Research Article

长期服用甲基苯丙胺会加重高胆固醇饮食喂养的载脂蛋白E敲除小鼠的动脉粥样硬化易损斑块

卷 24, 期 4, 2024

发表于: 18 May, 2023

页: [495 - 504] 页: 10

弟呕挨: 10.2174/1566524023666230321095233

价格: $65

Open Access Journals Promotions 2
摘要

背景:此前已有研究发现,慢性甲基苯丙胺(methamphetamine, METH)可上调载脂蛋白E敲除(ApoE-/-)小鼠的神经肽Y (NPY)表达,促进动脉粥样硬化的形成,NPY可能通过NPY Y1受体途径参与了甲基安非他明(methin)诱导的动脉粥样硬化的发病机制。易损冠状动脉粥样硬化斑块(VP)是急性冠状动脉综合征(ACS)的一个重要病理发现。在这项研究中,我们探讨了甲基安非他明滥用是否会加剧高胆固醇饮食喂养的ApoE-/-小鼠VP的形成。 目的:观察长期服用甲基苯丙胺是否会加剧高胆固醇饮食喂养的ApoE-/-小鼠易损斑块(VP)的形成。 方法:饲喂高胆固醇饮食的ApoE-/-雄性小鼠腹腔注射生理盐水(NS)或8 mg/kg/d甲基苯丙胺(M8),持续24周。从基线到24周,每隔2周监测体重。治疗24周后,测量血脂变量。对主动脉根部冷冻切片进行Movat染色和免疫组化染色,计算VP百分比和斑块内出血(IPH)百分比,检测NPY、血管内皮生长因子(VEGF)和CD31的表达。体外用PBS、100μM甲基安非他明、10nmol NPY或100μM甲基安非他明加10nmol NPY孵育主动脉内皮细胞12 h,免疫荧光染色检测Y2R、VEGF和CD31的表达。 结果:M8组CD31阳性面积、IPH、VP百分比、NPY、VEGF表达均明显高于NS组。在体外实验中,与PBS、METH和NPY组相比,METH+NPY组的Y2R、VEGF和CD31的表达明显增加,而用Y2R拮抗剂或DPPIV抑制剂治疗可以减弱这些作用。 结论:长期给药可加重ApoE-/-小鼠高胆固醇饮食后的VP,其机制可能是通过上调血管NPY和VEGF表达,促进动脉粥样硬化斑块血管生成和血管破裂。我们的研究结果表明,VP形成的增加可能通过激活DPPIV/NPY/Y2R途径促进慢性冰毒滥用后急性冠脉综合征的发展。

关键词: 甲基苯丙胺,易损斑块,神经肽Y,斑块内出血,二肽基肽酶IV,神经肽Y Y2受体。

[1]
Kaye S, Darke S, Duflou J, McKetin R. Methamphetamine-related fatalities in Australia: Demographics, circumstances, toxicology and major organ pathology. Addiction 2008; 103(8): 1353-60.
[http://dx.doi.org/10.1111/j.1360-0443.2008.02231.x] [PMID: 18855825]
[2]
Turnipseed SD, Richards JR, Kirk JD, Diercks DB, Amsterdam EA. Frequency of acute coronary syndrome in patients presenting to the Emergency Department with chest pain after methamphetamine use. J Emerg Med 2003; 24(4): 369-73.
[http://dx.doi.org/10.1016/S0736-4679(03)00031-3] [PMID: 12745036]
[3]
Gao B, Li L, Zhu P, et al. Chronic administration of methamphetamine promotes atherosclerosis formation in ApoE−/− knockout mice fed normal diet. Atherosclerosis 2015; 243(1): 268-77.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.09.001] [PMID: 26409626]
[4]
Zhu P, Li L, Gao B, et al. Impact of chronic methamphetamine treatment on the atherosclerosis formation in ApoE−/− mice fed a high cholesterol diet. Oncotarget 2017; 8(33): 55064-72.
[http://dx.doi.org/10.18632/oncotarget.19020] [PMID: 28903402]
[5]
Gonçalves J, Baptista S, Olesen MV, et al. Methamphetamine-induced changes in the mice hippocampal neuropeptide Y system: implications for memory impairment. J Neurochem 2012; 123(6): 1041-53.
[http://dx.doi.org/10.1111/jnc.12052] [PMID: 23061411]
[6]
Lagraauw HM, Westra MM, Bot M, et al. Vascular neuropeptide Y contributes to atherosclerotic plaque progression and perivascular mast cell activation. Atherosclerosis 2014; 235(1): 196-203.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.04.025] [PMID: 24858338]
[7]
Li L, Najafi AH, Kitlinska JB, et al. Of mice and men: Neuropeptide Y and its receptors are associated with atherosclerotic lesion burden and vulnerability. J Cardiovasc Transl Res 2011; 4(3): 351-62.
[http://dx.doi.org/10.1007/s12265-011-9271-5] [PMID: 21468772]
[8]
Hirsch D, Zukowska Z. NPY and stress 30 years later: The peripheral view. Cell Mol Neurobiol 2012; 32(5): 645-59.
[http://dx.doi.org/10.1007/s10571-011-9793-z] [PMID: 22271177]
[9]
Segal DS, Kuczenski R, O’Neil ML, Melega WP, Cho AK. Escalating dose methamphetamine pretreatment alters the behavioral and neurochemical profiles associated with exposure to a high-dose methamphetamine binge. Neuropsychopharmacology 2003; 28(10): 1730-40.
[http://dx.doi.org/10.1038/sj.npp.1300247] [PMID: 12865898]
[10]
Najafi AH, Aghili N, Tilan JU, et al. A new murine model of stress-induced complex atherosclerotic lesions. Dis Model Mech 2013; 6(2): dmm.009977.
[http://dx.doi.org/10.1242/dmm.009977] [PMID: 23324329]
[11]
Vendrov AE, Stevenson MD, Alahari S, et al. Attenuated superoxide dismutase 2 activity induces atherosclerotic plaque instability during aging in hyperlipidemic mice. J Am Heart Assoc 2017; 6(11): e006775.
[http://dx.doi.org/10.1161/JAHA.117.006775] [PMID: 29079564]
[12]
Chen F, Zhou Y, Yang K, Shen M, Wang Y. NPY stimulates cholesterol synthesis acutely by activating the SREBP2-HMGCR pathway through the Y1 and Y5 receptors in murine hepatocytes. Life Sci 2020; 262: 118478.
[http://dx.doi.org/10.1016/j.lfs.2020.118478] [PMID: 32976883]
[13]
Zhu P, Sun W, Zhang C, Song Z, Lin S. The role of neuropeptide Y in the pathophysiology of atherosclerotic cardiovascular disease. Int J Cardiol 2016; 220: 235-41.
[http://dx.doi.org/10.1016/j.ijcard.2016.06.138] [PMID: 27389447]
[14]
Bruinstroop E, Pei L, Ackermans MT, et al. Hypothalamic neuropeptide Y (NPY) controls hepatic VLDL-triglyceride secretion in rats via the sympathetic nervous system. Diabetes 2012; 61(5): 1043-50.
[http://dx.doi.org/10.2337/db11-1142] [PMID: 22461566]
[15]
Della-Morte D, Dong C, Crisby M, et al. Association of carotid plaque morphology and glycemic and lipid parameters in the northern manhattan study. Front Cardiovasc Med 2022; 9: 793755.
[http://dx.doi.org/10.3389/fcvm.2022.793755] [PMID: 35141303]
[16]
Fonseca FAH, de Oliveira Izar MC. High-sensitivity C-reactive protein and cardiovascular disease across countries and ethnicities. Clinics 2016; 71(4): 235-42.
[http://dx.doi.org/10.6061/clinics/2016(04)11] [PMID: 27166776]
[17]
Hu S, Liu Y, You T, Zhu L. Semaphorin 7A promotes VEGFA/VEGFR2-mediated angiogenesis and intraplaque neovascularization in ApoE-/- mice. Front Physiol 2018; 9: 1718.
[http://dx.doi.org/10.3389/fphys.2018.01718] [PMID: 30555351]
[18]
Lee EW, Michalkiewicz M, Kitlinska J, et al. Neuropeptide Y induces ischemic angiogenesis and restores function of ischemic skeletal muscles. J Clin Invest 2003; 111(12): 1853-62.
[http://dx.doi.org/10.1172/JCI16929] [PMID: 12813021]
[19]
Ventura F, Muga M, Coelho-Santos V, Fontes-Ribeiro CA, Leitão RA, Silva AP. Protective effect of neuropeptide Y2 receptor activation against methamphetamine-induced brain endothelial cell alterations. Toxicol Lett 2020; 334: 53-9.
[http://dx.doi.org/10.1016/j.toxlet.2020.09.013] [PMID: 32956829]
[20]
Movafagh S, Hobson JP, Spiegel S, et al. Neuropeptide Y induces migration, proliferation, and tube formation of endothelial cells bimodally via Y1, Y2, and Y5 receptors. FASEB J 2006; 20(11): 1924-6.
[http://dx.doi.org/10.1096/fj.05-4770fje] [PMID: 16891622]
[21]
Kolodgie FD, Gold HK, Burke AP, et al. Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med 2003; 349(24): 2316-25.
[http://dx.doi.org/10.1056/NEJMoa035655] [PMID: 14668457]
[22]
Virmani R, Kolodgie FD, Burke AP, et al. Atherosclerotic plaque progression and vulnerability to rupture: Agiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol 2005; 25(10): 2054-61.
[http://dx.doi.org/10.1161/01.ATV.0000178991.71605.18] [PMID: 16037567]
[23]
Chistiakov DA, Orekhov AN, Bobryshev YV. Contribution of neovascularization and intraplaque haemorrhage to atherosclerotic plaque progression and instability. Acta Physiol 2015; 213(3): 539-53.
[http://dx.doi.org/10.1111/apha.12438] [PMID: 25515699]
[24]
Parma L, Baganha F, Quax PHA, de Vries MR. Plaque angiogenesis and intraplaque hemorrhage in atherosclerosis. Eur J Pharmacol 2017; 816: 107-15.
[http://dx.doi.org/10.1016/j.ejphar.2017.04.028] [PMID: 28435093]
[25]
Michel JB, Thaunat O, Houard X, Meilhac O, Caligiuri G, Nicoletti A. Topological determinants and consequences of adventitial responses to arterial wall injury. Arterioscler Thromb Vasc Biol 2007; 27(6): 1259-68.
[http://dx.doi.org/10.1161/ATVBAHA.106.137851] [PMID: 17395854]
[26]
Michel JB, Martin-Ventura JL, Nicoletti A, Ho-Tin-Noé B. Pathology of human plaque vulnerability: Mechanisms and consequences of intraplaque haemorrhages. Atherosclerosis 2014; 234(2): 311-9.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.03.020] [PMID: 24726899]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy