Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Research Article

Baicalein Alleviates Arsenic-induced Oxidative Stress through Activation of the Keap1/Nrf2 Signalling Pathway in Normal Human Liver Cells

Author(s): Qi Wang and Aihua Zhang*

Volume 24, Issue 3, 2024

Published on: 18 April, 2023

Page: [355 - 365] Pages: 11

DOI: 10.2174/1566524023666230320163238

Price: $65

Abstract

Background: Oxidative stress is a key mechanism underlying arsenicinduced liver injury, the Kelch-like epichlorohydrin-related protein 1 (Keap1)/nuclear factor E2 related factor 2 (Nrf2) pathway is the main regulatory pathway involved in antioxidant protein and phase II detoxification enzyme expression. The aim of the present study was to investigate the role and mechanism of baicalein in the alleviation of arsenic-induced oxidative stress in normal human liver cells.

Methods: Normal human liver cells (MIHA cells) were treated with NaAsO2 (0, 5, 10, 20 μM) to observe the effect of different doses of NaAsO2 on MIHA cells. In addition, the cells were treated with DMSO (0.1%), NaAsO2 (20 μM), or a combination of NaAsO2 (20 μM) and Baicalein (25, 50 or 100 μM) for 24 h to observe the antagonistic effect of Baicalein on NaAsO2. Cell viability was determined using a Cell Counting Kit- 8 (CCK-8 kit). The intervention doses of baicalein in subsequent experiments were determined to be 25, 50 and 100μM. The intracellular content of reactive oxygen species (ROS) was assessed using a 2′,7′-dichlorodihydrofluorescein diacetate (DCFHDA) probe kit. The malonaldehyde (MDA), Cu-Zn superoxide dismutase (Cu-Zn SOD) and glutathione peroxidase (GSH-Px) activities were determined by a test kit. The expression levels of key genes and proteins were determined by real-time fluorescence quantitative polymerase chain reaction (qPCR) and Western blotting.

Results: Baicalein upregulated the protein expression levels of phosphorylated Nrf2 (p-Nrf2) and nuclear Nrf2, inhibited the downregulation of Nrf2 target genes induced by arsenic, and decreased the production of ROS and MDA. These results demonstrate that baicalein promotes Nrf2 nuclear translocation by upregulating p-Nrf2 and inhibiting the downregulation of Nrf2 target genes in arsenic-treated MIHA cells, thereby enhancing the antioxidant capacity of cells and reducing oxidative stress.

Conclusion: Baicalein alleviated arsenic-induced oxidative stress through activation of the Keap1/Nrf2 signalling pathway in normal human liver cells.

Keywords: Baicalein, sodium arsenite, oxidative stress, Keap1, Nrf2, normal human liver cells.

[1]
Carlin DJ, Naujokas MF, Bradham KD, et al. Arsenic and environmental health: State of the science and future research opportunities. Environ Health Perspect 2016; 124(7): 890-9.
[http://dx.doi.org/10.1289/ehp.1510209] [PMID: 26587579]
[2]
Argos M, Kalra T, Rathouz PJ, et al. Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in Bangladesh (HEALS): A prospective cohort study. Lancet 2010; 376(9737): 252-8.
[http://dx.doi.org/10.1016/S0140-6736(10)60481-3] [PMID: 20646756]
[3]
Bundschuh J, Niazi NK, Alam MA, et al. Global arsenic dilemma and sustainability. J Hazard Mater 2022; 436: 129197.
[http://dx.doi.org/10.1016/j.jhazmat.2022.129197] [PMID: 35739727]
[4]
Podgorski J, Berg M. Global threat of arsenic in groundwater. Science 2020; 368(6493): 845-50.
[http://dx.doi.org/10.1126/science.aba1510] [PMID: 32439786]
[5]
Chen QY, Costa M. Arsenic: A global environmental challenge. Annu Rev Pharmacol Toxicol 2021; 61(1): 47-63.
[http://dx.doi.org/10.1146/annurev-pharmtox-030220-013418] [PMID: 33411580]
[6]
Chen J, Chen Y, Zhou Y, et al. A follow-up study of mortality among the arseniasis patients exposed to indoor combustion of high arsenic coal in Southwest Guizhou Autonomous Prefecture, China. Int Arch Occup Environ Health 2007; 81(1): 9-17.
[http://dx.doi.org/10.1007/s00420-007-0187-y] [PMID: 17387503]
[7]
Liu J, Waalkes M. Liver is a target of arsenic carcinogenesis. Toxicol Sci 2008; 105(1): 24-32.
[http://dx.doi.org/10.1093/toxsci/kfn120] [PMID: 18566022]
[8]
Zhang H, Jin B, Liu L, et al. Glutathione might attenuate arsenic-induced liver injury by modulating the Foxa2-XIAP axis to reduce oxidative stress and mitochondrial apoptosis. Biol Trace Elem Res 2023.
[http://dx.doi.org/10.1007/s12011-023-03577-4] [PMID: 36689145]
[9]
Qu G, Liu Z, Zhang J, et al. PINK1/parkin-mediated mitophagy partially protects against inorganic arsenic-induced hepatic macrophage polarization in acute arsenic-exposed mice. Molecules 2022; 27(24): 8862.
[http://dx.doi.org/10.3390/molecules27248862] [PMID: 36557995]
[10]
Dinkova-Kostova AT, Copple IM. Advances and challenges in therapeutic targeting of NRF2Trends Pharmacol Sci 2023; S0165-6147(22): 00277-2.
[http://dx.doi.org/10.1016/j.tips.2022.12.003] [PMID: 36628798]
[11]
Shirvanian K, Vali R, Farkhondeh T, Abderam A, Aschner M, Samarghandian S. Genistein effects on various human disorders mediated vianrf2 signaling. Curr Mol Med 2022.
[PMID: 36443970]
[12]
Pillai R, Hayashi M, Zavitsanou AM, Papagiannakopoulos T. NRF2: KEAPing tumors protected. Cancer Discov 2022; 12(3): 625-43.
[http://dx.doi.org/10.1158/2159-8290.CD-21-0922] [PMID: 35101864]
[13]
Cuadrado A, Rojo AI, Wells G, et al. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat Rev Drug Discov 2019; 18(4): 295-317.
[http://dx.doi.org/10.1038/s41573-018-0008-x] [PMID: 30610225]
[14]
Yamamoto M, Kensler TW, Motohashi H. The KEAP1-NRF2 system: A thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol Rev 2018; 98(3): 1169-203.
[http://dx.doi.org/10.1152/physrev.00023.2017] [PMID: 29717933]
[15]
Song MY, Lee DY, Chun KS, Kim EH. The role of NRF2/KEAP1 signaling pathway in cancer metabolism. Int J Mol Sci 2021; 22(9): 4376.
[http://dx.doi.org/10.3390/ijms22094376] [PMID: 33922165]
[16]
Galicia-Moreno M, Lucano-Landeros S, Monroy-Ramirez H, et al. Roles of Nrf2 in liver diseases: Molecular, pharmacological, and epigenetic aspects. Antioxidants 2020; 9(10): 980.
[http://dx.doi.org/10.3390/antiox9100980] [PMID: 33066023]
[17]
Sies H, Berndt C, Jones DP. Oxidative stress. Annu Rev Biochem 2017; 86(1): 715-48.
[http://dx.doi.org/10.1146/annurev-biochem-061516-045037] [PMID: 28441057]
[18]
Prasad P, Singh S, Ghosh S, Dutta S, Sinha D. Influence of differential arsenic exposure on cellular redox homeostasis of exposed rural women of West Bengal. Environ Sci Pollut Res Int 2022; 30(3): 7836-50.
[PMID: 36044145]
[19]
Hu Y, Xiao T, Wang Q, Liang B, Zhang A. Effects of essential trace elements and oxidative stress on endemic arsenism caused by coal burning in pr China. Biol Trace Elem Res 2020; 198(1): 25-36.
[http://dx.doi.org/10.1007/s12011-020-02047-5] [PMID: 31960276]
[20]
Hu Y, Yu C, Yao M, et al. The PKCδ-Nrf2-ARE signalling pathway may be involved in oxidative stress in arsenic-induced liver damage in rats. Environ Toxicol Pharmacol 2018; 62: 79-87.
[http://dx.doi.org/10.1016/j.etap.2018.05.012] [PMID: 29986281]
[21]
Zhao D, Yi H, Sang N. Arsenic intake-induced gastric toxicity is blocked by grape skin extract by modulating inflammation and oxidative stress in a mouse model. Ecotoxicol Environ Saf 2022; 233: 113305.
[http://dx.doi.org/10.1016/j.ecoenv.2022.113305] [PMID: 35189519]
[22]
Jia Y, Li J, Liu P, et al. Based on activation of p62-Keap1-Nrf2 pathway, hesperidin protects arsenic-trioxide-induced cardiotoxicity in mice. Front Pharmacol 2021; 12: 758670.
[http://dx.doi.org/10.3389/fphar.2021.758670] [PMID: 34721041]
[23]
Liu R, Zhang S, Zhang W, Zhao X, Du G. Baicalein attenuates brain iron accumulation through protecting aconitase 1 from oxidative stress in rotenone-induced parkinson’s disease in rats. Antioxidants 2022; 12(1): 12.
[http://dx.doi.org/10.3390/antiox12010012] [PMID: 36670874]
[24]
Zhao Z, Nian M, Qiao H, Yang X, Wu S, Zheng X. Review of bioactivity and structure-activity relationship on baicalein (5,6,7-trihydroxyflavone) and wogonin (5,7-dihydroxy-8-methoxyflavone) derivatives: Structural modifications inspired from flavonoids in Scutellaria baicalensis. Eur J Med Chem 2022; 243: 114733.
[http://dx.doi.org/10.1016/j.ejmech.2022.114733] [PMID: 36155355]
[25]
Li X, Luo W, Ng TW, et al. Nanoparticle-encapsulated baicalein markedly modulates pro-inflammatory response in gingival epithelial cells. Nanoscale 2017; 9(35): 12897-907.
[http://dx.doi.org/10.1039/C7NR02546G] [PMID: 28650029]
[26]
Wan Y. shen K, Yu H, Fan W. Baicalein limits osteoarthritis development by inhibiting chondrocyte ferroptosis. Free Radic Biol Med 2023; 196: 108-20.
[http://dx.doi.org/10.1016/j.freeradbiomed.2023.01.006] [PMID: 36657732]
[27]
Liu H, Lin Y, Tsai M, Wu Y, Lee M. Baicalein exerts therapeutic effects against endotoxin-induced depression-like behavior in mice by decreasing inflammatory cytokines and increasing brain-derived neurotrophic factor levels. Antioxidants 2022; 11(5): 947.
[http://dx.doi.org/10.3390/antiox11050947] [PMID: 35624812]
[28]
Ma Z, Otsuyama K, Liu S, et al. Baicalein, a component of Scutellaria radix from Huang-Lian-Jie-Du-Tang (HLJDT), leads to suppression of proliferation and induction of apoptosis in human myeloma cells. Blood 2005; 105(8): 3312-8.
[http://dx.doi.org/10.1182/blood-2004-10-3915] [PMID: 15626742]
[29]
Rahmani AH, Almatroudi A, Khan AA, Babiker AY, Alanezi M, Allemailem KS. The multifaceted role of baicalein in cancer management through modulation of cell signalling pathways. Molecules 2022; 27(22): 8023.
[http://dx.doi.org/10.3390/molecules27228023] [PMID: 36432119]
[30]
Hua F, Xiao YY, Qu XH, et al. Baicalein sensitizes triple negative breast cancer MDA-MB-231 cells to doxorubicin viaautophagy-mediated down-regulation of CDK1. Mol Cell Biochem 2022.
[http://dx.doi.org/10.1007/s11010-022-04597-9] [PMID: 36413334]
[31]
Qi J, Li J, Bie B, et al. miR ‐3,178 contributes to the therapeutic action of baicalein against hepatocellular carcinoma cells viamodulating HDAC10. Phytother Res 2023; 37(1): 295-309.
[http://dx.doi.org/10.1002/ptr.7613] [PMID: 36070933]
[32]
Sithisarn P, Rojsanga P, Sithisarn P. Oroxylum indicuminhibitory effects on clinical isolated bacteria and simultaneous HPLC quantitative analysis of flavone contents in extracts from. Molecules 2019; 24(10)
[http://dx.doi.org/10.3390/molecules24101937] [PMID: 31137493]
[33]
Wu R, Liang J, Liang Y, Xiong L. A spectrum-effect based method for screening antibacterial constituents in Niuhuang Shangqing Pill using comprehensive two-dimensional liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1191: 123121.
[http://dx.doi.org/10.1016/j.jchromb.2022.123121] [PMID: 35042147]
[34]
Vinh PT, Shinohara Y, Yamada A, et al. Baicalein inhibits Stx1 and 2 of EHE: Effects of baicalein on the cytotoxicity, production, and secretion of shiga toxins of enterohaemorrhagic escherichia coli. Toxins 2019; 11(9): 505.
[http://dx.doi.org/10.3390/toxins11090505] [PMID: 31470657]
[35]
Yu Z, Li Q, Wang Y, Li P. A potent protective effect of baicalein on liver injury by regulating mitochondria-related apoptosis. Apoptosis 2020; 25(9-10): 607-10.
[http://dx.doi.org/10.1007/s10495-020-01624-2]
[36]
Li P, Zhang R, Wang M, et al. Baicalein prevents fructose-induced hepatic steatosis in rats: In the regulation of fatty acid de novo synthesis, fatty acid elongation and fatty acid oxidation. Front Pharmacol 2022; 13: 917329.
[http://dx.doi.org/10.3389/fphar.2022.917329] [PMID: 35847050]
[37]
Li P, Hu J, Zhao H, Feng J, Chai B. Multi-omics reveals inhibitory effect of baicalein on non-alcoholic fatty liver disease in mice. Front Pharmacol 2022; 13: 925349.
[http://dx.doi.org/10.3389/fphar.2022.925349] [PMID: 35784718]
[38]
Rahaman M, Rahman M, Mise N, et al. Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management. Environ Pollut 2021; 289: 117940.
[http://dx.doi.org/10.1016/j.envpol.2021.117940] [PMID: 34426183]
[39]
Straub AC, Stolz DB, Ross MA, et al. Arsenic stimulates sinusoidal endothelial cell capillarization and vessel remodeling in mouse liver. Hepatology 2007; 45(1): 205-12.
[http://dx.doi.org/10.1002/hep.21444] [PMID: 17187425]
[40]
Thangapandiyan S, Ramesh M, Hema T, et al. Sulforaphane potentially ameliorates arsenic induced hepatotoxicity in albino wistar rats: Implication of PI3K/Akt/Nrf2 signaling pathway. Cell Physiol Biochem 2019; 52(5): 1203-22.
[http://dx.doi.org/10.33594/000000082] [PMID: 31001960]
[41]
Xue J, Xiao T, Wei S, et al. miR‐21‐regulated M2 polarization of macrophage is involved in arsenicosis‐induced hepatic fibrosis through the activation of hepatic stellate cells. J Cell Physiol 2021; 236(8): 6025-41.
[http://dx.doi.org/10.1002/jcp.30288] [PMID: 33481270]
[42]
Zeng Q, Zou Z, Wang Q, et al. Association and risk of five miRNAs with arsenic-induced multiorgan damage. Sci Total Environ 2019; 680: 1-9.
[http://dx.doi.org/10.1016/j.scitotenv.2019.05.042] [PMID: 31085440]
[43]
Zhang M, Xue Y, Zheng B, et al. Liquiritigenin protects against arsenic trioxide-induced liver injury by inhibiting oxidative stress and enhancing mTOR-mediated autophagy. Biomed Pharmacoth 2021; 143: 112167.
[http://dx.doi.org/10.1016/j.biopha.2021.112167]
[44]
Ishaq A, Gulzar H, Hassan A, et al. Ameliorative mechanisms of turmeric-extracted curcumin on arsenic (As)-induced biochemical alterations, oxidative damage, and impaired organ functions in rats. Environ Sci Pollut Res Int 2021; 28(46): 66313-26.
[http://dx.doi.org/10.1007/s11356-021-15695-4] [PMID: 34331650]
[45]
Xu G, Gu Y, Yan N, Li Y, Sun L, Li B. Curcumin functions as an anti‐inflammatory and antioxidant agent on arsenic‐induced hepatic and kidney injury by inhibiting MAPKs/NF‐κB and activating Nrf2 pathways. Environ Toxicol 2021; 36(11): 2161-73.
[http://dx.doi.org/10.1002/tox.23330]
[46]
Chen QM. Nrf2 for cardiac protection: Pharmacological options against oxidative stress. Trends Pharmacol Sci 2021; 42(9): 729-44.
[http://dx.doi.org/10.1016/j.tips.2021.06.005] [PMID: 34332753]
[47]
Schmidlin CJ, Shakya A, Dodson M, Chapman E, Zhang DD. The intricacies of NRF2 regulation in cancer. Semin Cancer Biol 2021; 76: 110-9.
[http://dx.doi.org/10.1016/j.semcancer.2021.05.016] [PMID: 34020028]
[48]
Torrente L, DeNicola GM. Targeting NRF2 and its downstream processes: Opportunities and challenges. Annu Rev Pharmacol Toxicol 2022; 62(1): 279-300.
[http://dx.doi.org/10.1146/annurev-pharmtox-052220-104025] [PMID: 34499527]
[49]
Chan BKY, Elmasry M, Forootan SS, et al. Pharmacological activation of Nrf2 enhances functional liver regeneration. Hepatology 2021; 74(2): 973-86.
[http://dx.doi.org/10.1002/hep.31859] [PMID: 33872408]
[50]
Chen Y, Zhang J, Zhang M, et al. Baicalein resensitizes tamoxifen‐resistant breast cancer cells by reducing aerobic glycolysis and reversing mitochondrial dysfunction viainhibition of hypoxia‐inducible factor‐1α. Clin Transl Med 2021; 11(11): e577.
[http://dx.doi.org/10.1002/ctm2.577] [PMID: 34841716]
[51]
Chen M, Zhong K, Tan J, et al. Baicalein is a novel TLR4‐targeting therapeutics agent that inhibits TLR4/HIF‐1α/VEGF signaling pathway in colorectal cancer. Clin Transl Med 2021; 11(11): e564.
[http://dx.doi.org/10.1002/ctm2.564] [PMID: 34841696]
[52]
Song Q, Peng S, Zhu X. Baicalein protects against MPP+/MPTP-induced neurotoxicity by ameliorating oxidative stress in SH-SY5Y cells and mouse model of Parkinson’s disease. Neurotoxicology 2021; 87: 188-94.
[http://dx.doi.org/10.1016/j.neuro.2021.10.003] [PMID: 34666128]
[53]
Liu ZH, Yang CX, Zhang L, Yang CY, Xu XQ. Baicalein, as a prooxidant, triggers mitochondrial apoptosis in mcf-7 human breast cancer cells through mobilization of intracellular copper and reactive oxygen species generation. OncoTargets Ther 2019; 12: 10749-61.
[http://dx.doi.org/10.2147/OTT.S222819] [PMID: 31849483]
[54]
Yang Y, Liu K, Yang L, Zhang G. Bladder cancer cell viability inhibition and apoptosis induction by baicalein through targeting the expression of anti-apoptotic genes. Saudi J Biol Sci 2018; 25(7): 1478-82.
[http://dx.doi.org/10.1016/j.sjbs.2017.03.014] [PMID: 30505198]
[55]
Zhu Q, Zhuang X, Lu J. Neuroprotective effects of baicalein in animal models of Parkinson’s disease: A systematic review of experimental studies. Phytomedicine 2019; 55: 302-9.
[http://dx.doi.org/10.1016/j.phymed.2018.09.215] [PMID: 30385133]
[56]
Park CH, Han SE, Nam-Goong IS, Kim YI, Kim ES. Combined effects of baicalein and docetaxel on apoptosis in 8505c anaplastic thyroid cancer cells viadownregulation of the erk and akt/mtor pathways. Endocrinol Metab 2018; 33(1): 121-32.
[http://dx.doi.org/10.3803/EnM.2018.33.1.121] [PMID: 29589394]
[57]
Wang X, Cai H, Chen Z, et al. Baicalein alleviates pyroptosis and inflammation in hyperlipidemic pancreatitis by inhibiting NLRP3/Caspase-1 pathway through the miR-192-5p/TXNIP axis. Int Immunopharmacol 2021; 101(Pt B): 108315.
[http://dx.doi.org/10.1016/j.intimp.2021.108315] [PMID: 34785144]
[58]
Li Y, Wang X, Su Y, et al. Baicalein ameliorates ulcerative colitis by improving intestinal epithelial barrier viaAhR/IL-22 pathway in ILC3s. Acta Pharmacol Sin 2022; 43(6): 1495-507.
[PMID: 34671110]
[59]
Bai H, Yuan R, Zhang Z, et al. Intra-articular injection of baicalein inhibits cartilage catabolism and nlrp3 inflammasome signaling in a posttraumatic OA model. Oxid Med Cell Longev 2021; 2021: 1-11.
[http://dx.doi.org/10.1155/2021/6116890] [PMID: 34512868]
[60]
He S, Wang S, Liu S, Li Z, Liu X, Wu J. Baicalein potentiated m1 macrophage polarization in cancer through targeting PI3Kγ/NF-κB signaling. Front Pharmacol 2021; 12: 743837.
[http://dx.doi.org/10.3389/fphar.2021.743837] [PMID: 34512367]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy