Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Pyridazinone-substituted Benzenesulfonamides Demonstrate Inhibition of Monoamine Oxidase

Author(s): Anél Petzer, Anton Shetnev, Julia Efimova, Mikhail Korsakov, Sergei Filimonov and Jacobus P. Petzer*

Volume 21, Issue 8, 2024

Published on: 17 April, 2023

Page: [1429 - 1436] Pages: 8

DOI: 10.2174/1570180820666230321090227

Price: $65

Abstract

Background: The monoamine oxidase (MAO) enzymes are important drug targets. Inhibitors of MAO-A and MAO-B have been used to treat the symptoms of depression and Parkinson’s disease.

Methods: A series of seventeen pyridazinone-substituted benzenesulfonamides was synthesized and evaluated as potential inhibitors of human MAO-A and MAO-B. This study is a continuation of our interest in the pharmacological activities of sulfonamide compounds.

Results: Among the compounds evaluated, only 10 and 18 demonstrated appreciable inhibition of MAOB with IC50 values of 2.90 and 4.36 μM, respectively. None of the benzenesulfonamides inhibited the MAO-A isoform. Potential binding orientations and interactions of 10 and 18 with the active site of MAO-B were investigated by computational approaches.

Conclusion: Although these potencies are modest, this study is the first report on MAO inhibition by this class of compounds. Active MAO-B inhibitors may serve as leads for the future discovery of therapeutic agents for neurodegenerative disorders, such as Parkinson’s disease.

Keywords: Monoamine oxidase, parkinson’s disease, pyridazinone, benzenesulfonamide, molecular docking, neurotransmission.

« Previous
Graphical Abstract
[1]
Shih, J.C.; Chen, K.; Ridd, M.J. Monoamine oxidase: From genes to behavior. Annu. Rev. Neurosci., 1999, 22(1), 197-217.
[http://dx.doi.org/10.1146/annurev.neuro.22.1.197] [PMID: 10202537]
[2]
Binda, C.; Newton-Vinson, P.; Hubálek, F.; Edmondson, D.E.; Mattevi, A. Structure of human monoamine oxidase B, a drug target for the treatment of neurological disorders. Nat. Struct. Biol., 2002, 9(1), 22-26.
[http://dx.doi.org/10.1038/nsb732] [PMID: 11753429]
[3]
Youdim, M.B.H.; Edmondson, D.; Tipton, K.F. The therapeutic potential of monoamine oxidase inhibitors. Nat. Rev. Neurosci., 2006, 7(4), 295-309.
[http://dx.doi.org/10.1038/nrn1883] [PMID: 16552415]
[4]
Hubálek, F.; Binda, C.; Li, M.; Herzig, Y.; Sterling, J.; Youdim, M.B.H.; Mattevi, A.; Edmondson, D.E. Inactivation of purified human recombinant monoamine oxidases A and B by rasagiline and its analogues. J. Med. Chem., 2004, 47(7), 1760-1766.
[http://dx.doi.org/10.1021/jm0310885] [PMID: 15027867]
[5]
Son, S.Y.; Ma, J.; Kondou, Y.; Yoshimura, M.; Yamashita, E.; Tsukihara, T. Structure of human monoamine oxidase A at 2.2-Å resolution: The control of opening the entry for substrates/inhibitors. Proc. Natl. Acad. Sci. USA, 2008, 105(15), 5739-5744.
[http://dx.doi.org/10.1073/pnas.0710626105] [PMID: 18391214]
[6]
Lum, C.T.; Stahl, S.M. Opportunities for reversible inhibitors of monoamine oxidase-A (RIMAs) in the treatment of depression. CNS Spectr., 2012, 17(3), 107-120.
[http://dx.doi.org/10.1017/S1092852912000594] [PMID: 23888494]
[7]
Schwartz, T.L. A neuroscientific update on monoamine oxidase and its inhibitors. CNS Spectr., 2013, 18(S1), 22-33.
[http://dx.doi.org/10.1017/S1092852913000734] [PMID: 24252505]
[8]
Riederer, P.; Müller, T. Use of monoamine oxidase inhibitors in chronic neurodegeneration. Expert Opin. Drug Metab. Toxicol., 2017, 13(2), 233-240.
[http://dx.doi.org/10.1080/17425255.2017.1273901] [PMID: 27998194]
[9]
Fernandez, H.H.; Chen, J.J. Monoamine oxidase-B inhibition in the treatment of Parkinson’s disease. Pharmacotherapy, 2007, 27(12 Part 2), 174S-185S.
[http://dx.doi.org/10.1592/phco.27.12part2.174S] [PMID: 18041937]
[10]
Finberg, J.P.M.; Wang, J.; Bankiewicz, K.; Harvey-White, J.; Kopin, I.J.; Goldstein, D.S. Increased striatal dopamine production from L-DOPA following selective inhibition of monoamine oxidase B by R(+)-N-propargyl-1-aminoindan (rasagiline) in the monkey. J. Neural Transm. Suppl., 1998, 52, 279-285.
[http://dx.doi.org/10.1007/978-3-7091-6499-0_28] [PMID: 9564628]
[11]
Brown, C.; Taniguchi, G.; Yip, K. The monoamine oxidase inhibitor-tyramine interaction. J. Clin. Pharmacol., 1989, 29(6), 529-532.
[http://dx.doi.org/10.1002/j.1552-4604.1989.tb03376.x] [PMID: 2666453]
[12]
Lasbennes, F.; Sercombe, R.; Seylaz, J. Monoamine oxidase activity in brain microvessels determined using natural and artificial substrates: Relevance to the blood-brain barrier. J. Cereb. Blood Flow Metab., 1983, 3(4), 521-528.
[http://dx.doi.org/10.1038/jcbfm.1983.80] [PMID: 6630322]
[13]
Sabelli, H.C.; Borison, R.L.; Diamond, B.I.; Havdala, H.S.; Narasimhachari, N. Phenylethylamine and brain function. Biochem. Pharmacol., 1978, 27(13), 1707-1711.
[http://dx.doi.org/10.1016/0006-2952(78)90543-9] [PMID: 361043]
[14]
Berry, M.D. Mammalian central nervous system trace amines. Pharmacologic amphetamines, physiologic neuromodulators. J. Neurochem., 2004, 90(2), 257-271.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02501.x] [PMID: 15228583]
[15]
Youdim, M.B.H.; Bakhle, Y.S. Monoamine oxidase: Isoforms and inhibitors in Parkinson’s disease and depressive illness. Br. J. Pharmacol., 2006, 147(S1), S287-S296.
[http://dx.doi.org/10.1038/sj.bjp.0706464] [PMID: 16402116]
[16]
Fowler, J.S.; Volkow, N.D.; Wang, G.J.; Logan, J.; Pappas, N.; Shea, C.; MacGregor, R. Age-related increases in brain monoamine oxidase B in living healthy human subjects. Neurobiol. Aging, 1997, 18(4), 431-435.
[http://dx.doi.org/10.1016/S0197-4580(97)00037-7] [PMID: 9330975]
[17]
Kaludercic, N.; Mialet-Perez, J.; Paolocci, N.; Parini, A.; Di Lisa, F. Monoamine oxidases as sources of oxidants in the heart. J. Mol. Cell. Cardiol., 2014, 73, 34-42.
[http://dx.doi.org/10.1016/j.yjmcc.2013.12.032] [PMID: 24412580]
[18]
Deshwal, S.; Di Sante, M.; Di Lisa, F.; Kaludercic, N. Emerging role of monoamine oxidase as a therapeutic target for cardiovascular disease. Curr. Opin. Pharmacol., 2017, 33, 64-69.
[http://dx.doi.org/10.1016/j.coph.2017.04.003] [PMID: 28528298]
[19]
Carradori, S.; Secci, D.; Petzer, J.P. MAO inhibitors and their wider applications: A patent review. Expert Opin. Ther. Pat., 2018, 28(3), 211-226.
[http://dx.doi.org/10.1080/13543776.2018.1427735]
[20]
Shetnev, A.; Shlenev, R.; Efimova, J.; Ivanovskii, S.; Tarasov, A.; Petzer, A.; Petzer, J.P. 1,3,4-Oxadiazol-2-ylbenzenesulfonamides as privileged structures for the inhibition of monoamine oxidase B. Bioorg. Med. Chem. Lett., 2019, 29(21), 126677.
[http://dx.doi.org/10.1016/j.bmcl.2019.126677] [PMID: 31537422]
[21]
Krasavin, M.; Shetnev, A.; Baykov, S.; Kalinin, S.; Nocentini, A.; Sharoyko, V.; Poli, G.; Tuccinardi, T.; Korsakov, M.; Tennikova, T.B.; Supuran, C.T. Pyridazinone-substituted benzenesulfonamides display potent inhibition of membrane-bound human carbonic anhydrase IX and promising antiproliferative activity against cancer cell lines. Eur. J. Med. Chem., 2019, 168, 301-314.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.044] [PMID: 30826507]
[22]
Mostert, S.; Petzer, A.; Petzer, J.P. Indanones as high-potency reversible inhibitors of monoamine oxidase. Chem. Med. Chem, 2015, 10(5), 862-873.
[http://dx.doi.org/10.1002/cmdc.201500059] [PMID: 25820651]
[23]
Coates, W.J.; Mckillop, A. One-pot preparation of 6-substituted 3(2H)-pyridazinones from ketones. Synthesis, 1993, 1993(3), 334-342.
[http://dx.doi.org/10.1055/s-1993-25861]
[24]
Binda, C.; Wang, J.; Pisani, L.; Caccia, C.; Carotti, A.; Salvati, P.; Edmondson, D.E.; Mattevi, A. Structures of human monoamine oxidase B complexes with selective noncovalent inhibitors: Safinamide and coumarin analogs. J. Med. Chem., 2007, 50(23), 5848-5852.
[http://dx.doi.org/10.1021/jm070677y] [PMID: 17915852]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy