Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Solvent-free Microwave-assisted Synthesis of 1-(1,3-diphenyl-1H-pyrazol- 4-yl)-3-(2-hydroxyphenyl) Propane-1,3-dione Using K2CO3 as Green Solid Support

Author(s): Namdeo T. Dhokale, Satish B. Kale, Sadashiv S. Nagre, Shankaraiah G. Konda and Navanath R. Dalvi*

Volume 20, Issue 9, 2023

Published on: 04 May, 2023

Page: [871 - 876] Pages: 6

DOI: 10.2174/1570178620666230329104520

Price: $65

Abstract

We herein present the synthesis of 1-(1,3-diphenyl-1H-pyrazol-4-yl)-3-(2-hydroxysubstituted phenyl) propane-1,3-dione using microwave irradiation. Reactions were carried out by employing a solvent-free path using K2CO3 as green solid support. The results were compared with those of the conventional method. This microwave-assisted synthesis avoids hazardous solvents and reduces the number of steps and time, providing increased yields. The synthesized products were characterized by IR, 1H NMR, and mass spectrometry.

Keywords: Synthesis, solvent-free, green solid, microwave irradiation, pyrazole, K2CO3.

Graphical Abstract
[1]
Gharge, D.; Salve, P.; Raut, C.; Pawar, K.; Dhabale, P. Asian J. Res. Chem, 2010, 3(1), 9-16.
[http://dx.doi.org/10.5958/0974-4150]
[2]
Dąbrowska, S.; Chudoba, T.; Wojnarowicz, J.; Łojkowski, W. Crystals (Basel), 2018, 8(10), 379.
[http://dx.doi.org/10.3390/cryst8100379]
[3]
Varma, R.S. Green Chem., 1999, 1(1), 43-55.
[http://dx.doi.org/10.1039/a808223e]
[4]
Nain, S.; Singh, R.; Ravichandran, S. Adv. J. Chem. Sec A, 2019, 2(2), 94-104.
[http://dx.doi.org/10.29088/SAMI/AJCA.2019.2.94104]
[5]
Summer, D.; Matuszczak, B. Lett. Org. Chem., 2018, 16(1), 25-29.
[http://dx.doi.org/10.2174/1570178615666180713091531]
[6]
Bogdał, D.; Pielichowski, J.; Boroń, A. Synlett, 1996, 1996(9), 873-874.
[http://dx.doi.org/10.1055/s-1996-5587]
[7]
Barham, J.P.; Tamaoki, S.; Egami, H.; Ohneda, N.; Okamoto, T.; Odajima, H.; Hamashima, Y. Org. Biomol. Chem., 2018, 16(41), 7568-7573.
[http://dx.doi.org/10.1039/C8OB02282H] [PMID: 30298895]
[8]
Su, T.; Zhao, D.; Wang, Y.; Lü, H.; Varma, R.S.; Len, C. ChemSusChem, 2021, 14(1), 266-280.
[http://dx.doi.org/10.1002/cssc.202002232] [PMID: 33200564]
[9]
Cravotto, G.; Moran, M.J.; Martina, K.; Stefanidis, G.D. Front Chem., 2020, 8, 34-53.
[http://dx.doi.org/10.3389/fchem.2020.00034]
[11]
Gyorgy, K.; Anna, S. Lett. Org. Chem., 2008, 5(8), 616-622.
[http://dx.doi.org/10.2174/157017808786857598]
[12]
Khan, K.; Zia-Ullah, B.S.P.; Rani, M.; Perveen, S.; Haider, S.; Choudhary, M. Atta-ur-Rahman, B.S.P.; Voelter, W. Lett. Org. Chem., 2004, 1(1), 50-52.
[http://dx.doi.org/10.2174/1570178043488608]
[13]
Lluvia Itzel, L.; Jesus Javier, V.G.; Aide, S.G.; Yesenia, S. Lett. Org. Chem., 2014, 11(8), 573-582.
[http://dx.doi.org/10.2174/1570178611666140421225621]
[14]
Gupta, M.; Wakhloo, B.P. ARKIVOC, 2007, 2007(1), 94-98.
[http://dx.doi.org/10.3998/ark.5550190.0008.110]
[15]
Kidwai, M.; Lal, M.; Mishra, N.K.; Jahan, A. Green Chem. Lett. Rev., 2013, 6(1), 63-68.
[http://dx.doi.org/10.1080/17518253.2012.704082]
[16]
Sripathi, S.K.; Logeeswari, K. Int. J. Org. Chem. (Irvine), 2013, 3(1), 42-47.
[http://dx.doi.org/10.4236/ijoc.2013.31004]
[17]
Banerjee, B.; Koketsu, M. Coord. Chem. Rev., 2017, 339, 104-127.
[http://dx.doi.org/10.1016/j.ccr.2017.03.008]
[18]
Dongamanti, A.; Bommidi, V.L.; Arram, G.; Sidda, R. Heterocycl. Commun., 2014, 20(5), 293-298.
[http://dx.doi.org/10.1515/hc-2014-0102]
[19]
Abrigach, F.; Touzani, R. Med. Chem., 2016, 6(5), 292-298.
[http://dx.doi.org/10.4172/2161-0444.1000359]
[20]
Alam, M.J.; Alam, O.; Alam, P.; Naim, M.J. Int. J. Chem. Sci., 2015, 1(1), 31-36.
[21]
Bhusare, S.R.; Pawar, V.G.; Shinde, S.B.; Pawar, R.P.; Vibhute, Y.B. Int. J. Chem. Sci., 2003, 1(1), 31-36.
[22]
Mohammad, S.; Siddiqui, A.A.; Mohamed, A.A.; Sriram, D.; Yogeeswari, P. Bioorg. Med. Chem. Lett., 2006, 16(15), 3947-3949.
[http://dx.doi.org/10.1016/j.bmcl.2006.05.024] [PMID: 16725324]
[23]
Masaret, G.S. ChemistrySelect, 2021, 6(5), 974-982.
[http://dx.doi.org/10.1002/slct.202004304]
[24]
Kumar, R.S.; Arif, I.A.; Ahamed, A.; Idhayadhulla, A. Science, 2015, 23(5), 614-620.
[http://dx.doi.org/10.1016/j.sjbs.2015.07.005]
[25]
Mahajan, R.N.; Havaldar, F.H.; Fernandes, P.S. J. Indian Chem. Soc., 1991, 68, 245-246.
[http://dx.doi.org/10.5281/zenodo.6136850]
[26]
Karrouchi, K.; Radi, S.; Ramli, Y.; Taoufik, J.; Mabkhot, Y.N.; Al-aizari, F.A.; Ansar, M. Molecules, 2018, 23(1), 134.
[27]
de Souza, A.; Xavier, V.; Coelho, G.; Sales, P.Junior; Romanha, A.; Murta, S.; Carneiro, C.; Taylor, J. J. Braz. Chem. Soc., 2017, 29(2), 269-277.
[http://dx.doi.org/10.21577/0103-5053.20170137]
[28]
Diogo, G.M.; Andrade, J.S.; Junior, P.A.S.; Murta, S.M.F.; Santos, V.M.R.D.; Taylor, J.G. Molecules, 2020, 25(2), 397.
[http://dx.doi.org/10.3390/molecules25020397] [PMID: 31963596]
[29]
Menezes, J.; Vaz, L.; de Abreu Vieira, P.; da Silva Fonseca, K.; Carneiro, C.; Taylor, J. Molecules, 2014, 20(1), 43-51.
[http://dx.doi.org/10.3390/molecules20010043] [PMID: 25546620]
[30]
Paez, E.B.A.; Curcio, S.; Neme, N.P.; Matos, M.J.S.; Correa, R.S.; Pereira, F.J.; Hilário, F.F.; Cazati, T.; Taylor, J.G. New J. Chem., 2020, 44(34), 14615-14631.
[http://dx.doi.org/10.1039/D0NJ03525D]
[31]
Milan, M.; Viktor, M.; Rudolf, K.; Dusan, I. Curr. Org. Chem., 2004, 8(8), 695-714.
[http://dx.doi.org/10.2174/1385272043370627]
[32]
Jain, P.K.; Makrandi, J.K.; Grover, S.K. Synthesis, 1982, 1982(3), 221-222.
[http://dx.doi.org/10.1055/s-1982-29755]
[33]
Shen, C.; Li, W.; Yin, H.; Spannenberg, A.; Skrydstrup, T.; Wu, X.F. Adv. Synth. Catal., 2016, 358(3), 466-479.
[http://dx.doi.org/10.1002/adsc.201500858]
[34]
Bennardi, D.O.; Romanelli, G.P.; Jios, J.L.; Autino, J.C.; Baronetti, G.T.; Thomas, H.J. ARKIVOC, 2008, 2008(11), 123-130.
[http://dx.doi.org/10.3998/ark.5550190.0009.b12]
[35]
Josefina, P.; Arafa, C.; Jordi, G.A.; Josep, R. Lett. Org. Chem., 2010, 7(2), 178-181.
[http://dx.doi.org/10.2174/157017810790796273]
[36]
Nigam, S.; Joshi, Y.C.; Joshi, P. Heterocycl. Commun., 2003, 9(4), 405-410.
[http://dx.doi.org/10.1515/HC.2003.9.4.405]
[37]
Song, L.; Zhu, S. J. Fluor. Chem., 2001, 111(2), 201-205.
[http://dx.doi.org/10.1016/S0022-1139(01)00454-7]
[38]
Wang, D.J.; Liu, H.; Kang, Y.F.; Hu, Y.J.; Wei, X.H. J. Chil. Chem. Soc., 2015, 60(1), 2857-2860.
[http://dx.doi.org/10.4067/S0717-97072015000100018]
[39]
Reheim, M.A.M.A.; Hafiz, I.S.A.; Redy, H.S.E.A. Mol. Divers., 2022, 26, 741-755.
[http://dx.doi.org/10.1007/s11030-020-10152-9] [PMID: 33398634]
[40]
Taydakov, I.V.; Krasnoselsky, S.S. Chem. Heterocycl. Compd., 2011, 47(6), 695-699.
[http://dx.doi.org/10.1007/s10593-011-0821-1]
[41]
Padhy, A.K.; Bardhan, M.; Panda, C.S. Ind. J. Chem., 2003, 910-915. https://nopr.niscpr.res.in/handle/123456789/2157
[42]
Ghosh, U.; Katzenellenbogen, J.A. J. Heterocycl. Chem., 2002, 39(5), 1101-1104.
[http://dx.doi.org/10.1002/jhet.5570390542]
[43]
Kel’in, A.; Maioli, A. Curr. Org. Chem., 2003, 7(18), 1855-1886.
[http://dx.doi.org/10.2174/1385272033486134]
[44]
Bachute, R.T.; Karale, B.K.; Gill, C.H.; Bachute, M.T. Ind. J. Het. Chem, 2005, 14, 375-376.
[45]
Kale, S.B.; Dalvi, N.R.; More, M.S.; Shingare, M.S.; Karale, B.K. Ind. J. Het. Chem, 2006, 15(4), 371-374.
[46]
Hepworth, J.D.; Heron, B.M. Prog. Heterocyclic Chem., 2001, 13, 317-339.
[http://dx.doi.org/10.1016/S0959-6380(01)80017-9]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy