis: A moving target. J. Immunol., 2010, 185(1), 15-22.
[http://dx.doi.org/10.4049/jimmunol.0903856] [PMID: 20562268]
[5]
Jilani, T.N.; Avula, A.; Zafar Gondal, A.; Siddiqui, A.H. Active Tuberculosis; StatPearls Publishing: Treasure Island, FL, 2021.
[6]
Mainous, A.G. III Management of Antimicrobials in Infectious Diseases, 2nd ed; Springer New York Dordrecht Heidelberg London, 2001.
[http://dx.doi.org/10.1007/978-1-59259-036-0]
[7]
Tripathi, K. Essentials of Medical Pharmacology, 6th ed; Jaypee Brothers Medical Publishers: New Delhi, 2013.
[8]
Serafino, R.L.; Med, T. Tuberculosis 2: Pathophysiology and microbiology of pulmonary tuberculosis. South Sudan Med. J., 2013, 6, 10-12.
[9]
Divita, K.M.; Khatik, G.L. Current perspective of ATP synthase inhibitors in the management of the tuberculosis. Curr. Top. Med. Chem., 2021, 21(18), 1623-1643.
[http://dx.doi.org/10.2174/1568026621666210913122346] [PMID: 34517802]
[10]
Seung, K.J.; Keshavjee, S.; Rich, M.L. Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Cold Spring Harb. Perspect. Med., 2015, 5(9), a017863.
[11]
Ltbi. Available From: Www.Cdc.Gov
[12]
Caminero, J.A.; Scardigli, A. Classification of antituberculosis drugs: A new proposal based on the most recent evidence. Eur. Respir. J., 2015, 46(4), 887-893.
[http://dx.doi.org/10.1183/13993003.00432-2015] [PMID: 26424519]
[13]
Saifullah, B.; Hussein, M.Z.; Hussein Al Ali, S. Controlled-release approaches towards the chemotherapy of tuberculosis. Int. J. Nanomedicine, 2012, 7, 5451-5463.
[http://dx.doi.org/10.2147/IJN.S34996] [PMID: 23091386]
[14]
Aboul-fadl, T.; Bin-jubair, F.A.S. Anti-tubercular activity of isatin derivatives anti-tubercular activity of isatin derivatives. Int. J. Res. Pharm. Sci., 2010, 1, 113-126.
[15]
Abebe, G.; Zegeye Bonsa, W.K. Treatment outcomes and associated factors in tuberculosis patients at jimma university medical center: A 5-year retrospective study gemeda. Int. J. Mycobacteriol., 2017, 6, 239-245.
[16]
Venugopala, K.N.; Kandeel, M.; Pillay, M.; Deb, P.K.; Abdallah, H.H.; Mahomoodally, M.F. Anti-tubercular properties of 4-amino-5- (4-Fluoro-3- Schi Ff Bases: computational input and molecular dynamics. Antibiotics, 2020, 9, 559.
[http://dx.doi.org/10.3390/antibiotics9090559] [PMID: 32878018]
[17]
Guillemont, J.; Meyer, C.; Poncelet, A.; Bourdrez, X.; Andries, K. Diarylquinolines, synthesis pathways and quantitative structure-activity relationship studies leading to the discovery of TMC207. Future Med. Chem., 2011, 3(11), 1345-1360.
[http://dx.doi.org/10.4155/fmc.11.79] [PMID: 21879841]
[18]
Stinson, K.; Kurepina, N.; Venter, A.; Fujiwara, M.; Kawasaki, M.; Timm, J.; Shashkina, E.; Kreiswirth, B.N.; Liu, Y.; Matsumoto, M.; Geiter, L. MIC of delamanid (OPC-67683) against mycobacterium tuberculosis clinical isolates and a proposed critical concentration. Antimicrob. Agents Chemother., 2016, 60(6), 3316-3322.
[http://dx.doi.org/10.1128/AAC.03014-15] [PMID: 26976868]
[19]
Dhillon, J.; Mitchison, D.A. Activity and penetration of antituberculosis drugs in mouse peritoneal macrophages infected with Mycobacterium microti OV254. Antimicrob. Agents Chemother., 1989, 33(8), 1255-1259.
[http://dx.doi.org/10.1128/AAC.33.8.1255] [PMID: 2802553]
[20]
Ji, Q.; Ge, Z.; Ge, Z.; Chen, K.; Wu, H.; Liu, X.; Huang, Y.; Yuan, L.; Yang, X.; Liao, F. Synthesis and biological evaluation of novel phosphoramidate derivatives of coumarin as chitin synthase inhibitors and antifungal agents. Eur. J. Med. Chem., 2016, 108, 166-176.
[http://dx.doi.org/10.1016/j.ejmech.2015.11.027] [PMID: 26647304]
[21]
Xia, D.; Liu, H.; Cheng, X.; Maraswami, M.; Chen, Y.; Lv, X. Recent developments of coumarin-based hybrids in drug discovery. Curr. Top. Med. Chem., 2022, 22(4), 269-283.
[http://dx.doi.org/10.2174/1568026622666220105105450] [PMID: 34986774]
[22]
Hu, Y.Q.; Zhang, S.; Zhao, F.; Gao, C.; Feng, L.S.; Lv, Z.S.; Xu, Z.; Wu, X. Isoniazid derivatives and their anti-tubercular activity. Eur. J. Med. Chem., 2017, 133, 255-267.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.002] [PMID: 28390957]
[23]
Lakum, H.P.; Shah, D.R.; Chikhalia, K.H. The novel derivatives of 3-(Iminomethyl)-2H-Chromen-2-One with thiourea and piperazine structural motive: rationale, synthesis, antimicrobial and anti-tb evaluation. Lett. Drug Des. Discov., 2015, 12, 324-341.
[http://dx.doi.org/10.2174/1570180811666141009234835]
[24]
Dong, Y.; Feng, S.S. Poly(d,l-lactide-co-glycolide)/montmorillonite nanoparticles for oral delivery of anticancer drugs. Biomaterials, 2005, 26(30), 6068-6076.
[http://dx.doi.org/10.1016/j.biomaterials.2005.03.021] [PMID: 15894372]
[25]
Liu, M.M.; Chen, X.Y.; Huang, Y.Q.; Feng, P.; Guo, Y.L.; Yang, G.; Chen, Y. Hybrids of phenylsulfonylfuroxan and coumarin as potent antitumor agents. J. Med. Chem., 2014, 57(22), 9343-9356.
[http://dx.doi.org/10.1021/jm500613m] [PMID: 25350923]
[26]
Pingaew, R.; Saekee, A.; Mandi, P.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis, biological evaluation and molecular docking of novel chalcone-coumarin hybrids as anticancer and antimalarial agents. Eur. J. Med. Chem., 2014, 85, 65-76.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.087] [PMID: 25078311]
[27]
Tsay, S.C.; Hwu, J.R.; Singha, R.; Huang, W.C.; Chang, Y.H.; Hsu, M.H.; Shieh, F.; Lin, C.C.; Hwang, K.C.; Horng, J.C.; De Clercq, E.; Vliegen, I.; Neyts, J. Coumarins hinged directly on benzimidazoles and their ribofuranosides to inhibit hepatitis C virus. Eur. J. Med. Chem., 2013, 63, 290-298.
[http://dx.doi.org/10.1016/j.ejmech.2013.02.008] [PMID: 23501114]
[28]
Sashidhara, K.V.; Kumar, A.; Dodda, R.P.; Krishna, N.N.; Agarwal, P.; Srivastava, K.; Puri, S.K. Coumarin-trioxane hybrids: Synthesis and evaluation as a new class of antimalarial scaffolds. Bioorg. Med. Chem. Lett., 2012, 22(12), 3926-3930.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.100] [PMID: 22607674]
[29]
Irfan, A.; Rubab, L.; Rehman, M.U.; Anjum, R.; Ullah, S.; Marjana, M.; Qadeer, S.; Sana, S. Coumarin sulfonamide derivatives: An emerging class of therapeutic agents. Heterocycl. Commun., 2020, 26(1), 46-59.
[http://dx.doi.org/10.1515/hc-2020-0008]
[30]
Adeniji, A.A.; Knoll, K.E.; Loots, D.T. Potential anti-TB investigational compounds and drugs with repurposing potential in TB therapy: A conspectus. Appl. Microbiol. Biotechnol., 2020, 104(13), 5633-5662.
[http://dx.doi.org/10.1007/s00253-020-10606-y] [PMID: 32372202]
[31]
Alghamdi, S.; Rehman, S.U.; Shesha, N.T.; Faidah, H.; Khurram, M.; Rehman, S.U. Promising lead compounds in the development of potential clinical drug candidate for drug-resistant tuberculosis. Molecules, 2020, 25(23), 5685.
[http://dx.doi.org/10.3390/molecules25235685] [PMID: 33276545]
[32]
Virsdoia, V.; Shaikh, M.S.; Manvar, A.; Desai, B.; Parecha, A.; Loriya, R.; Dholariya, K.; Patel, G.; Vora, V.; Upadhyay, K.; Denish, K.; Shah, A.; Coutinho, E.C. Screening for in vitro antimycobacterial activity and three-dimensional quantitative structure-activity relationship (3D-QSAR) study of 4-(arylamino)coumarin derivatives. Chem. Biol. Drug Des., 2010, 76(5), 412-424.
[http://dx.doi.org/10.1111/j.1747-0285.2010.00997.x] [PMID: 20925693]
[33]
Besra, G.S.; Khoo, K.H.; McNeil, M.R.; Dell, A.; Morris, H.R.; Brennan, P.J. A new interpretation of the structure of the mycolyl-arabinogalactan complex of Mycobacterium tuberculosis as revealed through characterization of oligoglycosylalditol fragments by fast-atom bombardment mass spectrometry and 1H nuclear magnetic resonance spectroscopy. Biochemistry, 1995, 34(13), 4257-4266.
[http://dx.doi.org/10.1021/bi00013a015] [PMID: 7703239]
[34]
North, E.; Jackson, M.; Lee, R. New approaches to target the mycolic acid biosynthesis pathway for the development of tuberculosis therapeutics. Curr. Pharm. Des., 2013, 20(27), 4357-4378.
[http://dx.doi.org/10.2174/1381612819666131118203641] [PMID: 24245756]
[35]
Mahadevan, R. Reconciling the spectrum of Sagittarius A* with a two-temperature plasma model. Nature, 1998, 394(6694), 651-653.
[http://dx.doi.org/10.1038/29241]
[36]
Shetye, G.S.; Franzblau, S.G.; Cho, S. New tuberculosis drug targets, their inhibitors, and potential therapeutic impact. Transl. Res., 2020, 220, 68-97.
[http://dx.doi.org/10.1016/j.trsl.2020.03.007] [PMID: 32275897]
[37]
Krause, K.M.; Serio, A.W.; Kane, T.R.; Connolly, L.E. Aminoglycosides: An overview. Cold Spring Harb. Perspect. Med., 2016, 6(6), a027029.
[38]
Campbell, E.A.; Korzheva, N.; Mustaev, A.; Murakami, K.; Nair, S.; Goldfarb, A.; Darst, S.A. Structural mechanism for rifampicin inhibition of bacterial rna polymerase. Cell, 2001, 104(6), 901-912.
[http://dx.doi.org/10.1016/S0092-8674(01)00286-0] [PMID: 11290327]
[39]
van Ingen, J.; Aarnoutse, R.E.; Donald, P.R.; Diacon, A.H.; Dawson, R.; Plemper van Balen, G.; Gillespie, S.H.; Boeree, M.J. Why Do We Use 600 mg of Rifampicin in Tuberculosis Treatment? Clin. Infect. Dis., 2011, 52(9), e194-e199.
[http://dx.doi.org/10.1093/cid/cir184] [PMID: 21467012]
[40]
Aldred, K.J.; Kerns, R.J.; Osheroff, N. Mechanism of quinolone action and resistance. Biochemistry, 2014, 53(10), 1565-1574.
[http://dx.doi.org/10.1021/bi5000564] [PMID: 24576155]
[41]
Matsumoto, M.; Hashizume, H.; Tomishige, T.; Kawasaki, M.; Tsubouchi, H.; Sasaki, H.; Shimokawa, Y.; Komatsu, M. OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med., 2006, 3(11), e466.
[http://dx.doi.org/10.1371/journal.pmed.0030466] [PMID: 17132069]
[42]
Nagaraja, V.; Godbole, A.A.; Henderson, S.R.; Maxwell, A. DNA topoisomerase I and DNA gyrase as targets for TB therapy. Drug Discov. Today, 2017, 22(3), 510-518.
[http://dx.doi.org/10.1016/j.drudis.2016.11.006] [PMID: 27856347]
[43]
Makadia, J.S.; Jain, A.; Patra, S.K.; Sherwal, B.L.; Khanna, A. Emerging Trend of Mutation Profile of rpoB Gene in MDR Tuberculosis, North India. Indian J. Clin. Biochem., 2012, 27(4), 370-374.
[http://dx.doi.org/10.1007/s12291-012-0228-5] [PMID: 24082462]
[44]
Tran, S.L.; Cook, G.M. The F1Fo-ATP synthase of Mycobacterium smegmatis is essential for growth. J. Bacteriol., 2005, 187(14), 5023-5028.
[http://dx.doi.org/10.1128/JB.187.14.5023-5028.2005] [PMID: 15995221]
[45]
Cook, G.M.; Hards, K.; Vilchèze, C.; Hartman, T.; Berney, M. Energetics of Respiration and Oxidative Phosphorylation in Mycobacteria. Microbiol. Spectr., 2014, 2(3), 2.3.06.
[http://dx.doi.org/10.1128/microbiolspec.MGM2-0015-2013] [PMID: 25346874]
[46]
Keri, R.S.; Sasidhar, B.S.; Nagaraja, B.M.; Santos, M.A. Recent progress in the drug development of coumarin derivatives as potent antituberculosis agents. Eur. J. Med. Chem., 2015, 100, 257-269.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.017] [PMID: 26112067]
[47]
Patel, R.V.; Kumari, P.; Rajani, D.P.; Chikhalia, K.H. Synthesis, characterization and pharmacological activities of 2-[4-cyano-(3-trifluoromethyl)phenyl amino)]-4-(4-quinoline/coumarin-4-yloxy)-6-(fluoropiperazinyl)-s-triazines. J. Fluor. Chem., 2011, 132(9), 617-627.
[http://dx.doi.org/10.1016/j.jfluchem.2011.06.021]
[48]
Patel, P.K.; Patel, R.V.; Mahajan, D.H.; Parikh, P.A.; Mehta, G.N.; Pannecouque, C.; De Clercq, E.; Chikhalia, K.H. Different heterocycles functionalized s -triazine analogues: Design, synthesis and in vitro antimicrobial, antituberculosis, and anti-HIV assessment. J. Heterocycl. Chem., 2014, 51(6), 1641-1658.
[http://dx.doi.org/10.1002/jhet.1769]
[49]
Patel, D.H.; Chikhalia, K.H.; Shah, N.K.; Patel, D.P.; Kaswala, P.B.; Buha, V.M. Synthesis and antimicrobial studies of s -triazine based heterocycles. J. Enzyme Inhib. Med. Chem., 2010, 25(1), 121-125.
[50]
Naik, R.J.; Kulkarni, M.V.; Sreedhara Ranganath Pai, K.; Nayak, P.G. Click chemistry approach for bis-chromenyl triazole hybrids and their antitubercular activity. Chem. Biol. Drug Des., 2012, 80(4), 516-523.
[http://dx.doi.org/10.1111/j.1747-0285.2012.01441.x] [PMID: 22737986]
[51]
Thomas, K.D.; Vasudeva, A.; Chowdhury, I.H.; Sumesh, E.; Pal, N.K. New quinolin-4-yl-1,2,3-triazoles carrying amides, sulphonamides and amidopiperazines as potential antitubercular agents. Eur. J. Med. Chem., 2011, 46, 2503-2512.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.039] [PMID: 21489660]
[52]
Kumar, G.; Siva Krishna, V.; Sriram, D.; Jachak, S.M. Pyrazole-coumarin and pyrazole-quinoline chalcones as potential antitubercular agents. Arch. Pharm., 2020, 353(8), 2000077.
[http://dx.doi.org/10.1002/ardp.202000077] [PMID: 32484273]
[53]
Somagond, S.M.; Kamble, R.R.; Bayannavar, P.K.; Shaikh, S.K.J.; Joshi, S.D.; Kumbar, V.M.; Nesaragi, A.R.; Kariduraganavar, M.Y. Click chemistry based regioselective one‐pot synthesis of coumarin‐3‐yl‐methyl‐1,2,3‐triazolyl‐1,2,4‐triazol‐3(4 H)‐ones as newer potent antitubercular agents. Arch. Pharm., 2019, 352(10), 1900013.
[http://dx.doi.org/10.1002/ardp.201900013] [PMID: 31397503]
[54]
Ambekar, S.P.; Mohan, C.D.; Shirahatti, A.; Kumar, M.K.; Rangappa, S.; Mohan, S. Basappa; Kotresh, O.; Rangappa, K.S. Synthesis of coumarin-benzotriazole hybrids and evaluation of their anti-tubercular activity. Lett. Org. Chem., 2017, 15(1), 23-31.
[http://dx.doi.org/10.2174/1570178614666170710125501]
[55]
Shaikh, F.; Shastri, S.L.; Naik, N.S.; Kulkarni, R.; Madar, J.M.; Shastri, L.A.; Joshi, S.D.; Sunagar, V. Synthesis, antitubercular and antimicrobial activity of 1,2,4-triazolidine-3-thione functionalized coumarin and phenyl derivatives and molecular docking studies. ChemistrySelect, 2019, 4(1), 105-115.
[http://dx.doi.org/10.1002/slct.201802395]
[56]
Emmadi, N.R.; Bingi, C.; Kotapalli, S.S.; Ummanni, R.; Nanubolu, J.B.; Atmakur, K. Synthesis and evaluation of novel fluorinated pyrazolo-1,2,3-triazole hybrids as antimycobacterial agents. Bioorg. Med. Chem. Lett., 2015, 25(15), 2918-2922.
[http://dx.doi.org/10.1016/j.bmcl.2015.05.044] [PMID: 26048808]
[57]
Anand, A.; Naik, R.J.; Revankar, H.M.; Kulkarni, M.V.; Dixit, S.R.; Joshi, S.D. A click chemistry approach for the synthesis of mono and bis aryloxy linked coumarinyl triazoles as anti-tubercular agents. Eur. J. Med. Chem., 2015, 105, 194-207.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.019] [PMID: 26491982]
[58]
Anand, A.; Kulkarni, M.V.; Joshi, S.D.; Dixit, S.R. One pot Click chemistry: A three component reaction for the synthesis of 2-mercaptobenzimidazole linked coumarinyl triazoles as anti-tubercular agents. Bioorg. Med. Chem. Lett., 2016, 26(19), 4709-4713.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.045] [PMID: 27595420]
[59]
Patel, R.V.; Kumari, P.; Rajani, D.P.; Chikhalia, K.H. Synthesis of coumarin-based 1, 3, 4-oxadiazol-2ylthio-N-phenyl/benzothiazolyl acetamides as antimicrobial and antituberculosis agents. Med. Chem. Res., 2013, 22, 195-210.
[http://dx.doi.org/10.1007/s00044-012-0026-x]
[60]
Rajeswar Rao, V.; Ravinder Reddy, V. A facile synthesis of some new 3-(2-hydroxy-4-thiazolyl) coumarins and their derivatives. Heterocycl. Commun., 2004, 10(1), 109-114.
[http://dx.doi.org/10.1515/HC.2004.10.1.109]
[61]
Gadad, A.K.; Noolvi, M.N.; Karpoormath, R.V. Synthesis and anti-tubercular activity of a series of 2-sulfonamido/trifluoromethyl-6-substituted imidazo[2,1-b]-1,3,4-thiadiazole derivatives. Bioorg. Med. Chem., 2004, 12(21), 5651-5659.
[http://dx.doi.org/10.1016/j.bmc.2004.07.060] [PMID: 15465343]
[62]
Davis, T.M.E.; Hung, T.Y.; Sim, I.K.; Karunajeewa, H.A.; Ilett, K.F. Piperaquine. Drugs, 2005, 65(1), 75-87.
[http://dx.doi.org/10.2165/00003495-200565010-00004] [PMID: 15610051]
[63]
Feng, L.; Liu, M.; Wang, B.; Chai, Y.; Hao, X.; Meng, S.; Guo, H. Synthesis and in vitro antimycobacterial activity of balofloxacin ethylene isatin derivatives. Eur. J. Med. Chem., 2010, 45, 3407-3412.
[http://dx.doi.org/10.1016/j.ejmech.2010.04.027] [PMID: 20493593]
[64]
Ueberschaar, N.; Xu, Z.; Scherlach, K.; Metsä-Ketelä, M.; Bretschneider, T.; Dahse, H.M.; Görls, H.; Hertweck, C. Synthetic remodeling of the chartreusin pathway to tune antiproliferative and antibacterial activities. J. Am. Chem. Soc., 2013, 135(46), 17408-17416.
[http://dx.doi.org/10.1021/ja4080024] [PMID: 24143864]
[65]
Asad, M.; Oo, C.W.; Kumar, R.S.; Osman, H.; Ali, M.A. Synthesis and discovery of new bisadducts derived from heterocyclic aldehydes and active methylene compounds as potent antitubercular agents. Acta Pol. Pharm., 2013, 70(2), 221-228.
[PMID: 23614277]
[66]
Kashman, Y.; Gustafson, K.R.; Fuller, R.W.; Cardellina, J.H., II; McMahon, J.B.; Currens, M.J.; Buckheit, R.W., Jr; Hughes, S.H.; Cragg, G.M.; Boyd, M.R. HIV inhibitory natural products. Part 7. The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum. J. Med. Chem., 1992, 35(15), 2735-2743.
[http://dx.doi.org/10.1021/jm00093a004] [PMID: 1379639]
[67]
Liu, Z.; Guo, X.; Liu, G. Modified calanolides incorporated with furan-2-nitro mimics against Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett., 2015, 25(6), 1297-1300.
[http://dx.doi.org/10.1016/j.bmcl.2015.01.046] [PMID: 25681226]
[68]
Xu, Z.Q.; Barrow, W.W.; Suling, W.J.; Westbrook, L.; Barrow, E.; Lin, Y.M.; Flavin, M.T. Anti-HIV natural product (+)-calanolide A is active against both drug-susceptible and drug-resistant strains of Mycobacterium tuberculosis. Bioorg. Med. Chem., 2004, 12(5), 1199-1207.
[http://dx.doi.org/10.1016/j.bmc.2003.11.012] [PMID: 14980631]
[69]
Mangasuli, S.N.; Hosamani, K.M.; Devarajegowda, H.C.; Kurjogi, M.M.; Joshi, S.D. Synthesis of coumarin-theophylline hybrids as a new class of anti-tubercular and anti-microbial agents. Eur. J. Med. Chem., 2018, 146, 747-756.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.025] [PMID: 29407993]
[70]
Osman, H.; Yusufzai, S.K.; Khan, M.S.; Abd Razik, B.M.; Sulaiman, O.; Mohamad, S.; Gansau, J.A.; Ezzat, M.O.; Parumasivam, T.; Hassan, M.Z. New thiazolyl-coumarin hybrids: Design, synthesis, characterization, X-ray crystal structure, antibacterial and antiviral evaluation. J. Mol. Struct., 2018, 1166, 147-154.
[http://dx.doi.org/10.1016/j.molstruc.2018.04.031]
[71]
Singh, A.; Bimal, D.; Kumar, R.; Maikhuri, V.K.; Thirumal, M.; Senapati, N.N.; Prasad, A.K. Synthesis and antitubercular activity evaluation of 4-furano-coumarins and 3-furano-chromones. Synth. Commun., 2018, 48(18), 2339-2346.
[http://dx.doi.org/10.1080/00397911.2018.1480041]
[72]
Jain, P.K.; Joshi, H. Coumarin: Chemical and Pharmacological Profile. J. Appl. Pharm. Sci., 2012, 2, 236-240.
[73]
Ahmad, I.; Thakur, J.P.; Chanda, D.; Saikia, D.; Khan, F.; Dixit, S.; Kumar, A.; Konwar, R.; Negi, A.S.; Gupta, A. Syntheses of lipophilic chalcones and their conformationally restricted analogues as antitubercular agents. Bioorg. Med. Chem. Lett., 2013, 23(5), 1322-1325.
[http://dx.doi.org/10.1016/j.bmcl.2012.12.096] [PMID: 23369537]
[74]
Zala, A.R.; Rajani, D.P.; Kumari, P. Design, synthesis, molecular docking and biological potency study of novel hybrid of coumarin-cinnamic acids. SSRN, 2022, 100862.
[http://dx.doi.org/10.2139/ssrn.4033432]
[75]
Boerner, L.J.K.; Zaleski, J.M. Metal complex-DNA interactions: From transcription inhibition to photoactivated cleavage. Curr. Opin. Chem. Biol., 2005, 9(2), 135-144.
[http://dx.doi.org/10.1016/j.cbpa.2005.02.010] [PMID: 15811797]
[76]
Siddiqi, Z.A.; Khalid, M.; Kumar, S.; Shahid, M.; Noor, S. Antimicrobial and SOD activities of novel transition metal complexes of pyridine-2,6-dicarboxylic acid containing 4-picoline as auxiliary ligand. Eur. J. Med. Chem., 2010, 45(1), 264-269.
[http://dx.doi.org/10.1016/j.ejmech.2009.10.005] [PMID: 19897283]
[77]
Patel, J.C.; Dholariya, H.R.; Patel, K.S.; Patel, K.D. Spectral, thermal, biological and multi-heating rate kinetic properties of Cu(II) complexes containing N 2 O 2 donor ligands: 1,10-phenanthroline and acyl coumarins. Appl. Organomet. Chem., 2012, 26(11), 604-613.
[http://dx.doi.org/10.1002/aoc.2907]
[78]
Patel, J.; Dholariya, H.; Patel, K.; Bhatt, J.; Patel, K. Cu(II) and Ni(II) complexes of coumarin derivatives with fourth generation flouroquinolone: Synthesis, characterization, microbicidal and antioxidant assay. Med. Chem. Res., 2014, 23(8), 3714-3724.
[http://dx.doi.org/10.1007/s00044-014-0943-y]
[79]
Dianu, M.L.; Kriza, A.; Musuc, A.M. Synthesis, spectral characterization, and thermal behavior of mononuclear Cu(II), Co(II), Ni(II), Mn(II), and Zn(II) complexes with 5-bromosalycilaldehyde isonicotinoylhydrazone. J. Therm. Anal. Calorim., 2013, 112(2), 585-593.
[http://dx.doi.org/10.1007/s10973-012-2578-x]
[80]
Akki, M.; Reddy, D.S.; Katagi, K.S.; Kumar, A.; Devarajegowda, H.C.; Kumari, S.M.; Babagond, V.; Joshi, S.D. Synthesis of coumarin-thioether conjugates as potential anti-tubercular agents: Their molecular docking and X-Ray crystal studies. J. Mol. Struct., 2022, 1266, 133452.
[http://dx.doi.org/10.1016/j.molstruc.2022.133452]
[81]
Kancharla, S.K.; Birudaraju, S.; Pal, A.; Krishnakanth Reddy, L.; Reddy, E.R.; Vagolu, S.K.; Sriram, D.; Bonige, K.B.; Korupolu, R.B. Synthesis and biological evaluation of isatin oxime ether-tethered aryl 1 H -1,2,3-triazoles as inhibitors of Mycobacterium tuberculosis. New J. Chem., 2022, 46(6), 2863-2874.
[http://dx.doi.org/10.1039/D1NJ05171G]
[82]
Sharma, A.; Agrahari, A.K.; Rajkhowa, S.; Tiwari, V.K. Emerging impact of triazoles as anti-tubercular agent. Eur. J. Med. Chem., 2022, 238, 114454.
[http://dx.doi.org/10.1016/j.ejmech.2022.114454] [PMID: 35597009]
[83]
Liu, B.; Hu, G.; Tang, X.; Wang, G.; Xu, Z. 1 H -1,2,3-Triazole-tethered Isatin-coumarin hybrids: design, synthesis and In Vitro anti-mycobacterial evaluation. J. Heterocycl. Chem., 2018, 55(3), 775-780.
[http://dx.doi.org/10.1002/jhet.3093]
[84]
Kumar, R.; Takkar, P. Repositioning of Isatin hybrids as novel anti-tubercular agents overcoming pre-existing antibiotics resistance. Med. Chem. Res., 2021, 30(4), 847-876.
[http://dx.doi.org/10.1007/s00044-021-02699-5]
[85]
Xu, Y.; Dang, R.; Guan, J.; Xu, Z.; Zhao, S.; Hu, Y. Isatin-(thio)semicarbazide/oxime-1 H -1,2,3-triazole-coumarin Hybrids: Design, synthesis, and in vitro anti-mycobacterial evaluation. J. Heterocycl. Chem., 2018, 55(4), 1069-1073.
[http://dx.doi.org/10.1002/jhet.3104]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy