Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Research Article

Measuring Brain Temperature in Youth Bipolar Disorder Using a Novel Magnetic Resonance Imaging Approach: A Proof-of-concept Study

Author(s): Yi Zou, Chinthaka Heyn, Anahit Grigorian, Fred Tam, Ana Cristina Andreazza, Simon J. Graham, Bradley J. Maclntosh and Benjamin I. Goldstein*

Volume 21, Issue 6, 2023

Published on: 22 March, 2023

Page: [1355 - 1366] Pages: 12

DOI: 10.2174/1570159X21666230322090754

Price: $65

Abstract

Background: There is evidence of alterations in mitochondrial energy metabolism and cerebral blood flow (CBF) in adults and youth with bipolar disorder (BD). Brain thermoregulation is based on the balance of heat-producing metabolism and heat-dissipating mechanisms, including CBF.

Objective: To examine brain temperature, and its relation to CBF, in relation to BD and mood symptom severity in youth.

Methods: This study included 25 youth participants (age 17.4 ± 1.7 years; 13 BD, 12 control group (CG)). Magnetic resonance spectroscopy data were acquired to obtain brain temperature in the left anterior cingulate cortex (ACC) and the left precuneus. Regional estimates of CBF were provided by arterial spin labeling imaging. Analyses used general linear regression models, covarying for age, sex, and psychiatric medications.

Results: Brain temperature was significantly higher in BD compared to CG in the precuneus. A higher ratio of brain temperature to CBF was significantly associated with greater depression symptom severity in both the ACC and precuneus within BD. Analyses examining the relationship of brain temperature or CBF with depression severity score did not reveal any significant finding in the ACC or the precuneus.

Conclusion: The current study provides preliminary evidence of increased brain temperature in youth with BD, in whom reduced thermoregulatory capacity is putatively associated with depression symptom severity. Evaluation of brain temperature and CBF in conjunction may provide valuable insight beyond what can be gleaned by either metric alone. Larger prospective studies are warranted to further evaluate brain temperature and its association with CBF concerning BD.

Keywords: Youth, bipolar disorder, brain temperature, MRS, cerebral blood flow, mood.

Graphical Abstract
[1]
James, S.L.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; Abdollahpour, I.; Abdulkader, R.S.; Abebe, Z.; Abera, S.F.; Abil, O.Z.; Abraha, H.N.; Abu-Raddad, L.J.; Abu-Rmeileh, N.M.E.; Accrombessi, M.M.K.; Acharya, D.; Acharya, P.; Ackerman, I.N.; Adamu, A.A.; Adebayo, O.M.; Adekanmbi, V.; Adetokunboh, O.O.; Adib, M.G.; Adsuar, J.C.; Afanvi, K.A.; Afarideh, M.; Afshin, A.; Agarwal, G.; Agesa, K.M.; Aggarwal, R.; Aghayan, S.A.; Agrawal, S.; Ahmadi, A.; Ahmadi, M.; Ahmadieh, H.; Ahmed, M.B.; Aichour, A.N.; Aichour, I.; Aichour, M.T.E.; Akinyemiju, T.; Akseer, N.; Al-Aly, Z.; Al-Eyadhy, A.; Al-Mekhlafi, H.M.; Al-Raddadi, R.M.; Alahdab, F.; Alam, K.; Alam, T.; Alashi, A.; Alavian, S.M.; Alene, K.A.; Alijanzadeh, M.; Alizadeh-Navaei, R.; Aljunid, S.M.; Alkerwi, A.; Alla, F.; Allebeck, P.; Alouani, M.M.L.; Altirkawi, K.; Alvis-Guzman, N.; Amare, A.T.; Aminde, L.N.; Ammar, W.; Amoako, Y.A.; Anber, N.H.; Andrei, C.L.; Androudi, S.; Animut, M.D.; Anjomshoa, M.; Ansha, M.G.; Antonio, C.A.T.; Anwari, P.; Arabloo, J.; Arauz, A.; Aremu, O.; Ariani, F.; Armoon, B.; Ärnlöv, J.; Arora, A.; Artaman, A.; Aryal, K.K.; Asayesh, H.; Asghar, R.J.; Ataro, Z.; Atre, S.R.; Ausloos, M.; Avila-Burgos, L.; Avokpaho, E.F.G.A.; Awasthi, A.; Ayala Quintanilla, B.P.; Ayer, R.; Azzopardi, P.S.; Babazadeh, A.; Badali, H.; Badawi, A.; Bali, A.G.; Ballesteros, K.E.; Ballew, S.H.; Banach, M.; Banoub, J.A.M.; Banstola, A.; Barac, A.; Barboza, M.A.; Barker-Collo, S.L.; Bärnighausen, T.W.; Barrero, L.H.; Baune, B.T.; Bazargan-Hejazi, S.; Bedi, N.; Beghi, E.; Behzadifar, M.; Behzadifar, M.; Béjot, Y.; Belachew, A.B.; Belay, Y.A.; Bell, M.L.; Bello, A.K.; Bensenor, I.M.; Bernabe, E.; Bernstein, R.S.; Beuran, M.; Beyranvand, T.; Bhala, N.; Bhattarai, S.; Bhaumik, S.; Bhutta, Z.A.; Biadgo, B.; Bijani, A.; Bikbov, B.; Bilano, V.; Bililign, N.; Bin Sayeed, M.S.; Bisanzio, D.; Blacker, B.F.; Blyth, F.M.; Bou-Orm, I.R.; Boufous, S.; Bourne, R.; Brady, O.J.; Brainin, M.; Brant, L.C.; Brazinova, A.; Breitborde, N.J.K.; Brenner, H.; Briant, P.S.; Briggs, A.M.; Briko, A.N.; Britton, G.; Brugha, T.; Buchbinder, R.; Busse, R.; Butt, Z.A.; Cahuana-Hurtado, L.; Cano, J.; Cárdenas, R.; Carrero, J.J.; Carter, A.; Carvalho, F.; Castañeda-Orjuela, C.A.; Castillo Rivas, J.; Castro, F.; Catalá-López, F.; Cercy, K.M.; Cerin, E.; Chaiah, Y.; Chang, A.R.; Chang, H-Y.; Chang, J-C.; Charlson, F.J.; Chattopadhyay, A.; Chattu, V.K.; Chaturvedi, P.; Chiang, P.P-C.; Chin, K.L.; Chitheer, A.; Choi, J-Y.J.; Chowdhury, R.; Christensen, H.; Christopher, D.J.; Cicuttini, F.M.; Ciobanu, L.G.; Cirillo, M.; Claro, R.M.; Collado-Mateo, D.; Cooper, C.; Coresh, J.; Cortesi, P.A.; Cortinovis, M.; Costa, M.; Cousin, E.; Criqui, M.H.; Cromwell, E.A.; Cross, M.; Crump, J.A.; Dadi, A.F.; Dandona, L.; Dandona, R.; Dargan, P.I.; Daryani, A.; Das Gupta, R.; Das Neves, J.; Dasa, T.T.; Davey, G.; Davis, A.C.; Davitoiu, D.V.; De Courten, B.; De La Hoz, F.P.; De Leo, D.; De Neve, J-W.; Degefa, M.G.; Degenhardt, L.; Deiparine, S.; Dellavalle, R.P.; Demoz, G.T.; Deribe, K.; Dervenis, N.; Des Jarlais, D.C.; Dessie, G.A.; Dey, S.; Dharmaratne, S.D.; Dinberu, M.T.; Dirac, M.A.; Djalalinia, S.; Doan, L.; Dokova, K.; Doku, D.T.; Dorsey, E.R.; Doyle, K.E.; Driscoll, T.R.; Dubey, M.; Dubljanin, E.; Duken, E.E.; Duncan, B.B.; Duraes, A.R.; Ebrahimi, H.; Ebrahimpour, S.; Echko, M.M.; Edvardsson, D.; Effiong, A.; Ehrlich, J.R.; El Bcheraoui, C.; El Sayed Zaki, M.; El-Khatib, Z.; Elkout, H.; Elyazar, I.R.F.; Enayati, A.; Endries, A.Y.; Er, B.; Erskine, H.E.; Eshrati, B.; Eskandarieh, S.; Esteghamati, A.; Esteghamati, S.; Fakhim, H.; Fallah Omrani, V.; Faramarzi, M.; Fareed, M.; Farhadi, F.; Farid, T.A.; Farinha, C.S.E.; Farioli, A.; Faro, A.; Farvid, M.S.; Farzadfar, F.; Feigin, V.L.; Fentahun, N.; Fereshtehnejad, S-M.; Fernandes, E.; Fernandes, J.C.; Ferrari, A.J.; Feyissa, G.T.; Filip, I.; Fischer, F.; Fitzmaurice, C.; Foigt, N.A.; Foreman, K.J.; Fox, J.; Frank, T.D.; Fukumoto, T.; Fullman, N.; Fürst, T.; Furtado, J.M.; Futran, N.D.; Gall, S.; Ganji, M.; Gankpe, F.G.; Garcia-Basteiro, A.L.; Gardner, W.M.; Gebre, A.K.; Gebremedhin, A.T.; Gebremichael, T.G.; Gelano, T.F.; Geleijnse, J.M.; Genova-Maleras, R.; Geramo, Y.C.D.; Gething, P.W.; Gezae, K.E.; Ghadiri, K.; Ghasemi Falavarjani, K.; Ghasemi-Kasman, M.; Ghimire, M.; Ghosh, R.; Ghoshal, A.G.; Giampaoli, S.; Gill, P.S.; Gill, T.K.; Ginawi, I.A.; Giussani, G.; Gnedovskaya, E.V.; Goldberg, E.M.; Goli, S.; Gómez-Dantés, H.; Gona, P.N.; Gopalani, S.V.; Gorman, T.M.; Goulart, A.C.; Goulart, B.N.G.; Grada, A.; Grams, M.E.; Grosso, G.; Gugnani, H.C.; Guo, Y.; Gupta, P.C.; Gupta, R.; Gupta, R.; Gupta, T.; Gyawali, B.; Haagsma, J.A.; Hachinski, V.; Hafezi-Nejad, N.; Haghparast Bidgoli, H.; Hagos, T.B.; Hailu, G.B.; Haj-Mirzaian, A.; Haj-Mirzaian, A.; Hamadeh, R.R.; Hamidi, S.; Handal, A.J.; Hankey, G.J.; Hao, Y.; Harb, H.L.; Harikrishnan, S.; Haro, J.M.; Hasan, M.; Hassankhani, H.; Hassen, H.Y.; Havmoeller, R.; Hawley, C.N.; Hay, R.J.; Hay, S.I.; Hedayatizadeh-Omran, A.; Heibati, B.; Hendrie, D.; Henok, A.; Herteliu, C.; Heydarpour, S.; Hibstu, D.T.; Hoang, H.T.; Hoek, H.W.; Hoffman, H.J.; Hole, M.K.; Homaie Rad, E.; Hoogar, P.; Hosgood, H.D.; Hosseini, S.M.; Hosseinzadeh, M.; Hostiuc, M.; Hostiuc, S.; Hotez, P.J.; Hoy, D.G.; Hsairi, M.; Htet, A.S.; Hu, G.; Huang, J.J.; Huynh, C.K.; Iburg, K.M.; Ikeda, C.T.; Ileanu, B.; Ilesanmi, O.S.; Iqbal, U.; Irvani, S.S.N.; Irvine, C.M.S.; Islam, S.M.S.; Islami, F.; Jacobsen, K.H.; Jahangiry, L.; Jahanmehr, N.; Jain, S.K.; Jakovljevic, M.; Javanbakht, M.; Jayatilleke, A.U.; Jeemon, P.; Jha, R.P.; Jha, V.; Ji, J.S.; Johnson, C.O.; Jonas, J.B.; Jozwiak, J.J.; Jungari, S.B.; Jürisson, M.; Kabir, Z.; Kadel, R.; Kahsay, A.; Kalani, R.; Kanchan, T.; Karami, M.; Karami Matin, B.; Karch, A.; Karema, C.; Karimi, N.; Karimi, S.M.; Kasaeian, A.; Kassa, D.H.; Kassa, G.M.; Kassa, T.D.; Kassebaum, N.J.; Katikireddi, S.V.; Kawakami, N.; Karyani, A.K.; Keighobadi, M.M.; Keiyoro, P.N.; Kemmer, L.; Kemp, G.R.; Kengne, A.P.; Keren, A.; Khader, Y.S.; Khafaei, B.; Khafaie, M.A.; Khajavi, A.; Khalil, I.A.; Khan, E.A.; Khan, M.S.; Khan, M.A.; Khang, Y-H.; Khazaei, M.; Khoja, A.T.; Khosravi, A.; Khosravi, M.H.; Kiadaliri, A.A.; Kiirithio, D.N.; Kim, C-I.; Kim, D.; Kim, P.; Kim, Y-E.; Kim, Y.J.; Kimokoti, R.W.; Kinfu, Y.; Kisa, A.; Kissimova-Skarbek, K.; Kivimäki, M.; Knudsen, A.K.S.; Kocarnik, J.M.; Kochhar, S.; Kokubo, Y.; Kolola, T.; Kopec, J.A.; Kosen, S.; Kotsakis, G.A.; Koul, P.A.; Koyanagi, A.; Kravchenko, M.A.; Krishan, K.; Krohn, K.J.; Kuate Defo, B.; Kucuk Bicer, B.; Kumar, G.A.; Kumar, M.; Kyu, H.H.; Lad, D.P.; Lad, S.D.; Lafranconi, A.; Lalloo, R.; Lallukka, T.; Lami, F.H.; Lansingh, V.C.; Latifi, A.; Lau, K.M-M.; Lazarus, J.V.; Leasher, J.L.; Ledesma, J.R.; Lee, P.H.; Leigh, J.; Leung, J.; Levi, M.; Lewycka, S.; Li, S.; Li, Y.; Liao, Y.; Liben, M.L.; Lim, L-L.; Lim, S.S.; Liu, S.; Lodha, R.; Looker, K.J.; Lopez, A.D.; Lorkowski, S.; Lotufo, P.A.; Low, N.; Lozano, R.; Lucas, T.C.D.; Lucchesi, L.R.; Lunevicius, R.; Lyons, R.A.; Ma, S.; Macarayan, E.R.K.; Mackay, M.T.; Madotto, F.; Magdy Abd El Razek, H.; Magdy Abd El Razek, M.; Maghavani, D.P.; Mahotra, N.B.; Mai, H.T.; Majdan, M.; Majdzadeh, R.; Majeed, A.; Malekzadeh, R.; Malta, D.C.; Mamun, A.A.; Manda, A-L.; Manguerra, H.; Manhertz, T.; Mansournia, M.A.; Mantovani, L.G.; Mapoma, C.C.; Maravilla, J.C.; Marcenes, W.; Marks, A.; Martins-Melo, F.R.; Martopullo, I.; März, W.; Marzan, M.B.; Mashamba-Thompson, T.P.; Massenburg, B.B.; Mathur, M.R.; Matsushita, K.; Maulik, P.K.; Mazidi, M.; McAlinden, C.; McGrath, J.J.; McKee, M.; Mehndiratta, M.M.; Mehrotra, R.; Mehta, K.M.; Mehta, V.; Mejia-Rodriguez, F.; Mekonen, T.; Melese, A.; Melku, M.; Meltzer, M.; Memiah, P.T.N.; Memish, Z.A.; Mendoza, W.; Mengistu, D.T.; Mengistu, G.; Mensah, G.A.; Mereta, S.T.; Meretoja, A.; Meretoja, T.J.; Mestrovic, T.; Mezerji, N.M.G.; Miazgowski, B.; Miazgowski, T.; Millear, A.I.; Miller, T.R.; Miltz, B.; Mini, G.K.; Mirarefin, M.; Mirrakhimov, E.M.; Misganaw, A.T.; Mitchell, P.B.; Mitiku, H.; Moazen, B.; Mohajer, B.; Mohammad, K.A.; Mohammadifard, N.; Mohammadnia-Afrouzi, M.; Mohammed, M.A.; Mohammed, S.; Mohebi, F.; Moitra, M.; Mokdad, A.H.; Molokhia, M.; Monasta, L.; Moodley, Y.; Moosazadeh, M.; Moradi, G.; Moradi-Lakeh, M.; Moradinazar, M.; Moraga, P.; Morawska, L.; Moreno Velásquez, I.; Morgado-Da-Costa, J.; Morrison, S.D.; Moschos, M.M.; Mountjoy-Venning, W.C.; Mousavi, S.M.; Mruts, K.B.; Muche, A.A.; Muchie, K.F.; Mueller, U.O.; Muhammed, O.S.; Mukhopadhyay, S.; Muller, K.; Mumford, J.E.; Murhekar, M.; Musa, J.; Musa, K.I.; Mustafa, G.; Nabhan, A.F.; Nagata, C.; Naghavi, M.; Naheed, A.; Nahvijou, A.; Naik, G.; Naik, N.; Najafi, F.; Naldi, L.; Nam, H.S.; Nangia, V.; Nansseu, J.R.; Nascimento, B.R.; Natarajan, G.; Neamati, N.; Negoi, I.; Negoi, R.I.; Neupane, S.; Newton, C.R.J.; Ngunjiri, J.W.; Nguyen, A.Q.; Nguyen, H.T.; Nguyen, H.L.T.; Nguyen, H.T.; Nguyen, L.H.; Nguyen, M.; Nguyen, N.B.; Nguyen, S.H.; Nichols, E.; Ningrum, D.N.A.; Nixon, M.R.; Nolutshungu, N.; Nomura, S.; Norheim, O.F.; Noroozi, M.; Norrving, B.; Noubiap, J.J.; Nouri, H.R.; Nourollahpour Shiadeh, M.; Nowroozi, M.R.; Nsoesie, E.O.; Nyasulu, P.S.; Odell, C.M.; Ofori-Asenso, R.; Ogbo, F.A.; Oh, I-H.; Oladimeji, O.; Olagunju, A.T.; Olagunju, T.O.; Olivares, P.R.; Olsen, H.E.; Olusanya, B.O.; Ong, K.L.; Ong, S.K.; Oren, E.; Ortiz, A.; Ota, E.; Otstavnov, S.S.; Øverland, S.; Owolabi, M.O.; P A, M.; Pacella, R.; Pakpour, A.H.; Pana, A.; Panda-Jonas, S.; Parisi, A.; Park, E-K.; Parry, C.D.H.; Patel, S.; Pati, S.; Patil, S.T.; Patle, A.; Patton, G.C.; Paturi, V.R.; Paulson, K.R.; Pearce, N.; Pereira, D.M.; Perico, N.; Pesudovs, K.; Pham, H.Q.; Phillips, M.R.; Pigott, D.M.; Pillay, J.D.; Piradov, M.A.; Pirsaheb, M.; Pishgar, F.; Plana-Ripoll, O.; Plass, D.; Polinder, S.; Popova, S.; Postma, M.J.; Pourshams, A.; Poustchi, H.; Prabhakaran, D.; Prakash, S.; Prakash, V.; Purcell, C.A.; Purwar, M.B.; Qorbani, M.; Quistberg, D.A.; Radfar, A.; Rafay, A.; Rafiei, A.; Rahim, F.; Rahimi, K.; Rahimi-Movaghar, A.; Rahimi-Movaghar, V.; Rahman, M.; Rahman, M.H.; Rahman, M.A.; Rahman, S.U.; Rai, R.K.; Rajati, F.; Ram, U.; Ranjan, P.; Ranta, A.; Rao, P.C.; Rawaf, D.L.; Rawaf, S.; Reddy, K.S.; Reiner, R.C.; Reinig, N.; Reitsma, M.B.; Remuzzi, G.; Renzaho, A.M.N.; Resnikoff, S.; Rezaei, S.; Rezai, M.S.; Ribeiro, A.L.P.; Roberts, N.L.S.; Robinson, S.R.; Roever, L.; Ronfani, L.; Roshandel, G.; Rostami, A.; Roth, G.A.; Roy, A.; Rubagotti, E.; Sachdev, P.S.; Sadat, N.; Saddik, B.; Sadeghi, E.; Saeedi Moghaddam, S.; Safari, H.; Safari, Y.; Safari-Faramani, R.; Safdarian, M.; Safi, S.; Safiri, S.; Sagar, R.; Sahebkar, A.; Sahraian, M.A.; Sajadi, H.S.; Salam, N.; Salama, J.S.; Salamati, P.; Saleem, K.; Saleem, Z.; Salimi, Y.; Salomon, J.A.; Salvi, S.S.; Salz, I.; Samy, A.M.; Sanabria, J.; Sang, Y.; Santomauro, D.F.; Santos, I.S.; Santos, J.V.; Santric Milicevic, M.M.; Sao Jose, B.P.; Sardana, M.; Sarker, A.R.; Sarrafzadegan, N.; Sartorius, B.; Sarvi, S.; Sathian, B.; Satpathy, M.; Sawant, A.R.; Sawhney, M.; Saxena, S.; Saylan, M.; Schaeffner, E.; Schmidt, M.I.; Schneider, I.J.C.; Schöttker, B.; Schwebel, D.C.; Schwendicke, F.; Scott, J.G.; Sekerija, M.; Sepanlou, S.G.; Serván-Mori, E.; Seyedmousavi, S.; Shabaninejad, H.; Shafieesabet, A.; Shahbazi, M.; Shaheen, A.A.; Shaikh, M.A.; Shams-Beyranvand, M.; Shamsi, M.; Shamsizadeh, M.; Sharafi, H.; Sharafi, K.; Sharif, M.; Sharif-Alhoseini, M.; Sharma, M.; Sharma, R.; She, J.; Sheikh, A.; Shi, P.; Shibuya, K.; Shigematsu, M.; Shiri, R.; Shirkoohi, R.; Shishani, K.; Shiue, I.; Shokraneh, F.; Shoman, H.; Shrime, M.G.; Si, S.; Siabani, S.; Siddiqi, T.J.; Sigfusdottir, I.D.; Sigurvinsdottir, R.; Silva, J.P.; Silveira, D.G.A.; Singam, N.S.V.; Singh, J.A.; Singh, N.P.; Singh, V.; Sinha, D.N.; Skiadaresi, E.; Slepak, E.L.N.; Sliwa, K.; Smith, D.L.; Smith, M.; Soares Filho, A.M.; Sobaih, B.H.; Sobhani, S.; Sobngwi, E.; Soneji, S.S.; Soofi, M.; Soosaraei, M.; Sorensen, R.J.D.; Soriano, J.B.; Soyiri, I.N.; Sposato, L.A.; Sreeramareddy, C.T.; Srinivasan, V.; Stanaway, J.D.; Stein, D.J.; Steiner, C.; Steiner, T.J.; Stokes, M.A.; Stovner, L.J.; Subart, M.L.; Sudaryanto, A.; Sufiyan, M.B.; Sunguya, B.F.; Sur, P.J.; Sutradhar, I.; Sykes, B.L.; Sylte, D.O.; Tabarés-Seisdedos, R.; Tadakamadla, S.K.; Tadesse, B.T.; Tandon, N.; Tassew, S.G.; Tavakkoli, M.; Taveira, N.; Taylor, H.R.; Tehrani-Banihashemi, A.; Tekalign, T.G.; Tekelemedhin, S.W.; Tekle, M.G.; Temesgen, H.; Temsah, M-H.; Temsah, O.; Terkawi, A.S.; Teweldemedhin, M.; Thankappan, K.R.; Thomas, N.; Tilahun, B.; To, Q.G.; Tonelli, M.; Topor-Madry, R.; Topouzis, F.; Torre, A.E.; Tortajada-Girbés, M.; Touvier, M.; Tovani-Palone, M.R.; Towbin, J.A.; Tran, B.X.; Tran, K.B.; Troeger, C.E.; Truelsen, T.C.; Tsilimbaris, M.K.; Tsoi, D.; Tudor Car, L.; Tuzcu, E.M.; Ukwaja, K.N.; Ullah, I.; Undurraga, E.A.; Unutzer, J.; Updike, R.L.; Usman, M.S.; Uthman, O.A.; Vaduganathan, M.; Vaezi, A.; Valdez, P.R.; Varughese, S.; Vasankari, T.J.; Venketasubramanian, N.; Villafaina, S.; Violante, F.S.; Vladimirov, S.K.; Vlassov, V.; Vollset, S.E.; Vosoughi, K.; Vujcic, I.S.; Wagnew, F.S.; Waheed, Y.; Waller, S.G.; Wang, Y.; Wang, Y-P.; Weiderpass, E.; Weintraub, R.G.; Weiss, D.J.; Weldegebreal, F.; Weldegwergs, K.G.; Werdecker, A.; West, T.E.; Whiteford, H.A.; Widecka, J.; Wijeratne, T.; Wilner, L.B.; Wilson, S.; Winkler, A.S.; Wiyeh, A.B.; Wiysonge, C.S.; Wolfe, C.D.A.; Woolf, A.D.; Wu, S.; Wu, Y-C.; Wyper, G.M.A.; Xavier, D.; Xu, G.; Yadgir, S.; Yadollahpour, A.; Yahyazadeh Jabbari, S.H.; Yamada, T.; Yan, L.L.; Yano, Y.; Yaseri, M.; Yasin, Y.J.; Yeshaneh, A.; Yimer, E.M.; Yip, P.; Yisma, E.; Yonemoto, N.; Yoon, S-J.; Yotebieng, M.; Younis, M.Z.; Yousefifard, M.; Yu, C.; Zadnik, V.; Zaidi, Z.; Zaman, S.B.; Zamani, M.; Zare, Z.; Zeleke, A.J.; Zenebe, Z.M.; Zhang, K.; Zhao, Z.; Zhou, M.; Zodpey, S.; Zucker, I.; Vos, T.; Murray, C.J.L. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2018, 392(10159), 1789-1858.
[http://dx.doi.org/10.1016/S0140-6736(18)32279-7] [PMID: 30496104]
[2]
Fornaro, M.; Kardash, L.; Novello, S.; Fusco, A.; Anastasia, A.; De Berardis, D.; Perna, G.; Carta, M.G. Progress in bipolar disorder drug design toward the development of novel therapeutic targets: a clinician’s perspective. Expert Opin. Drug Discov., 2018, 13(3), 221-228.
[http://dx.doi.org/10.1080/17460441.2018.1428554] [PMID: 29357703]
[3]
Fornaro, M.; De Berardis, D.; Iasevoli, F.; Pistorio, M.L.; D’Angelo, E.; Mungo, S.; Martino, M.; Ventriglio, A.; Cattaneo, C.I.; Favaretto, E.; Del Debbio, A.; Romano, A.; Ciampa, G.; Elassy, M.; Perugi, G.; De Pasquale, C. Treatment adherence towards prescribed medications in bipolar-II acute depressed patients: Relationship with cyclothymic temperament and “therapeutic sensation seeking” in response towards subjective intolerance to pain. J. Affect. Disord., 2013, 151(2), 596-604.
[http://dx.doi.org/10.1016/j.jad.2013.07.004] [PMID: 23906864]
[4]
Fornaro, M.; Orsolini, L.; Marini, S.; De Berardis, D.; Perna, G.; Valchera, A.; Ganança, L.; Solmi, M.; Veronese, N.; Stubbs, B. The prevalence and predictors of bipolar and borderline personality disorders comorbidity: Systematic review and meta-analysis. J. Affect. Disord., 2016, 195, 105-118.
[http://dx.doi.org/10.1016/j.jad.2016.01.040] [PMID: 26881339]
[5]
Scaini, G.; Andrews, T.; Lima, C.N.C.; Benevenuto, D.; Streck, E.L.; Quevedo, J. Mitochondrial dysfunction as a critical event in the pathophysiology of bipolar disorder. Mitochondrion, 2021, 57, 23-36.
[http://dx.doi.org/10.1016/j.mito.2020.12.002] [PMID: 33340709]
[6]
Giménez-Palomo, A.; Dodd, S.; Anmella, G.; Carvalho, A.F.; Scaini, G.; Quevedo, J.; Pacchiarotti, I.; Vieta, E.; Berk, M. The role of mitochondria in mood disorders: from physiology to pathophysiology and to treatment. Front. Psychiatry, 2021, 12, 546801.
[http://dx.doi.org/10.3389/fpsyt.2021.546801] [PMID: 34295268]
[7]
Zuccoli, G.S.; Saia-Cereda, V.M.; Nascimento, J.M.; Martins-de-Souza, D. The energy metabolism dysfunction in psychiatric disorders postmortem brains: focus on proteomic evidence. Front. Neurosci., 2017, 11, 493.
[http://dx.doi.org/10.3389/fnins.2017.00493] [PMID: 28936160]
[8]
Cataldo, A.M.; McPhie, D.L.; Lange, N.T.; Punzell, S.; Elmiligy, S.; Ye, N.Z.; Froimowitz, M.P.; Hassinger, L.C.; Menesale, E.B.; Sargent, L.W.; Logan, D.J.; Carpenter, A.E.; Cohen, B.M. Abnormalities in mitochondrial structure in cells from patients with bipolar disorder. Am. J. Pathol., 2010, 177(2), 575-585.
[http://dx.doi.org/10.2353/ajpath.2010.081068] [PMID: 20566748]
[9]
McBride, H.M.; Neuspiel, M.; Wasiak, S. Mitochondria: more than just a powerhouse. Curr. Biol., 2006, 16(14), R551-R560.
[http://dx.doi.org/10.1016/j.cub.2006.06.054] [PMID: 16860735]
[10]
Logan, D.C. The mitochondrial compartment. J. Exp. Bot., 2006, 57(6), 1225-1243.
[http://dx.doi.org/10.1093/jxb/erj151] [PMID: 16556626]
[11]
Iwamoto, K.; Bundo, M.; Kato, T. Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. Hum. Mol. Genet., 2005, 14(2), 241-253.
[http://dx.doi.org/10.1093/hmg/ddi022] [PMID: 15563509]
[12]
Kato, T.; Murashita, J.; Kamiya, A.; Shioiri, T.; Kato, N.; Inubushi, T. Decreased brain intracellular pH measured by. Eur. Arch. Psychiatry Clin. Neurosci., 1998, 248(6), 301-306.
[http://dx.doi.org/10.1007/s004060050054] [PMID: 9928909]
[13]
Hamakawa, H.; Murashita, J.; Yamada, N.; Inubushi, T.; Kato, N.; Kato, T. Reduced intracellular pH in the basal ganglia and whole brain measured by 31P-MRS in bipolar disorder. Psychiatry Clin. Neurosci., 2004, 58(1), 82-88.
[http://dx.doi.org/10.1111/j.1440-1819.2004.01197.x] [PMID: 14678462]
[14]
Chouinard, V.A.; Kim, S.Y.; Valeri, L.; Yuksel, C.; Ryan, K.P.; Chouinard, G.; Cohen, B.M.; Du, F.; Öngür, D. Brain bioenergetics and redox state measured by 31P magnetic resonance spectroscopy in unaffected siblings of patients with psychotic disorders. Schizophr. Res., 2017, 187, 11-16.
[http://dx.doi.org/10.1016/j.schres.2017.02.024] [PMID: 28258794]
[15]
Kuang, H.; Duong, A.; Jeong, H.; Zachos, K.; Andreazza, A.C. Lactate in bipolar disorder: A systematic review and meta‐analysis. Psychiatry Clin. Neurosci., 2018, 72(8), 546-555.
[http://dx.doi.org/10.1111/pcn.12671] [PMID: 29726068]
[16]
Andreazza, A.C.; Shao, L.; Wang, J.F.; Young, L.T. Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder. Arch. Gen. Psychiatry, 2010, 67(4), 360-368.
[http://dx.doi.org/10.1001/archgenpsychiatry.2010.22] [PMID: 20368511]
[17]
Kato, T.; Takahashi, S.; Shioiri, T.; Inubushi, T. Brain phosphorous metabolism in depressive disorders detected by phosphorus-31 magnetic resonance spectroscopy. J. Affect. Disord., 1992, 26(4), 223-230.
[http://dx.doi.org/10.1016/0165-0327(92)90099-R] [PMID: 1479134]
[18]
Kato, T.; Takahashi, S.; Shioiri, T.; Inubushi, T. Alterations in brain phosphorous metabolism in bipolar disorder detected by in vivo 31P and 7Li magnetic resonance spectroscopy. J. Affect. Disord., 1993, 27(1), 53-59.
[http://dx.doi.org/10.1016/0165-0327(93)90097-4] [PMID: 8432961]
[19]
Shi, X.F.; Kondo, D.G.; Sung, Y.H.; Hellem, T.L.; Fiedler, K.K.; Jeong, E.K.; Huber, R.S.; Renshaw, P.F. Frontal lobe bioenergetic metabolism in depressed adolescents with bipolar disorder: a phosphorus-31 magnetic resonance spectroscopy study. Bipolar Disord., 2012, 14(6), 607-617.
[http://dx.doi.org/10.1111/j.1399-5618.2012.01040.x] [PMID: 22816670]
[20]
Sikoglu, E.M.; Jensen, J.E.; Vitaliano, G.; Liso Navarro, A.A.; Renshaw, P.F.; Frazier, J.A.; Moore, C.M. Bioenergetic measurements in children with bipolar disorder: a pilot 31P magnetic resonance spectroscopy study. PLoS One, 2013, 8(1), e54536.
[http://dx.doi.org/10.1371/journal.pone.0054536] [PMID: 23382910]
[21]
Caetano, S.C.; Olvera, R.L.; Hatch, J.P.; Sanches, M.; Chen, H.H.; Nicoletti, M.; Stanley, J.A.; Fonseca, M.; Hunter, K.; Lafer, B.; Pliszka, S.R.; Soares, J.C. Lower N-acetyl-aspartate levels in prefrontal cortices in pediatric bipolar disorder: a 1H magnetic resonance spectroscopy study. J. Am. Acad. Child Adolesc. Psychiatry, 2011, 50(1), 85-94.
[http://dx.doi.org/10.1016/j.jaac.2010.10.007] [PMID: 21156273]
[22]
Rango, M.; Arighi, A.; Bresolin, N. Brain temperature. Neuroreport, 2012, 23(8), 483-487.
[http://dx.doi.org/10.1097/WNR.0b013e3283534a60] [PMID: 22549262]
[23]
Nybo, L.; Secher, N.H.; Nielsen, B. Inadequate heat release from the human brain during prolonged exercise with hyperthermia. J. Physiol., 2002, 545(2), 697-704.
[http://dx.doi.org/10.1113/jphysiol.2002.030023] [PMID: 12456844]
[24]
Bor-Seng-Shu, E.; Kita, W.S.; Figueiredo, E.G.; Paiva, W.S.; Fonoff, E.T.; Teixeira, M.J.; Panerai, R.B. Cerebral hemodynamics: concepts of clinical importance. Arq. Neuropsiquiatr., 2012, 70(5), 357-365.
[http://dx.doi.org/10.1590/S0004-282X2012000500010] [PMID: 22618788]
[25]
MacIntosh, B.J.; Shirzadi, Z.; Scavone, A.; Metcalfe, A.W.S.; Islam, A.H.; Korczak, D.; Goldstein, B.I. Increased cerebral blood flow among adolescents with bipolar disorder at rest is reduced following acute aerobic exercise. J. Affect. Disord., 2017, 208, 205-213.
[http://dx.doi.org/10.1016/j.jad.2016.08.060] [PMID: 27792964]
[26]
Dimick, M.K.; Toma, S.; MacIntosh, B.J.; Grigorian, A.; Fiksenbaum, L.; Youngstrom, E.A.; Robertson, A.D.; Goldstein, B.I. Cerebral blood flow and core mood symptoms in youth bipolar disorder: evidence for region-symptom specificity. J. Am. Acad. Child Adolesc. Psychiatry, 2022, 61(12), 1455-1465.
[http://dx.doi.org/10.1016/j.jaac.2022.04.010] [PMID: 35487335]
[27]
Blumberg, H.P.; Stern, E.; Martinez, D.; Ricketts, S.; de Asis, J.; White, T.; Epstein, J.; McBride, P.A.; Eidelberg, D.; Kocsis, J.H.; Silbersweig, D.A. Increased anterior cingulate and caudate activity in bipolar mania. Biol. Psychiatry, 2000, 48(11), 1045-1052.
[http://dx.doi.org/10.1016/S0006-3223(00)00962-8] [PMID: 11094137]
[28]
Toma, S.; MacIntosh, B.J.; Swardfager, W.; Goldstein, B.I. Cerebral blood flow in bipolar disorder: A systematic review. J. Affect. Disord., 2018, 241, 505-513.
[http://dx.doi.org/10.1016/j.jad.2018.08.040] [PMID: 30149339]
[29]
Ricquier, D.; Bouillaud, F. Mitochondrial uncoupling proteins: from mitochondria to the regulation of energy balance. J Physiol, 2000, 529 Pt 1(Pt 1), 3-10.
[http://dx.doi.org/10.1111/j.1469-7793.2000.00003.x]
[30]
Gigante, A.D.; Andreazza, A.C.; Lafer, B.; Yatham, L.N.; Beasley, C.L.; Young, L.T. Decreased mRNA expression of uncoupling protein 2, a mitochondrial proton transporter, in post-mortem prefrontal cortex from patients with bipolar disorder and schizophrenia. Neurosci. Lett., 2011, 505(1), 47-51.
[http://dx.doi.org/10.1016/j.neulet.2011.09.064] [PMID: 22001364]
[31]
Rzechorzek, N.M.; Thrippleton, M.J.; Chappell, F.M.; Mair, G.; Ercole, A.; Cabeleira, M.; Rhodes, J.; Marshall, I.; O’Neill, J.S. A daily temperature rhythm in the human brain predicts survival after brain injury. Brain, 2022, 145(6), 2031-2048.
[http://dx.doi.org/10.1093/brain/awab466] [PMID: 35691613]
[32]
Baker, F.C.; Siboza, F.; Fuller, A. Temperature regulation in women: Effects of the menstrual cycle. Temperature, 2020, 7(3), 226-262.
[http://dx.doi.org/10.1080/23328940.2020.1735927] [PMID: 33123618]
[33]
Sessler, D.I. Thermoregulatory defense mechanisms. Crit. Care Med., 2009, 37(7)(Suppl.), S203-S210.
[http://dx.doi.org/10.1097/CCM.0b013e3181aa5568] [PMID: 19535948]
[34]
Cady, E.B.; D’Souza, P.C.; Penrice, J.; Lorek, A. The estimation of local brain temperature by in vivo 1H magnetic resonance spectroscopy. Magn. Reson. Med., 1995, 33(6), 862-867.
[http://dx.doi.org/10.1002/mrm.1910330620] [PMID: 7651127]
[35]
Cady, E.B.; Penrice, J.; Robertson, N.J. Improved reproducibility of MRS regional brain thermometry by ‘amplitude-weighted combination’. NMR Biomed., 2011, 24(7), 865-872.
[http://dx.doi.org/10.1002/nbm.1634] [PMID: 21834009]
[36]
Rieke, V.; Butts Pauly, K. MR thermometry. J. Magn. Reson. Imaging, 2008, 27(2), 376-390.
[http://dx.doi.org/10.1002/jmri.21265] [PMID: 18219673]
[37]
Corbett, R.J.T.; Laptook, A.R.; Tollefsbol, G.; Kim, B. Validation of a noninvasive method to measure brain temperature in vivo using 1H NMR spectroscopy. J. Neurochem., 1995, 64(3), 1224-1230.
[http://dx.doi.org/10.1046/j.1471-4159.1995.64031224.x] [PMID: 7861155]
[38]
Ota, M.; Sato, N.; Sakai, K.; Okazaki, M.; Maikusa, N.; Hattori, K.; Hori, H.; Teraishi, T.; Shimoji, K.; Yamada, K.; Kunugi, H. Altered coupling of regional cerebral blood flow and brain temperature in schizophrenia compared with bipolar disorder and healthy subjects. J. Cereb. Blood Flow Metab., 2014, 34(12), 1868-1872.
[http://dx.doi.org/10.1038/jcbfm.2014.151] [PMID: 25182665]
[39]
Frye, M.A.; Watzl, J.; Banakar, S.; O’Neill, J.; Mintz, J.; Davanzo, P.; Fischer, J.; Chirichigno, J.W.; Ventura, J.; Elman, S.; Tsuang, J.; Walot, I.; Thomas, M.A. Increased anterior cingulate/medial prefrontal cortical glutamate and creatine in bipolar depression. Neuropsychopharmacology, 2007, 32(12), 2490-2499.
[http://dx.doi.org/10.1038/sj.npp.1301387] [PMID: 17429412]
[40]
Caletti, E.; Marotta, G.; Del Vecchio, G.; Paoli, R.A.; Cigliobianco, M.; Prunas, C.; Zugno, E.; Bottinelli, F.; Brambilla, P.; Altamura, A.C. The metabolic basis of cognitive insight in psychosis: A positron emission tomography study. PLoS One, 2017, 12(4), e0175803.
[http://dx.doi.org/10.1371/journal.pone.0175803] [PMID: 28414766]
[41]
Brooks, J.O., III; Hoblyn, J.C.; Ketter, T.A. Metabolic evidence of corticolimbic dysregulation in bipolar mania. Psychiatry Res. Neuroimaging, 2010, 181(2), 136-140.
[http://dx.doi.org/10.1016/j.pscychresns.2009.08.006] [PMID: 20080037]
[42]
Sepede, G.; De Berardis, D.; Campanella, D.; Perrucci, M.G.; Ferretti, A.; Salerno, R.M.; Di Giannantonio, M.; Romani, G.L.; Gambi, F. Neural correlates of negative emotion processing in bipolar disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2015, 60, 1-10.
[http://dx.doi.org/10.1016/j.pnpbp.2015.01.016] [PMID: 25661850]
[43]
Sepede, G.; De Berardis, D.; Campanella, D.; Perrucci, M.G.; Ferretti, A.; Serroni, N.; Moschetta, F.S.; Del Gratta, C.; Salerno, R.M.; Ferro, F.M.; Di Giannantonio, M.; Onofrj, M.; Romani, G.L.; Gambi, F. Impaired sustained attention in euthymic bipolar disorder patients and non-affected relatives: an fMRI study. Bipolar Disord., 2012, 14(7), 764-779.
[http://dx.doi.org/10.1111/bdi.12007] [PMID: 23036083]
[44]
Gruber, S.A.; Dahlgren, M.K.; Sagar, K.A.; Gonenc, A.; Norris, L.; Cohen, B.M.; Ongur, D.; Lewandowski, K.E. Decreased Cingulate Cortex activation during cognitive control processing in bipolar disorder. J. Affect. Disord., 2017, 213, 86-95.
[http://dx.doi.org/10.1016/j.jad.2017.02.003] [PMID: 28199893]
[45]
Joshi, S.H.; Vizueta, N.; Foland-Ross, L.; Townsend, J.D.; Bookheimer, S.Y.; Thompson, P.M.; Narr, K.L.; Altshuler, L.L. Relationships between altered functional magnetic resonance imaging activation and cortical thickness in patients with euthymic bipolar I disorder. Biol. Psychiatry Cogn. Neurosci. Neuroimaging, 2016, 1(6), 507-517.
[http://dx.doi.org/10.1016/j.bpsc.2016.06.006] [PMID: 27990494]
[46]
Karthikeyan, S.; Fiksenbaum, L.; Grigorian, A.; Lu, H.; MacIntosh, B.J.; Goldstein, B.I. Normal cerebral oxygen consumption despite elevated cerebral blood flow in adolescents with bipolar disorder: Putative neuroimaging evidence of anomalous energy metabolism. Front. Psychiatry, 2019, 10, 739.
[http://dx.doi.org/10.3389/fpsyt.2019.00739] [PMID: 31681045]
[47]
Kaufman, J.; Birmaher, B.; Brent, D.; Rao, U.; Flynn, C.; Moreci, P.; Williamson, D.; Ryan, N. Schedule for affective disorders and schizophrenia for school-age children-present and lifetime version (K-SADS-PL): Initial reliability and validity data. J. Am. Acad. Child Adolesc. Psychiatry, 1997, 36(7), 980-988.
[http://dx.doi.org/10.1097/00004583-199707000-00021] [PMID: 9204677]
[48]
Axelson, D.; Birmaher, B.J.; Brent, D.; Wassick, S.; Hoover, C.; Bridge, J.; Ryan, N. A preliminary study of the kiddie schedule for affective disorders and schizophrenia for school-age children mania rating scale for children and adolescents. J. Child Adolesc. Psychopharmacol., 2003, 13(4), 463-470.
[http://dx.doi.org/10.1089/104454603322724850] [PMID: 14977459]
[49]
Chambers, W.J.; Puig-Antich, J.; Hirsch, M.; Paez, P.; Ambrosini, P.J.; Tabrizi, M.A.; Davies, M. The assessment of affective disorders in children and adolescents by semistructured interview. Test-retest reliability of the schedule for affective disorders and schizophrenia for school-age children, present episode version. Arch. Gen. Psychiatry, 1985, 42(7), 696-702.
[http://dx.doi.org/10.1001/archpsyc.1985.01790300064008] [PMID: 4015311]
[50]
Axelson, D.; Birmaher, B.; Strober, M.; Gill, M.K.; Valeri, S.; Chiappetta, L.; Ryan, N.; Leonard, H.; Hunt, J.; Iyengar, S.; Bridge, J.; Keller, M. Phenomenology of children and adolescents with bipolar spectrum disorders. Arch. Gen. Psychiatry, 2006, 63(10), 1139-1148.
[http://dx.doi.org/10.1001/archpsyc.63.10.1139] [PMID: 17015816]
[51]
Weissman, M.M.; Wickramaratne, P.; Adams, P.; Wolk, S.; Verdeli, H.; Olfson, M. Brief screening for family psychiatric history: the family history screen. Arch. Gen. Psychiatry, 2000, 57(7), 675-682.
[http://dx.doi.org/10.1001/archpsyc.57.7.675] [PMID: 10891038]
[52]
Petersen, A.C.; Crockett, L.; Richards, M.; Boxer, A. A self-report measure of pubertal status: Reliability, validity, and initial norms. J. Youth Adolesc., 1988, 17(2), 117-133.
[http://dx.doi.org/10.1007/BF01537962] [PMID: 24277579]
[53]
Krebs, N.F.; Himes, J.H.; Jacobson, D.; Nicklas, T.A.; Guilday, P.; Styne, D. Assessment of child and adolescent overweight and obesity. Pediatrics, 2007, 120(Suppl. 4), S193-S228.
[http://dx.doi.org/10.1542/peds.2007-2329D] [PMID: 18055652]
[54]
Wang, H.; Kim, M.; Normoyle, K.P.; Llano, D. Thermal regulation of the brain—an anatomical and physiological review for clinical neuroscientists. Front. Neurosci., 2016, 9, 528.
[http://dx.doi.org/10.3389/fnins.2015.00528] [PMID: 26834552]
[55]
Wang, H.; Wang, B.; Normoyle, K.P.; Jackson, K.; Spitler, K.; Sharrock, M.F.; Miller, C.M.; Best, C.; Llano, D.; Du, R. Brain temperature and its fundamental properties: a review for clinical neuroscientists. Front. Neurosci., 2014, 8, 307.
[http://dx.doi.org/10.3389/fnins.2014.00307] [PMID: 25339859]
[56]
Howarth, C.; Gleeson, P.; Attwell, D. Updated energy budgets for neural computation in the neocortex and cerebellum. J. Cereb. Blood Flow Metab., 2012, 32(7), 1222-1232.
[http://dx.doi.org/10.1038/jcbfm.2012.35] [PMID: 22434069]
[57]
Kiyatkin, E.A. Brain temperature and its role in physiology and pathophysiology: Lessons from 20 years of thermorecording. Temperature, 2019, 6(4), 271-333.
[http://dx.doi.org/10.1080/23328940.2019.1691896] [PMID: 31934603]
[58]
Cavanna, A.E.; Trimble, M.R. The precuneus: a review of its functional anatomy and behavioural correlates. Brain, 2006, 129(3), 564-583.
[http://dx.doi.org/10.1093/brain/awl004] [PMID: 16399806]
[59]
Zovetti, N.; Rossetti, M.G.; Perlini, C.; Maggioni, E.; Bontempi, P.; Bellani, M.; Brambilla, P. Default mode network activity in bipolar disorder. Epidemiol. Psychiatr. Sci., 2020, 29, e166.
[http://dx.doi.org/10.1017/S2045796020000803] [PMID: 32895076]
[60]
Brooks, J.O., III; Wang, P.W.; Bonner, J.C.; Rosen, A.C.; Hoblyn, J.C.; Hill, S.J.; Ketter, T.A. Decreased prefrontal, anterior cingulate, insula, and ventral striatal metabolism in medication-free depressed outpatients with bipolar disorder. J. Psychiatr. Res., 2009, 43(3), 181-188.
[http://dx.doi.org/10.1016/j.jpsychires.2008.04.015] [PMID: 18582900]
[61]
Bhardwaj, R.; Chakrabarti, S.; Mittal, B.R.; Sharan, P. A single photon emission computerized tomography (SPECT) study of regional cerebral blood flow in bipolar disorder. World J. Biol. Psychiatry, 2010, 11(2-2), 334-343.
[http://dx.doi.org/10.3109/15622970802575977] [PMID: 20218796]
[62]
Orosz, A.; Jann, K.; Federspiel, A.; Horn, H.; Höfle, O.; Dierks, T.; Wiest, R.; Strik, W.; Müller, T.; Walther, S. Reduced cerebral blood flow within the default-mode network and within total gray matter in major depression. Brain Connect., 2012, 2(6), 303-310.
[http://dx.doi.org/10.1089/brain.2012.0101] [PMID: 22928766]
[63]
Tastevin, M.; Boyer, L.; Korchia, T.; Fond, G.; Lançon, C.; Richieri, R.; Guedj, E. Brain SPECT perfusion and PET metabolism as discordant biomarkers in major depressive disorder. EJNMMI Res., 2020, 10(1), 121.
[http://dx.doi.org/10.1186/s13550-020-00713-2] [PMID: 33030615]
[64]
Kiyatkin, E.A. Brain temperature homeostasis: physiological fluctuations and pathological shifts. Front. Biosci., 2010, 15(1), 73-92.
[http://dx.doi.org/10.2741/3608] [PMID: 20036808]
[65]
Kiyatkin, E.A.; Brown, P.L.; Wise, R.A. Brain temperature fluctuation: a reflection of functional neural activation. Eur. J. Neurosci., 2002, 16(1), 164-168.
[http://dx.doi.org/10.1046/j.1460-9568.2002.02066.x] [PMID: 12153543]
[66]
Fountoulakis, K.N.; Giannakopoulos, P.; Kövari, E.; Bouras, C. Assessing the role of cingulate cortex in bipolar disorder: Neuropathological, structural and functional imaging data. Brain Res. Brain Res. Rev., 2008, 59(1), 9-21.
[http://dx.doi.org/10.1016/j.brainresrev.2008.04.005] [PMID: 18539335]
[67]
Mah, L.; Zarate, C.A., Jr; Singh, J.; Duan, Y.F.; Luckenbaugh, D.A.; Manji, H.K.; Drevets, W.C. Regional cerebral glucose metabolic abnormalities in bipolar II depression. Biol. Psychiatry, 2007, 61(6), 765-775.
[http://dx.doi.org/10.1016/j.biopsych.2006.06.009] [PMID: 17027930]
[68]
Mellen, E.J.; Harper, D.G.; Ravichandran, C.; Jensen, E.; Silveri, M.; Forester, B.P. Lamotrigine therapy and biomarkers of cerebral energy metabolism in older age bipolar depression. Am. J. Geriatr. Psychiatry, 2019, 27(8), 783-793.
[http://dx.doi.org/10.1016/j.jagp.2019.02.017] [PMID: 31000323]
[69]
Li, H.; Xu, H.; Zhang, Y.; Guan, J.; Zhang, J.; Xu, C.; Shen, Z.; Xiao, B.; Liang, C.; Chen, K.; Zhang, J.; Wu, R. Differential neurometabolite alterations in brains of medication-free individuals with bipolar disorder and those with unipolar depression: a two-dimensional proton magnetic resonance spectroscopy study. Bipolar Disord., 2016, 18(7), 583-590.
[http://dx.doi.org/10.1111/bdi.12445] [PMID: 27870506]
[70]
Lee, H.S.; Choo, I.H.; Lee, D.Y.; Kim, J.W.; Seo, E.H.; Kim, S.G.; Park, S.Y.; Shin, J.H.; Kim, K.W.; Woo, J.I.; Woo, J.I. Frontal dysfunction underlies depression in mild cognitive impairment: A FDG-PET study. Psychiatry Investig., 2010, 7(3), 208-214.
[http://dx.doi.org/10.4306/pi.2010.7.3.208] [PMID: 20927310]
[71]
Milak, M.S.; Keilp, J.; Parsey, R.V.; Oquendo, M.A.; Malone, K.M.; Mann, J.J. Regional brain metabolic correlates of self-reported depression severity contrasted with clinician ratings. J. Affect. Disord., 2010, 126(1-2), 113-124.
[http://dx.doi.org/10.1016/j.jad.2010.03.002] [PMID: 20381874]
[72]
Fujimoto, T.; Takeuchi, K.; Matsumoto, T.; Fujita, S.; Honda, K.; Higashi, Y.; Kato, N. Metabolic changes in the brain of patients with late-onset major depression. Psychiatry Res. Neuroimaging, 2008, 164(1), 48-57.
[http://dx.doi.org/10.1016/j.pscychresns.2007.03.010] [PMID: 18804352]
[73]
Childs, C.; Hiltunen, Y.; Vidyasagar, R.; Kauppinen, R.A. Determination of regional brain temperature using proton magnetic resonance spectroscopy to assess brain–body temperature differences in healthy human subjects. Magn. Reson. Med., 2007, 57(1), 59-66.
[http://dx.doi.org/10.1002/mrm.21100] [PMID: 17139620]
[74]
Kuroda, K. Non-invasive MR thermography using the water proton chemical shift. Int. J. Hyperthermia, 2005, 21(6), 547-560.
[http://dx.doi.org/10.1080/02656730500204495] [PMID: 16147439]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy