Generic placeholder image

Current Cardiology Reviews

Editor-in-Chief

ISSN (Print): 1573-403X
ISSN (Online): 1875-6557

Mini-Review Article

Countermeasures for Maintaining Cardiovascular Health in Space Missions

Author(s): Jhilam Pramanik, Akash Kumar*, Lakshay Panchal and Bhupendra Prajapati

Volume 19, Issue 5, 2023

Published on: 04 May, 2023

Article ID: e300323215156 Pages: 11

DOI: 10.2174/1573403X19666230330083225

Price: $65

Open Access Journals Promotions 2
Abstract

During space exploration, the human body is subjected to altered atmospheric environments and gravity, exposure to radiation, sleep disturbance, and mental pressures; all these factors are responsible for cardiovascular diseases. Under microgravity, the physiological changes related to cardiovascular diseases are the cephalic fluid shift, dramatic reduction in central venous pressure, changes in blood rheology and endothelial function, cerebrovascular abnormalities, headaches, optic disc edema, intracranial hypertension, congestion of the jugular vein, facial swelling, and loss of taste. Generally, five countermeasures are used to maintain cardiovascular health (during and after space missions), including shielding, nutritional, medicinal, exercise, and artificial gravity. This article concludes with how to reduce space missions' impact on cardiovascular health with the help of various countermeasures.

Keywords: Space mission, cardiac health, exercise, medicinal, artificial gravity, nutritional.

Graphical Abstract
[1]
Barrila J, Ott CM, LeBlanc C, et al. Spaceflight modulates gene expression in the whole blood of astronauts. NPJ Microgravity 2016; 2(1): 16039.
[http://dx.doi.org/10.1038/npjmgrav.2016.39] [PMID: 28725744]
[2]
Hughson RL, Helm A, Durante M. Heart in space: Effect of the extraterrestrial environment on the cardiovascular system. Nat Rev Cardiol 2018; 15(3): 167-80.
[http://dx.doi.org/10.1038/nrcardio.2017.157] [PMID: 29053152]
[3]
Shen M, Frishman WH. Effects of spaceflight on cardiovascular physiology and health. Cardiol Rev 2019; 27(3): 122-6.
[http://dx.doi.org/10.1097/CRD.0000000000000236] [PMID: 30365406]
[4]
Hughson RL, Yee NJ, Greaves DK. Elevated end-tidal Pco2 during long-duration spaceflight. Aerosp Med Hum Perform 2016; 87(10): 894-7.
[http://dx.doi.org/10.3357/AMHP.4598.2016] [PMID: 27662353]
[5]
Patel ZS, Brunstetter TJ, Tarver WJ, et al. Red risks for a journey to the red planet: The highest priority human health risks for a mission to Mars. NPJ Microgravity 2020; 6(1): 33.
[http://dx.doi.org/10.1038/s41526-020-00124-6] [PMID: 33298950]
[6]
Jirak P, Mirna M, Rezar R, et al. How spaceflight challenges human cardiovascular health. Eur J Prev Cardiol 2022; 29(10): 1399-411.
[http://dx.doi.org/10.1093/eurjpc/zwac029] [PMID: 35148376]
[7]
Moore TP, Thornton WE. Space shuttle inflight and postflight fluid shifts measured by leg volume changes. Aviat Space Environ Med 1987; 58(9 Pt 2): A91-6.
[PMID: 3675513]
[8]
Olabi AA, Lawless HT, Hunter JB, Levitsky DA, Halpern BP. The effect of microgravity and space flight on the chemical senses. J Food Sci 2002; 67(2): 468-78.
[http://dx.doi.org/10.1111/j.1365-2621.2002.tb10622.x] [PMID: 12085931]
[9]
Thornton WE, Moore TP, Pool SL. Fluid shifts in weightlessness. Aviat Space Environ Med 1987; 58(9 Pt 2): A86-90.
[PMID: 3675511]
[10]
Aubert AE, Larina I, Momken I, et al. Towards human exploration of space: The THESEUS review series on cardiovascular, respiratory, and renal research priorities. NPJ Microgravity 2016; 2(1): 16031.
[http://dx.doi.org/10.1038/npjmgrav.2016.31] [PMID: 28725739]
[11]
Tank J, Jordan J. Mighty hearts in space. J Physiol 2015; 593(3): 485-6.
[http://dx.doi.org/10.1113/jphysiol.2015.270000] [PMID: 25774392]
[12]
Hargens AR, Richardson S. Cardiovascular adaptations, fluid shifts, and countermeasures related to space flight. Respir Physiol Neurobiol 2009; 169 (Suppl. 1): S30-3.
[http://dx.doi.org/10.1016/j.resp.2009.07.005] [PMID: 19615471]
[13]
Buckey JC Jr, Gaffney FA, Lane LD, et al. Central venous pressure in space. J Appl Physiol 1996; 81(1): 19-25.
[http://dx.doi.org/10.1152/jappl.1996.81.1.19] [PMID: 8828643]
[14]
Norsk P. Adaptation of the cardiovascular system to weightlessness: Surprises, paradoxes and implications for deep space missions. Acta Physiol 2020; 228(3): e13434.
[http://dx.doi.org/10.1111/apha.13434] [PMID: 31872965]
[15]
Videbaek R, Norsk P. Atrial distension in humans during microgravity induced by parabolic flights. J Appl Physiol 1997; 83(6): 1862-6.
[http://dx.doi.org/10.1152/jappl.1997.83.6.1862] [PMID: 9390956]
[16]
Watenpaugh DE. Fluid volume control during short-term space flight and implications for human performance. J Exp Biol 2001; 204(18): 3209-15.
[http://dx.doi.org/10.1242/jeb.204.18.3209] [PMID: 11581336]
[17]
Watenpaugh DE, Yancy CW, Buckey JC, Lane LD, Hargens AR, Blomqvist CG. Role of atrial natriuretic peptide in systemic responses to acute isotonic volume expansion. J Appl Physiol 1992; 73(4): 1218-26.
[http://dx.doi.org/10.1152/jappl.1992.73.4.1218] [PMID: 1447062]
[18]
Mulvagh SL, Charles JB, Riddle JM, Rehbein TL, Bungo MW. Echocardiographic evaluation of the cardiovascular effects of short-duration spaceflight. J Clin Pharmacol 1991; 31(10): 1024-6.
[http://dx.doi.org/10.1002/j.1552-4604.1991.tb03666.x] [PMID: 1761712]
[19]
Anzai T, Frey MA, Nogami A. Cardiac arrhythmias during long-duration spaceflights. J Arrhythm 2014; 30(3): 139-49.
[http://dx.doi.org/10.1016/j.joa.2013.07.009]
[20]
Perhonen MA, Franco F, Lane LD, et al. Cardiac atrophy after bed rest and spaceflight. J Appl Physiol 2001; 91(2): 645-53.
[http://dx.doi.org/10.1152/jappl.2001.91.2.645] [PMID: 11457776]
[21]
Kunz H, Quiriarte H, Simpson RJ, et al. Alterations in hematologic indices during long-duration spaceflight. BMC Hematol 2017; 17(1): 12.
[http://dx.doi.org/10.1186/s12878-017-0083-y] [PMID: 28904800]
[22]
Smith SM. Red blood cell and iron metabolism during space flight. Nutrition 2002; 18(10): 864-6.
[http://dx.doi.org/10.1016/S0899-9007(02)00912-7] [PMID: 12361780]
[23]
Feger BJ, Thompson JW, Dubois LG, et al. Microgravity induces proteomics changes involved in endoplasmic reticulum stress and mitochondrial protection. Sci Rep 2016; 6(1): 34091.
[http://dx.doi.org/10.1038/srep34091] [PMID: 27670941]
[24]
What is an Arrhythmia?-American Heart Association. Available from: https://www.heart.org/en/health-topics/arrhythmia/about-arrhythmia (accessed on: September 7, 2022).
[25]
Grace AA, Roden DM. Systems biology and cardiac arrhythmias. Lancet 2012; 380(9852): 1498-508.
[http://dx.doi.org/10.1016/S0140-6736(12)61462-7] [PMID: 23101717]
[26]
Platts SH, Tuxhorn JA, Ribeiro LC, Stenger MB, Lee SMC, Meck JV. Compression garments as countermeasures to orthostatic intolerance. Aviat Space Environ Med 2009; 80(5): 437-42.
[http://dx.doi.org/10.3357/ASEM.2473.2009] [PMID: 19456003]
[27]
Meck JV, Reyes CJ, Perez SA, Goldberger AL, Ziegler MG. Marked exacerbation of orthostatic intolerance after long- vs. short-duration spaceflight in veteran astronauts. Psychosom Med 2001; 63(6): 865-73.
[http://dx.doi.org/10.1097/00006842-200111000-00003] [PMID: 11719623]
[28]
Marshall-Goebel K, Laurie SS, Alferova IV, et al. Assessment of jugular venous blood flow stasis and thrombosis during spaceflight. JAMA Netw Open 2019; 2(11): e1915011.
[http://dx.doi.org/10.1001/jamanetworkopen.2019.15011] [PMID: 31722025]
[29]
Limper U, Tank J, Ahnert T, et al. The thrombotic risk of spaceflight: Has a serious problem been overlooked for more than half of a century? Eur Heart J 2021; 42(1): 97-100.
[http://dx.doi.org/10.1093/eurheartj/ehaa359] [PMID: 32428936]
[30]
Petersen LG, Lawley JS, Lilja-Cyron A, et al. Lower body negative pressure to safely reduce intracranial pressure. J Physiol 2019; 597(1): 237-48.
[http://dx.doi.org/10.1113/JP276557] [PMID: 30286250]
[31]
Arbeille P, Zuj KA, Macias BR, et al. Lower body negative pressure reduces jugular and portal vein volumes and counteracts the elevation of middle cerebral vein velocity during long-duration spaceflight. J Appl Physiol 2021; 131(3): 1080-7.
[http://dx.doi.org/10.1152/japplphysiol.00231.2021] [PMID: 34323592]
[32]
McDougall JA, Sakata R, Sugiyama H, et al. Timing of menarche and first birth in relation to risk of breast cancer in A-bomb survivors. Cancer Epidemiol Biomarkers Prev 2010; 19(7): 1746-54.
[http://dx.doi.org/10.1158/1055-9965.EPI-10-0246] [PMID: 20570914]
[33]
Coleman MA, Sasi SP, Onufrak J, et al. Low-dose radiation affects cardiac physiology: Gene networks and molecular signaling in cardiomyocytes. Am J Physiol Heart Circ Physiol 2015; 309(11): H1947-63.
[http://dx.doi.org/10.1152/ajpheart.00050.2015] [PMID: 26408534]
[34]
Boerma M, Nelson GA, Sridharan V, Mao XW, Koturbash I, Hauer-Jensen M. Space radiation and cardiovascular disease risk. World J Cardiol 2015; 7(12): 882-8.
[http://dx.doi.org/10.4330/wjc.v7.i12.882] [PMID: 26730293]
[35]
Taunk NK, Haffty BG, Kostis JB, Goyal S. Radiation-induced heart disease: Pathologic abnormalities and putative mechanisms. Front Oncol 2015; 5: 39.
[http://dx.doi.org/10.3389/fonc.2015.00039] [PMID: 25741474]
[36]
Cucinotta FA, Durante M. Cancer risk from exposure to galactic cosmic rays: Implications for space exploration by human beings. Lancet Oncol 2006; 7(5): 431-5.
[http://dx.doi.org/10.1016/S1470-2045(06)70695-7] [PMID: 16648048]
[37]
Schroeder MK, Liu B, Hinshaw RG, et al. Long-term sex-and genotype-specific effects of56 fe irradiation on wild-type and appswe/ps1de9 transgenic mice. Int J Mol Sci 2021; 22(24): 13305.
[http://dx.doi.org/10.3390/ijms222413305] [PMID: 34948098]
[38]
Shiraishi M, Kamo T, Kamegai M, et al. Periodic structures and diurnal variation in blood pressure and heart rate in relation to microgravity on space station MIR. Biomed Pharmacother 2004; 58 (Suppl. 1): S31-4.
[http://dx.doi.org/10.1016/S0753-3322(04)80006-4] [PMID: 15754836]
[39]
Fritsch-Yelle JM, Charles JB, Jones MM, Wood ML. Microgravity decreases heart rate and arterial pressure in humans. J Appl Physiol 1996; 80(3): 910-4.
[http://dx.doi.org/10.1152/jappl.1996.80.3.910] [PMID: 8964756]
[40]
Norsk P, Asmar A, Damgaard M, Christensen NJ. Fluid shifts, vasodilatation and ambulatory blood pressure reduction during long duration spaceflight. J Physiol 2015; 593(3): 573-84.
[http://dx.doi.org/10.1113/jphysiol.2014.284869] [PMID: 25774397]
[41]
Choukér A, Stahn AC. COVID-19-The largest isolation study in history: the value of shared learnings from spaceflight analogs. npj Microgravity 2020; 6(1): 32.
[http://dx.doi.org/10.1038/s41526-020-00122-8]
[42]
Xia N, Li H. Loneliness, social isolation, and cardiovascular health. Antioxid Redox Signal 2018; 28(9): 837-51.
[http://dx.doi.org/10.1089/ars.2017.7312] [PMID: 28903579]
[43]
Harrison AA, Clearwater YA, Mckay CP. From Antarctica to outer space-life in isolation and confinement. Antarct Sci 1991; 3: 451457.
[http://dx.doi.org/10.1017/S0954102091220544]
[44]
Sandal GM, Endresen IM, Vaernes R, Ursin H. Personality and coping strategies during submarine missions. Mil Psychol 1999; 11(4): 381-404.
[http://dx.doi.org/10.1207/s15327876mp1104_3] [PMID: 11543156]
[45]
Vigo DE, Tuerlinckx F, Ogrinz B, et al. Circadian rhythm of autonomic cardiovascular control during Mars500 simulated mission to Mars. Aviat Space Environ Med 2013; 84(10): 1023-8.
[http://dx.doi.org/10.3357/ASEM.3612.2013] [PMID: 24261053]
[46]
Pagel JI, Choukèr A. Effects of isolation and confinement on humans-implications for manned space explorations. J Appl Physiol 2016; 120(12): 1449-57.
[http://dx.doi.org/10.1152/japplphysiol.00928.2015]
[47]
Yarmanova EN, Kozlovskaya IB, Khimoroda NN, Fomina EV. Evolution of Russian microgravity countermeasures. Aerosp Med Hum Perform 2015; 86 (Suppl. 12): 32-7.
[http://dx.doi.org/10.3357/AMHP.EC05.2015] [PMID: 26630193]
[48]
Eckberg DL. Bursting into space: Alterations of sympathetic control by space travel. Acta Physiol Scand 2003; 177(3): 299-311.
[http://dx.doi.org/10.1046/j.1365-201X.2003.01073.x] [PMID: 12609000]
[49]
Pump B, Videbæk R, Gabrielsen A, Norsk P. Arterial pressure in humans during weightlessness induced by parabolic flights. J Appl Physiol 1999; 87(3): 928-32.
[http://dx.doi.org/10.1152/jappl.1999.87.3.928] [PMID: 10484559]
[50]
Bimpong-Buta NY, Jirak P, Wernly B, et al. Analysis of human microcirculation in weightlessness: Study protocol and pre-study experiments. Clin Hemorheol Microcirc 2018; 70(1): 119-27.
[http://dx.doi.org/10.3233/CH-170366] [PMID: 29710687]
[51]
Bimpong-Buta NY, Muessig JM, Knost T, et al. Comprehensive analysis of macrocirculation and microcirculation in microgravity during parabolic flights. Front Physiol 2020; 11: 960.
[http://dx.doi.org/10.3389/fphys.2020.00960] [PMID: 32903511]
[52]
Wessler BS, Paulus JK, Lundquist CM, et al. Tufts PACE Clinical Predictive Model Registry: update 1990 through 2015. Diagn Progn Res 2017; 1: 20.
[http://dx.doi.org/10.1186/s41512-017-0021-2]
[53]
Lucaroni F, Cicciarella Modica D, Macino M, et al. Can risk be predicted? An umbrella systematic review of current risk prediction models for cardiovascular diseases, diabetes and hypertension. BMJ Open 2019; 9(12): e030234.
[http://dx.doi.org/10.1136/bmjopen-2019-030234] [PMID: 31862737]
[54]
Pencina MJ, D’Agostino RB Sr, Larson MG, Massaro JM, Vasan RS. Predicting the 30-year risk of cardiovascular disease: The framingham heart study. Circulation 2009; 119(24): 3078-84.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.816694] [PMID: 19506114]
[55]
Goff DC Jr, Lloyd-Jones DM, Bennett G, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: A report of the American college of cardiology/American heart association task force on practice guidelines. Circulation 2014; 129 (Suppl. 2): S49-73.
[http://dx.doi.org/10.1161/01.cir.0000437741.48606.98] [PMID: 24222018]
[56]
ASCVD Risk Estimator Available from: https://tools.acc.org/ascvd-risk-estimator-plus/#!/calculate/estimate/ (Accessed on: January 21, 2023)
[57]
Khera A, Budoff MJ, O’Donnell CJ, et al. Astronaut cardiovascular health and risk modification (Astro-CHARM) coronary calcium atherosclerotic cardiovascular disease risk calculator. Circulation 2018; 138(17): 1819-27.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.033505] [PMID: 30354651]
[58]
D’Agostino RB Sr, Vasan RS, Pencina MJ, et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 2008; 117(6): 743-53.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.699579] [PMID: 18212285]
[59]
de Vries TI, Jaspers NEM, Visseren FLJ, Dorresteijn JAN. An update to the LIFE time-perspective CardioVascular Disease (LIFE- CVD) model for prediction of individualized lifetime benefit from cardiovascular risk factor management in apparently healthy peo- ple. MedRxiv 2021; 2021.03.15.21253400.
[http://dx.doi.org/10.1101/2021.03.15.21253400]
[60]
Hippisley-Cox J, Coupland C, Robson J, Brindle P. Derivation, validation, and evaluation of a new QRISK model to estimate lifetime risk of cardiovascular disease: Cohort study using QResearch database. BMJ 2010; 341(dec09 1): c6624.
[http://dx.doi.org/10.1136/bmj.c6624] [PMID: 21148212]
[61]
Hippisley-Cox J, Coupland C, Vinogradova Y, et al. Predicting cardiovascular risk in England and Wales: Prospective derivation and validation of QRISK2. BMJ 2008; 336(7659): 1475-82.
[http://dx.doi.org/10.1136/bmj.39609.449676.25] [PMID: 18573856]
[62]
Hippisley-Cox J, Coupland C, Brindle P. Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: Prospective cohort study. BMJ 2017; 357: j2099.
[http://dx.doi.org/10.1136/bmj.j2099] [PMID: 28536104]
[63]
Ridker PM, Paynter NP, Rifai N, Gaziano JM, Cook NR. C-reactive protein and parental history improve global cardiovascular risk prediction: The Reynolds Risk Score for men. Circulation 2008; 118(22): 2243-51.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.814251] [PMID: 18997194]
[64]
Conroy R, Pyörälä K, Fitzgerald AP, et al. SCORE project group. Estimation of ten-year risk of fatal cardiovascular disease in Europe: The SCORE project. Eur Heart J 2003; 24(11): 987-1003.
[http://dx.doi.org/10.1016/S0195-668X(03)00114-3] [PMID: 12788299]
[65]
Benditt DG, Fahy GJ, Lurie KG, Sakaguchi S, Fabian W, Samniah N. Pharmacotherapy of neurally mediated syncope. Circulation 1999; 100(11): 1242-8.
[http://dx.doi.org/10.1161/01.CIR.100.11.1242] [PMID: 10484547]
[66]
Bungo MW, Goldwater DJ, Popp RL, Sandler H. Echocardiographic evaluation of space shuttle crewmembers. J Appl Physiol 1987; 62(1): 278-83.
[http://dx.doi.org/10.1152/jappl.1987.62.1.278]
[67]
van der Veen SJ, Ghobadi G, de Boer RA, et al. ACE inhibition attenuates radiation-induced cardiopulmonary damage. Radiother Oncol 2015; 114(1): 96-103.
[http://dx.doi.org/10.1016/j.radonc.2014.11.017] [PMID: 25465731]
[68]
Mahmood J, Jelveh S, Zaidi A, Doctrow SR, Medhora M, Hill RP. Targeting the Renin-angiotensin system combined with an antioxidant is highly effective in mitigating radiation-induced lung damage. Int J Radiat Oncol Biol Phys 2014; 89(4): 722-8.
[http://dx.doi.org/10.1016/j.ijrobp.2014.03.048] [PMID: 24867538]
[69]
Gao F, Narayanan J, Joneikis C, et al. Enalapril mitigates focal alveolar lesions, a histological marker of late pulmonary injury by radiation to the lung. Radiat Res 2013; 179(4): 465-74.
[http://dx.doi.org/10.1667/RR3127.1] [PMID: 23480564]
[70]
Auñón-Chancellor SM, Pattarini JM, Moll S, Sargsyan A. Venous thrombosis during Spaceflight. N Engl J Med 2020; 382(1): 89-90.
[http://dx.doi.org/10.1056/NEJMc1905875] [PMID: 31893522]
[71]
Vernikos J, Dallman MF, Van Loon G, Keil LC. Drug effects on orthostatic intolerance induced by bedrest. J Clin Pharmacol 1991; 31(10): 974-84.
[http://dx.doi.org/10.1002/j.1552-4604.1991.tb03659.x] [PMID: 1761730]
[72]
Wang HM, Liao ZX, Komaki R, et al. Improved survival outcomes with the incidental use of beta-blockers among patients with non-small-cell lung cancer treated with definitive radiation therapy. Ann Oncol 2013; 24(5): 1312-9.
[http://dx.doi.org/10.1093/annonc/mds616] [PMID: 23300016]
[73]
Wang H, Liao Z, Zhuang Y, et al. Incidental receipt of cardiac medications and survival outcomes among patients with stage III non-small-cell lung cancer after definitive radiotherapy. Clin Lung Cancer 2015; 16(2): 128-36.
[http://dx.doi.org/10.1016/j.cllc.2014.09.006] [PMID: 25450873]
[74]
Weber M. The role of the new β-blockers in treating cardiovascular disease. Am J Hypertens 2005; 18(12): 169-76.
[http://dx.doi.org/10.1016/j.amjhyper.2005.09.009] [PMID: 16373195]
[75]
Nègre-Salvayre A, Fitoussi G, Troly M, Salvayre R. Comparative cytoprotective effect of dihydropyridine calcium channel blockers against the toxicity of oxidized low density lipoprotein for cultured lymphoid cells. Biochem Pharmacol 1992; 44(12): 2379-86.
[http://dx.doi.org/10.1016/0006-2952(92)90683-A] [PMID: 1472103]
[76]
Mukherjee SK, Goel HC, Pant K, Jain V. Prevention of radiation induced taste aversion in rats. Indian J Exp Biol 1997; 35(3): 232-5.
[PMID: 9332167]
[77]
Floersheim GL. Radioprotective effects of calcium antagonists used alone or with other types of radioprotectors. Radiat Res 1993; 133(1): 80-7.
[http://dx.doi.org/10.2307/3578260] [PMID: 8434117]
[78]
Russell RP. Side effects of calcium channel blockers. Hypertension 1988; 11(3_pt_2): II42-4.
[http://dx.doi.org/10.1161/01.HYP.11.3_Pt_2.II42] [PMID: 3280492]
[79]
Azzam EI, Jay-Gerin JP, Pain D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett 2012; 327(1-2): 48-60.
[http://dx.doi.org/10.1016/j.canlet.2011.12.012] [PMID: 22182453]
[80]
Montesinos CA, Khalid R, Cristea O, et al. Space radiation protection countermeasures in microgravity and planetary exploration. Life 2021; 11(8): 829.
[http://dx.doi.org/10.3390/life11080829] [PMID: 34440577]
[81]
Shavers MR, Zapp N, Barber RE, et al. Implementation of ALARA radiation protection on the ISS through polyethylene shielding augmentation of the Service Module Crew Quarters. Adv Space Res 2004; 34(6): 1333-7.
[http://dx.doi.org/10.1016/j.asr.2003.10.051] [PMID: 15880921]
[82]
Kodaira S, Tolochek RV, Ambrozova I, et al. Verification of shielding effect by the water-filled materials for space radiation in the International Space Station using passive dosimeters. Adv Space Res 2014; 53(1): 1-7.
[http://dx.doi.org/10.1016/j.asr.2013.10.018]
[83]
Cucinotta FA, Kim MHY, Ren L. Evaluating shielding effectiveness for reducing space radiation cancer risks. Radiat Meas 2006; 41(9-10): 1173-85.
[http://dx.doi.org/10.1016/j.radmeas.2006.03.011]
[84]
Thibeault SA, Kang JH, Sauti G, Park C, Fay CC, King GC. Nanomaterials for radiation shielding. MRS Bull 2015; 40(10): 836-41.
[http://dx.doi.org/10.1557/mrs.2015.225]
[85]
Cheraghi E, Chen S, Yeow JTW. Boron nitride-based nanomaterials for radiation shielding: A review. IEEE Nanotechnol Mag 2021; 15(3): 8-17.
[http://dx.doi.org/10.1109/MNANO.2021.3066390]
[86]
Spillantini P, Casolino M, Durante M, et al. Shielding from cosmic radiation for interplanetary missions: Active and passive methods. Radiat Meas 2007; 42(1): 14-23.
[http://dx.doi.org/10.1016/j.radmeas.2006.04.028]
[87]
Zhang LF. Region-specific vascular remodeling and its prevention by artificial gravity in weightless environment. Eur J Appl Physiol 2013; 113(12): 2873-95.
[http://dx.doi.org/10.1007/s00421-013-2597-8] [PMID: 23525669]
[88]
Moore AD, Lee SMC, Stenger MB, Platts SH. Cardiovascular exercise in the U.S. space program: Past, present and future. Acta Astronaut 2010; 66(7-8): 974-88.
[http://dx.doi.org/10.1016/j.actaastro.2009.10.009]
[89]
Rizos EC, Ntzani EE, Bika E, Kostapanos MS, Elisaf MS. Association between omega-3 fatty acid supplementation and risk of major cardiovascular disease events: A systematic review and meta-analysis. JAMA 2012; 308(10): 1024-33.
[http://dx.doi.org/10.1001/2012.jama.11374] [PMID: 22968891]
[90]
Kumar A, Goyal N, Pramanik J, Prajapati B, Patel J. Nutritional and Alternative Approaches to Treatment in Space. In: Pathak YV, Araújo dos Santos M, Zea L, Eds. Handbook of Space Pharmaceuticals Switzerland: Springer, Cham 2022; pp. 935-53.
[http://dx.doi.org/10.1007/978-3-030-05526-4_58]
[91]
Bouhlel E, Salhi Z, Bouhlel H, et al. Effect of Ramadan fasting on fuel oxidation during exercise in trained male rugby players. Diabetes Metab 2006; 32(6): 617-24.
[http://dx.doi.org/10.1016/S1262-3636(07)70317-8] [PMID: 17296516]
[92]
Lane HW, & Schoeller DA. Nutrition in Spaceflight and Weightlessness Models. Florida CRC Press: Boca Raton 1999.
[93]
Smith SM, Zwart SR. Nutritional biochemistry of spaceflight. Adv Clin Chem 2008; 46: 87-130.
[http://dx.doi.org/10.1016/S0065-2423(08)00403-4] [PMID: 19004188]
[94]
Stein TP. Space flight and oxidative stress. Nutrition 2002; 18(10): 867-71.
[http://dx.doi.org/10.1016/S0899-9007(02)00938-3] [PMID: 12361781]
[95]
Tang H, Rising HH, Majji M, Brown RD. Long-term space nutrition: A scoping review. Nutrients 2021; 14(1): 194.
[http://dx.doi.org/10.3390/nu14010194] [PMID: 35011072]
[96]
Zwart SR, Hargens AR, Smith SM. The ratio of animal protein intake to potassium intake is a predictor of bone resorption in space flight analogues and in ambulatory subjects. Am J Clin Nutr 2004; 80(4): 1058-65.
[http://dx.doi.org/10.1093/ajcn/80.4.1058] [PMID: 15447920]
[97]
Gao R, Chilibeck PD. Nutritional interventions during bed rest and spaceflight: prevention of muscle mass and strength loss, bone resorption, glucose intolerance, and cardiovascular problems. Nutr Res 2020; 82: 11-24.
[http://dx.doi.org/10.1016/j.nutres.2020.07.001] [PMID: 32890860]
[99]
Heer M, Titze J, Smith SM, Baecker N. Nutrition Physiology and Metabolism in Spaceflight and Analog Studies. Springer Briefs in Space Life Sciences 2015; pp. XIII-69.
[http://dx.doi.org/10.1007/978-3-319-18521-7]
[100]
Williams DE, Dake JR, Gentry GJ. International space station environmental control and life support system status: 2009 - 2010. AIAA 2010-6180 In: 40th International Conference on Environmental Systems. Barcelona, Spain 2010.
[http://dx.doi.org/10.2514/6.2010-6180]
[101]
Smith SM, Zwart SR, Heer M. Evidence Report: Risk Factor of Inadequate Nutrition 2nd ed; NASA: Washington, DC, USA 2015.(No. JSC-CN-32587):
[102]
Smith SM, Zwart SR, Heer M. Human adaptation to space flight: The role of nutrition. 2nd ed; NASA: Texas, USA 2021.
[103]
Zwart SR, Launius RD, Coen GK, Morgan JLL, Charles JB, Smith SM. Body mass changes during long-duration spaceflight. Aviat Space Environ Med 2014; 85(9): 897-904.
[http://dx.doi.org/10.3357/ASEM.3979.2014] [PMID: 25197887]
[104]
Stein TP, Schluter MD, Stein TP, Schluter MD. Excretion of amino acids by humans during space flight. Acta Astronaut 1998; 42(1-8): 205-14.
[http://dx.doi.org/10.1016/S0094-5765(98)00117-9] [PMID: 11541603]
[105]
Heer M, Boerger A, Kamps N, Mika C, Korr C, Drummer C. Nutrient supply during recent European missions. Pflugers Arch 2000; 441 (Suppl. S1): R8-R14.
[http://dx.doi.org/10.1007/s004240000334] [PMID: 11200986]
[106]
Roy M, Kiremidjian-Schumacher L, Wishe HI, Cohen MW, Stotzky G. Supplementation with selenium and human immune cell functions. Biol Trace Elem Res 1994; 41(1-2): 103-14.
[http://dx.doi.org/10.1007/BF02917221] [PMID: 7946898]
[107]
Kiremidjian-Schumacher L, Roy M, Glickman R, et al. Selenium and immunocompetence in patients with head and neck cancer. Biol Trace Elem Res 2000; 73(2): 97-112.
[http://dx.doi.org/10.1385/BTER:73:2:97] [PMID: 11049203]
[108]
Baum MK, Miguez-Burbano MJ, Campa A, Shor-Posner G. Selenium and interleukins in persons infected with human immunodeficiency virus type 1. J Infect Dis 2000; 182 (Suppl. 1): S69-73.
[http://dx.doi.org/10.1086/315911] [PMID: 10944486]
[109]
McAnulty SR, Nieman DC, McAnulty LS, Lynch WS, Jin F, Henson DA. Effect of mixed flavonoids, n-3 fatty acids, and vitamin C on oxidative stress and antioxidant capacity before and after intense cycling. Int J Sport Nutr Exerc Metab 2011; 21(4): 328-37.
[http://dx.doi.org/10.1123/ijsnem.21.4.328] [PMID: 21813916]
[110]
Pemp B, Polska E, Karl K, et al. Effects of antioxidants (AREDS medication) on ocular blood flow and endothelial function in an endotoxin-induced model of oxidative stress in humans. Invest Ophthalmol Vis Sci 2010; 51(1): 2-6.
[http://dx.doi.org/10.1167/iovs.09-3888] [PMID: 19684008]
[111]
Rendón-Ramírez AL, Maldonado-Vega M, Quintanar-Escorza MA, et al. Effect of vitamin E and C supplementation on oxidative damage and total antioxidant capacity in lead-exposed workers. Environ Toxicol Pharmacol 2014; 37(1): 45-54.
[http://dx.doi.org/10.1016/j.etap.2013.10.016] [PMID: 24560336]
[112]
Arnold C, Winter L, Fröhlich K, et al. Macular xanthophylls and ω-3 long-chain polyunsaturated fatty acids in age-related macular degeneration: A randomized trial. JAMA Ophthalmol 2013; 131(5): 564-72.
[http://dx.doi.org/10.1001/jamaophthalmol.2013.2851] [PMID: 23519529]
[113]
Chew EY, Clemons TE, SanGiovanni JP, et al. Secondary analyses of the effects of lutein/zeaxanthin on age-related macular degeneration progression: AREDS2 report No. 3. JAMA Ophthalmol 2014; 132(2): 142-9.
[http://dx.doi.org/10.1001/jamaophthalmol.2013.7376] [PMID: 24310343]
[114]
Kassoff A, Kassoff J, Buehler J, Eglow M, Kaufman F, Mehu M. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol 2001; 119(10): 1417-36.
[http://dx.doi.org/10.1001/archopht.119.10.1417] [PMID: 11594942]
[115]
Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur J Med Chem 2015; 97: 55-74.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.040] [PMID: 25942353]
[116]
Mohan KN, Ge J, Kadandale S. Current topics in ionizing radiation research. Nenoi M. IntechOpen 2012; pp. 101-16.
[http://dx.doi.org/10.5772/2027]
[117]
Smith SM, Zwart SR. Nutrition issues for space exploration. Acta Astronaut 2008; 63(5-6): 609-13.
[http://dx.doi.org/10.1016/j.actaastro.2008.04.010]
[118]
Heer M, Baecker N, Smith SM, Zwart SR. Nutritional Countermeasures for Spaceflight-Related Stress. In: Choukèr A, Ed. Stress Challenges and Immunity in Space. Switzerland: Springer Cham 2020; pp. 593-616.
[http://dx.doi.org/10.1007/978-3-030-16996-1_33]
[119]
Bullard RW. Physiological problems of space travel. Annu Rev Physiol 1972; 34(1): 205-34.
[http://dx.doi.org/10.1146/annurev.ph.34.030172.001225] [PMID: 4553491]
[120]
Narici MV, de Boer MD. Disuse of the musculo-skeletal system in space and on earth. Eur J Appl Physiol 2011; 111(3): 403-20.
[http://dx.doi.org/10.1007/s00421-010-1556-x] [PMID: 20617334]
[121]
Grimm D, Grosse J, Wehland M, et al. The impact of microgravity on bone in humans. Bone 2016; 87: 44-56.
[http://dx.doi.org/10.1016/j.bone.2015.12.057] [PMID: 27032715]
[122]
Stein TP. Weight, muscle and bone loss during space flight: Another perspective. Eur J Appl Physiol 2013; 113(9): 2171-81.
[http://dx.doi.org/10.1007/s00421-012-2548-9] [PMID: 23192310]
[123]
Coupé M, Fortrat JO, Larina I, Gauquelin-Koch G, Gharib C, Custaud MA. Cardiovascular deconditioning: From autonomic nervous system to microvascular dysfunctions. Respir Physiol Neurobiol 2009; 169 (Suppl. 1): S10-2.
[http://dx.doi.org/10.1016/j.resp.2009.04.009] [PMID: 19379845]
[124]
Mueller PJ, Cunningham JT, Patel KP, Hasser EM. Proposed role of the paraventricular nucleus in cardiovascular deconditioning. Acta Physiol Scand 2003; 177(1): 27-35.
[http://dx.doi.org/10.1046/j.1365-201X.2003.01044.x] [PMID: 12492776]
[125]
Zhu H, Wang H, Liu Z. Effects of real and simulated weightlessness on the cardiac and peripheral vascular functions of humans: A review. Int J Occup Med Environ Health 2015; 28(5): 793-802.
[http://dx.doi.org/10.13075/ijomeh.1896.00301] [PMID: 26224491]
[126]
Ade CJ, Broxterman RM, Moore AD, Barstow TJ. Decreases in maximal oxygen uptake following long-duration spaceflight: Role of convective and diffusive O2 transport mechanisms. J Appl Physiol 2017; 122(4): 968-75.
[http://dx.doi.org/10.1152/japplphysiol.00280.2016] [PMID: 28153941]
[127]
Moore AD Jr, Downs ME, Lee SMC, Feiveson AH, Knudsen P, Ploutz-Snyder L. Peak exercise oxygen uptake during and following long-duration spaceflight. J Appl Physiol 2014; 117(3): 231-8.
[http://dx.doi.org/10.1152/japplphysiol.01251.2013] [PMID: 24970852]
[128]
Bentley JR, Leach MA, Mccleary F, et al. Advanced Resistive Exercise Device (ARED) Man-In-The-Loop Test (MILT). NASA/TP-2006-213717. 2006. Available from: https://corpora.tika.apache.org/base/docs/govdocs1/892/892484.pdf
[129]
ESA-advanced Resistive Exercise Device. Available from: https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Node-3_Cupola/advanced_Resistive_Exercise_Device(Accessed on: June 25, 2022)
[130]
Solving Space: Space Cardio Available from: https://spacecenter.org/solving-space-space-cardio/ (Accessed on: June 25, 2022).
[131]
Solving Space: Space Bike Available from: https://spacecenter.org/solving-space-space-bike/ (Accessed on: June 25, 2022).
[132]
Cardiovascular Health in Microgravity-NASA Available from: https://www.nasa.gov/mission_pages/station/research/station-science-101/cardiovascular-health-in-microgravity/ (Accessed on: June 25, 2022).
[133]
National Research Council. Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era. Washington, DC: The National Academies Press 2011.
[http://dx.doi.org/10.17226/13048]
[134]
Shulzhenko EB, Vil-Viliams IF. Short radius centrifuge as a method in long-term space flights. Physiologist 1992; 35 (Suppl. 1): S122-5.
[PMID: 1589477]
[135]
Vernikos J, Ludwig DA, Ertl AC, Wade CE, Keil L, O’Hara D. Effect of standing or walking on physiological changes induced by head down bed rest: Implications for spaceflight. Aviat Space Environ Med 1996; 67(11): 1069-79.
[PMID: 8908346]
[136]
Kourtidou-Papadeli C, Frantzidis CA, Gilou S, et al. Gravity threshold and dose response relationships: Health benefits using a short arm human centrifuge. Front Physiol 2021; 12: 644661.
[http://dx.doi.org/10.3389/fphys.2021.644661] [PMID: 34045973]
[137]
Buckey JC. Space physiology. Oxford University Press 2006.
[138]
Clément G, Bukley A, Paloski W. History of Artificial Gravity. In: Clément G, Bukley A, Eds. Artificial Gravity The Space Technology Library. Springer: New York 2007; Vol. 20: pp. 59-93.
[http://dx.doi.org/10.1007/0-387-70714-X_3]
[139]
Kaderka J, Young LR, Paloski WH. A critical benefit analysis of artificial gravity as a microgravity countermeasure. Acta Astronaut 2010; 67(9-10): 1090-102.
[http://dx.doi.org/10.1016/j.actaastro.2010.06.032]
[140]
Greenleaf JE, Gundo DP, Watenpaugh DE, et al. Cycle-powered short radius (1.9M) centrifuge: exercise vs. passive acceleration. J Gravit Physiol 1996 Sep; 3(2): 61-2.
[141]
Katayama K, Sato K, Akima H, et al. Acceleration with exercise during head-down bed rest preserves upright exercise responses. Aviat Space Environ Med 2004; 75(12): 1029-35.
[PMID: 15619856]
[142]
Iwase S, Fu Q, Narita K, Morimoto E, Takada H, Mano T. Effects of graded load of artificial gravity on cardiovascular functions in humans. Nagoya. Environ Med 2002; 46: 29-32.
[143]
Iwase S. Effectiveness of centrifuge-induced artificial gravity with ergometric exercise as a countermeasure during simulated microgravity exposure in humans. Acta Astronaut 2005; 57(2-8): 75-80.
[http://dx.doi.org/10.1016/j.actaastro.2005.03.013] [PMID: 16010754]
[144]
Yang CB, Zhang S, Zhang Y, et al. Combined short-arm centrifuge and aerobic exercise training improves cardiovascular function and physical working capacity in humans. Med Sci Monit 2010; 16(12): CR575-83.
[PMID: 21119574]
[145]
Clément G, Bukley A. Artificial gravity. 1st Eds; Springer: New York 2007.
[http://dx.doi.org/10.1007/0-387-70714-X]
[146]
Diaz A, Heldt T, Young LR. In: Cardiovascular responses to artificial gravity combined with exercise 2015 IEEE Aerospace Conference Proceding. Big Sky, MT, USA. 2015; pp. 1-11.
[http://dx.doi.org/10.1109/AERO.2015.7118969]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy