Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Research Article

VK2 Promotes Osteogenic Differentiation of BMSCs against High Glucose Exposure via Modulation of Intracellular Oxidative Stress

Author(s): Wenlai Fang, Yiyun Lv, Shuqing Jin, Zheng Zhu and Yunzhen Chen*

Volume 29, Issue 9, 2023

Published on: 31 March, 2023

Page: [713 - 722] Pages: 10

DOI: 10.2174/1381612829666230328113007

Price: $65

conference banner
Abstract

Introduction: Diabetic osteoporosis (DOP) has gradually gained public attention. The clinical manifestations of DOP include bone mass loss, bone microstructural damage, and increased bone fragility.

Methods: Intracellular reactive oxygen species (ROS) production was significantly increased under high glucose (HG) conditions, with deleterious effects on bone mesenchymal stem cells (BMSCs) proliferation and osteogenic differentiation. Vitamin K2 (VK2) has been demonstrated to promote bone formation both in vitro and in vivo.

Results: However, its potential role in diabetes-induced osteoporosis remains unelucidated. This study aims to verify whether VK2 treatment could relieve the deleterious effects of high glucose on BMSCs and delay the progression of osteoporosis. The results revealed that the HG environment downregulated the expression of osteogenesis- related proteins.

Conclusion: Correspondingly, VK2 treatment reversed the osteogenic phenotype of BMSCs under HG conditions. In addition, using an established diabetes-induced osteoporosis rat model, we found that VK2 administration could restore bone mass and microstructure. In conclusion, our results provide a promising therapeutic option in the clinical treatment of DOP.

Keywords: Diabetic osteoporosis (DOP), high glucose (HG), vitamin K2 (VK2), reactive oxygen species (ROS), mitochondrial dysfunction, bone mesenchymal stem cells (BMSCs).

« Previous
[1]
Ren X, Li X. Advances in research on diabetes by human nutriomics. Int J Mol Sci 2019; 20(21): 5375.
[http://dx.doi.org/10.3390/ijms20215375] [PMID: 31671732]
[2]
Ehlers LH, Lamotte M, Monteiro S, et al. The cost-effectiveness of empagliflozin versus liraglutide treatment in people with type 2 diabetes and established cardiovascular disease. Diabetes Ther 2021; 12(5): 1523-34.
[http://dx.doi.org/10.1007/s13300-021-01040-y] [PMID: 33856655]
[3]
Srikanthan P, Crandall CJ, Miller-Martinez D, et al. Insulin resistance and bone strength: Findings from the study of midlife in the United States. J Bone Miner Res 2014; 29(4): 796-803.
[http://dx.doi.org/10.1002/jbmr.2083] [PMID: 23983216]
[4]
Li J, Zeng Z, Zhao Y, et al. Effects of low-intensity pulsed electromagnetic fields on bone microarchitecture, mechanical strength and bone turnover in type 2 diabetic db/db mice. Sci Rep 2017; 7(1): 10834.
[http://dx.doi.org/10.1038/s41598-017-11090-7] [PMID: 28883516]
[5]
Sheu A, Greenfield JR, White CP, Center JR. Assessment and treatment of osteoporosis and fractures in type 2 diabetes. Trends Endocrinol Metab 2022; 33(5): 333-44.
[http://dx.doi.org/10.1016/j.tem.2022.02.006] [PMID: 35307247]
[6]
Ma H, Wang X, Zhang W, et al. Melatonin suppresses ferroptosis induced by high glucose via activation of the Nrf2/HO-1 signaling pathway in type 2 diabetic osteoporosis. Oxid Med Cell Longev 2020; 2020: 1-18.
[http://dx.doi.org/10.1155/2020/9067610] [PMID: 33343809]
[7]
Yang Y, Lin Y, Wang M, et al. Targeting ferroptosis suppresses osteocyte glucolipotoxicity and alleviates diabetic osteoporosis. Bone Res 2022; 10(1): 26.
[http://dx.doi.org/10.1038/s41413-022-00198-w] [PMID: 35260560]
[8]
Jayachandran I, Sundararajan S, Venkatesan S, et al. Asymmetric dimethylarginine (ADMA) accelerates renal cell fibrosis under high glucose condition through NOX4/ROS/ERK signaling pathway. Sci Rep 2020; 10(1): 16005.
[http://dx.doi.org/10.1038/s41598-020-72943-2] [PMID: 32994511]
[9]
Kolmas J, Groszyk E, Piotrowska U. Nanocrystalline hydroxyapatite enriched in selenite and manganese ions: Physicochemical and antibacterial properties. Nanoscale Res Lett 2015; 10(1): 278.
[http://dx.doi.org/10.1186/s11671-015-0989-x] [PMID: 26138453]
[10]
Kim HS, Nam ST, Mun SH, et al. DJ-1 controls bone homeostasis through the regulation of osteoclast differentiation. Nat Commun 2017; 8(1): 1519.
[http://dx.doi.org/10.1038/s41467-017-01527-y] [PMID: 29142196]
[11]
Mora-Boza A, López-Donaire ML, Saldaña L, Vilaboa N, Vázquez-Lasa B, San Román J. Glycerylphytate compounds with tunable ion affinity and osteogenic properties. Sci Rep 2019; 9(1): 11491.
[http://dx.doi.org/10.1038/s41598-019-48015-5] [PMID: 31391524]
[12]
Zhao L, Du W, Zhao D, et al. Catalpol protects against high glucose-induced bone loss by regulating osteoblast function. Front Pharmacol 2021; 12: 626621.
[http://dx.doi.org/10.3389/fphar.2021.626621] [PMID: 33776769]
[13]
Palermo A, D’Onofrio L, Eastell R, Schwartz AV, Pozzilli P, Napoli N. Oral anti-diabetic drugs and fracture risk, cut to the bone: safe or dangerous? A narrative review. Osteoporos Int 2015; 26(8): 2073-89.
[http://dx.doi.org/10.1007/s00198-015-3123-0] [PMID: 25910746]
[14]
Maseroli E, Comeglio P, Corno C, et al. Testosterone treatment is associated with reduced adipose tissue dysfunction and nonalcoholic fatty liver disease in obese hypogonadal men. J Endocrinol Invest 2021; 44(4): 819-42.
[http://dx.doi.org/10.1007/s40618-020-01381-8] [PMID: 32772323]
[15]
Dragh MA, Xu Z, Al-Allak ZS, Hong L. Vitamin K2 prevents lymphoma in drosophila. Sci Rep 2017; 7(1): 17047.
[http://dx.doi.org/10.1038/s41598-017-17270-9] [PMID: 29213118]
[16]
Du W, Zhou J, Wang D, Gong K, Zhang Q. Vitamin K1 enhances sorafenib-induced growth inhibition and apoptosis of human malignant glioma cells by blocking the Raf/MEK/ERK pathway. World J Surg Oncol 2012; 10(1): 60.
[http://dx.doi.org/10.1186/1477-7819-10-60] [PMID: 22520038]
[17]
Duan F, Mei C, Yang L, et al. Vitamin K2 promotes PI3K/AKT/HIF-1α-mediated glycolysis that leads to AMPK-dependent autophagic cell death in bladder cancer cells. Sci Rep 2020; 10(1): 7714.
[http://dx.doi.org/10.1038/s41598-020-64880-x] [PMID: 32382009]
[18]
Bellone F, Cinquegrani M, Nicotera R, et al. Role of Vitamin K in chronic kidney disease: A focus on bone and cardiovascular health. Int J Mol Sci 2022; 23(9): 5282.
[http://dx.doi.org/10.3390/ijms23095282] [PMID: 35563672]
[19]
Akbari S, Rasouli-Ghahroudi AA. Vitamin K and bone metabolism: A review of the latest evidence in preclinical studies. BioMed Res Int 2018; 2018: 1-8.
[http://dx.doi.org/10.1155/2018/4629383] [PMID: 30050932]
[20]
Zhou M, Han S, Zhang W, Wu D. Efficacy and safety of vitamin K2 for postmenopausal women with osteoporosis at a long-term follow-up: Meta-analysis and systematic review. J Bone Miner Metab 2022; 40(5): 763-72.
[http://dx.doi.org/10.1007/s00774-022-01342-6] [PMID: 35711002]
[21]
Tsugawa N, Shiraki M. Vitamin K nutrition and bone health. Nutrients 2020; 12(7): 1909.
[http://dx.doi.org/10.3390/nu12071909] [PMID: 32605143]
[22]
Koshihara Y, Hoshi K. Vitamin K2 enhances osteocalcin accumulation in the extracellular matrix of human osteoblasts in vitro. J Bone Miner Res 1997; 12(3): 431-8.
[http://dx.doi.org/10.1359/jbmr.1997.12.3.431] [PMID: 9076586]
[23]
Bouckaert JH, Said AH. Fracture healing by vitamin K. Nature 1960; 185(4716): 849.
[http://dx.doi.org/10.1038/185849a0] [PMID: 13803194]
[24]
Bădilă AE, Rădulescu DM, Ilie A, Niculescu AG, Grumezescu AM, Rădulescu AR. Bone regeneration and oxidative stress: An updated overview. Antioxidants 2022; 11(2): 318.
[http://dx.doi.org/10.3390/antiox11020318] [PMID: 35204201]
[25]
Huang SH, Fang ST, Chen YC. Molecular mechanism of vitamin K2 protection against amyloid-β-induced cytotoxicity. Biomolecules 2021; 11(3): 423.
[http://dx.doi.org/10.3390/biom11030423] [PMID: 33805625]
[26]
Akbulut AC, Wasilewski GB, Rapp N, et al. Menaquinone-7 supplementation improves osteogenesis in pluripotent stem cell derived mesenchymal stem cells. Front Cell Dev Biol 2021; 8: 618760.
[http://dx.doi.org/10.3389/fcell.2020.618760] [PMID: 33585456]
[27]
Hadipour E, Tayarani-Najaran Z, Fereidoni M. Vitamin K2 protects PC12 cells against Aβ (1-42) and H2O2-induced apoptosis via p38 MAP kinase pathway. Nutr Neurosci 2020; 23(5): 343-52.
[http://dx.doi.org/10.1080/1028415X.2018.1504428] [PMID: 30058479]
[28]
Park SB, Seo KW, So AY, et al. SOX2 has a crucial role in the lineage determination and proliferation of mesenchymal stem cells through Dickkopf-1 and c-MYC. Cell Death Differ 2012; 19(3): 534-45.
[http://dx.doi.org/10.1038/cdd.2011.137] [PMID: 22015605]
[29]
Zuncheddu D, Della Bella E, Petta D, et al. Effect of glucose depletion and fructose administration during chondrogenic commitment in human bone marrow-derived stem cells. Stem Cell Res Ther 2022; 13(1): 533.
[http://dx.doi.org/10.1186/s13287-022-03214-2] [PMID: 36575539]
[30]
Abdulameer SA, Sahib MN, Sulaiman SAS. The prevalence of osteopenia and osteoporosis among malaysian type 2 diabetic patients using quantitative ultrasound densitometer. Open Rheumatol J 2018; 12(1): 50-64.
[http://dx.doi.org/10.2174/1874312901812010050] [PMID: 29755605]
[31]
Russo V, Chen R, Armamento-Villareal R. Hypogonadism, type-2 diabetes mellitus, and bone health: A narrative review. Front Endocrinol 2021; 11: 607240.
[http://dx.doi.org/10.3389/fendo.2020.607240] [PMID: 33537005]
[32]
Kawabata T, Tokuda H, Kuroyanagi G, et al. Incretin accelerates platelet-derived growth factor-BB-induced osteoblast migration via protein kinase A: The upregulation of p38 MAP kinase. Sci Rep 2020; 10(1): 2341.
[http://dx.doi.org/10.1038/s41598-020-59392-7] [PMID: 32047216]
[33]
Cao X, Liu D, Xia Y, Cai T, he Y, Liu J. A novel polysaccharide from Lentinus edodes mycelia protects MIN6 cells against high glucose-induced damage via the MAPKs and Nrf2 pathways. Food Nutr Res 2019; 63(0): 63.
[http://dx.doi.org/10.29219/fnr.v63.1598] [PMID: 31217790]
[34]
Du S, Shao J, Xie D, Zhang F. Decorin inhibits glucose-induced lens epithelial cell apoptosis via suppressing p22phox-p38 MAPK signaling pathway. PLoS One 2020; 15(4): e0224251.
[http://dx.doi.org/10.1371/journal.pone.0224251] [PMID: 32339204]
[35]
Morelli A, Marini M, Mancina R, et al. Sex steroids and leptin regulate the “first Kiss” (KiSS 1/G-protein-coupled receptor 54 system) in human gonadotropin-releasing-hormone-secreting neuroblasts. J Sex Med 2008; 5(5): 1097-113.
[http://dx.doi.org/10.1111/j.1743-6109.2008.00782.x] [PMID: 18331266]
[36]
Meng M, Xia Q, Li Y, et al. Enamel matrix derivative expedites osteogenic differentiation of BMSCs via Wnt/β-catenin pathway in high glucose microenvironment. J Bone Miner Metab 2022; 40(3): 448-59.
[http://dx.doi.org/10.1007/s00774-022-01318-6] [PMID: 35347430]
[37]
Entz L, Falgayrac G, Chauveau C, Pasquier G, Lucas S. The extracellular matrix of human bone marrow adipocytes and glucose concentration differentially alter mineralization quality without impairing osteoblastogenesis. Bone Rep 2022; 17: 101622.
[http://dx.doi.org/10.1016/j.bonr.2022.101622] [PMID: 36187598]
[38]
Sun X, Komatsu T, Lim J, et al. Nutrient-dependent requirement for SOD1 in lifespan extension by protein restriction in Drosophila melanogaster. Aging Cell 2012; 11(5): 783-93.
[http://dx.doi.org/10.1111/j.1474-9726.2012.00842.x] [PMID: 22672579]
[39]
Liu Y, Wang N, Zhang S, Liang Q. Autophagy protects bone marrow mesenchymal stem cells from palmitate-induced apoptosis through the ROS-JNK/p38 MAPK signaling pathways. Mol Med Rep 2018; 18(2): 1485-94.
[http://dx.doi.org/10.3892/mmr.2018.9100] [PMID: 29901107]
[40]
Jiao X, Cai J, Yu X, Ding X. Paracrine activation of the Wnt/β- catenin pathway by bone marrow stem cell attenuates cisplatin-induced kidney injury. Cell Physiol Biochem 2017; 44(5): 1980-94.
[http://dx.doi.org/10.1159/000485904] [PMID: 29237155]
[41]
Liu P, Cui Y, Liu M, et al. Protective effect of mitophagy against aluminum-induced MC3T3-E1 cells dysfunction. Chemosphere 2021; 282: 131086.
[http://dx.doi.org/10.1016/j.chemosphere.2021.131086] [PMID: 34119729]
[42]
Liu B, Gan X, Zhao Y, Gao J, Yu H. Inhibition of HMGB1 reduced high glucose-induced BMSCs apoptosis via activation of AMPK and regulation of mitochondrial functions. J Physiol Biochem 2021; 77(2): 227-35.
[http://dx.doi.org/10.1007/s13105-021-00784-2] [PMID: 33635525]
[43]
Katsuyama H, Fushimi S, Yamane K, et al. Effect of vitamin K2 on the development of stress-induced osteopenia in a growing senescence-accelerated mouse prone 6 strain. Exp Ther Med 2015; 10(3): 843-50.
[http://dx.doi.org/10.3892/etm.2015.2621] [PMID: 26622403]
[44]
Hara K, Akiyama Y. Vitamin K and bone quality. Clin Calcium 2007; 17(11): 1678-84.
[PMID: 17982187]
[45]
Chen L, Shi X, Weng SJ, et al. Vitamin K2 can rescue the dexamethasone-induced downregulation of osteoblast autophagy and mitophagy thereby restoring osteoblast function in vitro and in vivo. Front Pharmacol 2020; 11: 1209.
[http://dx.doi.org/10.3389/fphar.2020.01209] [PMID: 32848799]
[46]
Yang RY, Pan JY, Chen Y, Li Y, Wu J, Wang XD. Menaquinone-7 protects astrocytes by regulating mitochondrial function and inflammatory response under hypoxic conditions. Eur Rev Med Pharmacol Sci 2020; 24(19): 10181-93.
[PMID: 33090426]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy