Generic placeholder image

Recent Innovations in Chemical Engineering

Editor-in-Chief

ISSN (Print): 2405-5204
ISSN (Online): 2405-5212

Research Article

Comparative Study for the Absorption of Carbon Dioxide in Aqueous Amine Solvents for Enhanced Loading

Author(s): Akash Sood*, Avinash Thakur and Sandeep Mohan Ahuja

Volume 16, Issue 2, 2023

Published on: 28 April, 2023

Page: [119 - 134] Pages: 16

DOI: 10.2174/2405520416666230320163220

Price: $65

conference banner
Abstract

Aims: The current study aimed to investigate the CO2 absorption capacity of the aqueous alkanolamine, including primary, secondary, tertiary, and sterically hindered amines and polyamines, i.e., monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA) and 2-amino-2-methyl-1-propanol (AMP), tetraethylenepentamine (TEPA), triethylenetetramine (TETA), 3-(Methylamino)propylamine (MAPA), and diethylenetriamine (DETA) at 40, 60, and 80°C at 1.1 bar.

Methods: An increase in reaction temperature caused a decrement in CO2 loading across the board for all solvents. The trend of CO2 loading was TEA < MEA < DEA < AMP < MAPA < DETA < TETA < TEPA at 40 ºC, TEA < DEA < MEA < AMP < MAPA < DETA < TETA < TEPA, at 60ºC and TEA < DEA < AMP < MEA < MAPA < DETA < TETA < TEPA at 80ºC.

Results: The results indicated that TEPA has great potential to be utilized as an energy-efficient and non-corrosive solvent for CO2 capture since it has outperformed all other aqueous amine solvents in this present study. Furthermore, the CO2 loading of sterically hindered amine (AMP) at the same temperature was found to be higher than primary, secondary, and tertiary amines. Heat of absorption (ΔHabs) was also determined to gauge the energy requirement to regenerate absorbents for cyclic loading from an economic viewpoint.

Conclusion: DETA has the highest ΔHabs = 84.48 kJ/mol. On the contrary, the long-chain tertiary amine TEA resulted in the least ΔHabs = 40.21 kJ/mol, among all other solvents. Whereas the sterically hindered amine (AMP) was observed to possess mid-range ΔHabs, i.e., 58.76 kJ/mol. Among all selected solvents, polyamines showed higher ΔHabs than other conventional amines pertaining to the precedence of TEA<AMP<DEA<MEA<TETA<TEPA<MAPA<DETA.

Keywords: Alkanolamine, polyamines, carbon capture, absorption, heat of absorption, TETA, AMP.

Next »
[1]
Rivera-Tinoco R, Bouallou C. Comparison of absorption rates and absorption capacity of ammonia solvents with MEA and MDEA aqueous blends for CO2 capture. J Clean Prod 2010; 18(9): 875-80.
[http://dx.doi.org/10.1016/j.jclepro.2009.12.006]
[2]
Sivanesan D, Kim YE, Youn MH, et al. The salt-based catalytic enhancement of CO 2 absorption by a tertiary amine medium. RSC Advances 2016; 6(69): 64575-80.
[http://dx.doi.org/10.1039/C6RA13978G]
[3]
Ataeivarjovi E, Tang Z, Chen J, Zhao Z, Dong G. Enhancement of CO2 desorption from a novel absorbent (Dimethyl Carbonate) by using a PDMS/TiO2 pervaporation membrane. ACS Sustain Chem& Eng 2019; 7: acssuschemeng.9b01216.
[http://dx.doi.org/10.1021/acssuschemeng.9b01216]
[4]
Yamasaki A. An overview of CO2 mitigation options for global warming - emphasized CO2 sequestration options. J Chem Eng of Jpn 2003; 36(4): 361-75.
[http://dx.doi.org/10.1252/jcej.36.361]
[5]
Budinis S, Krevor S, Dowell NM, Brandon N, Hawkes A. An assessment of CCS costs, barriers and potential. Energy Strategy Reviews 2018; 22: 61-81.
[http://dx.doi.org/10.1016/j.esr.2018.08.003]
[6]
Nemiwal M, Subbaramaiah V, Zhang TC, Kumar D. Recent advances in visible-light-driven carbon dioxide reduction by metal-organic frameworks. Sci Total Environ 2021; 762144101
[http://dx.doi.org/10.1016/j.scitotenv.2020.144101] [PMID: 33360464]
[7]
Hu G, Smith KH, Wu Y, Mumford KA, Kentish SE, Stevens GW. Carbon dioxide capture by solvent absorption using amino acids: A review. Chin J Chem Eng 2018; 26(11): 2229-37.
[http://dx.doi.org/10.1016/j.cjche.2018.08.003]
[8]
Climent BF, Martínez-Denegri SG, Soler Seguí B, Gohari DH, Anthony EJ. A technical evaluation, performance analysis and risk assessment of multiple novel oxy-turbine power cycles with complete CO2 capture. J Clean Prod 2016; 133: 971-85.
[http://dx.doi.org/10.1016/j.jclepro.2016.05.189]
[9]
Wilberforce T, Baroutaji A, Soudan B, Al-Alami AH, Olabi AG. Outlook of carbon capture technology and challenges. Sci Total Environ 2019; 657: 56-72.
[http://dx.doi.org/10.1016/j.scitotenv.2018.11.424] [PMID: 30530219]
[10]
Samanta A, Zhao A, Shimizu GKH, Sarkar P, Gupta R. Post-combustion CO2 capture using solid sorbents: A review. Ind Eng Chem Res 2012; 51(4): 1438-63.
[http://dx.doi.org/10.1021/ie200686q]
[11]
Torres FB, Gutierrez JP, Ruiz LA, Bertuzzi MA, Erdmann E. Comparative analysis of absorption, membrane, and hybrid technologies for CO2 recovery. J Nat Gas Sci Eng 2021; 94104082
[http://dx.doi.org/10.1016/j.jngse.2021.104082]
[12]
Míguez J, Porteiro J, Pérez-Orozco R, Gómez M. Technology evolution in membrane-based CCS. Energies 2018; 11(11): 3153.
[http://dx.doi.org/10.3390/en11113153]
[13]
Darabkhani HG, Jurado N, Prpich G, Oakey JE, Wagland ST, Anthony EJ. Design, process simulation and construction of a 100 kW pilot-scale CO2 membrane rig: Improving in situ CO2 capture using selective exhaust gas recirculation (S-EGR). J Nat Gas Sci Eng 2018; 50: 128-38.
[http://dx.doi.org/10.1016/j.jngse.2017.09.012]
[14]
Tait P, Buschle B, Ausner I, Valluri P, Wehrli M, Lucquiaud M. A pilot-scale study of dynamic response scenarios for the flexible operation of post-combustion CO2 capture. Int J Greenh Gas Control 2016; 48: 216-33.
[http://dx.doi.org/10.1016/j.ijggc.2015.12.009]
[15]
Freguia S, Rochelle GT. Modeling of CO2 capture by aqueous monoethanolamine. AIChE J 2003; 49(7): 1676-86.
[http://dx.doi.org/10.1002/aic.690490708]
[16]
Ziemkiewicz P, Stauffer PH, Sullivan-Graham J, et al. Opportunities for increasing CO2 storage in deep, saline formations by active reservoir management and treatment of extracted formation water: Case study at the GreenGen IGCC facility, Tianjin, PR China. Int J Greenh Gas Control 2016; 54: 538-56.
[http://dx.doi.org/10.1016/j.ijggc.2016.07.039]
[17]
Eldardiry H, Habib E. Carbon capture and sequestration in power generation: Review of impacts and opportunities for water sustainability. Energy Sustain Soc 2018; 8(1): 6.
[http://dx.doi.org/10.1186/s13705-018-0146-3]
[18]
Keskes E, Adjiman C, Galindo A, Jackson G. A Physical Absorption Process for the Capture of CO2 from CO2-Rich Natural Gas Streams, Chem. London: Eng. Dep. Imp. Coll 2006.
[19]
Sun WC, Yong CB, Li MH. Kinetics of the absorption of carbon dioxide into mixed aqueous solutions of 2-amino-2-methyl-l-propanol and piperazine. Chem Eng Sci 2005; 60(2): 503-16. [WE - Science Citation Index Expanded [SCI-EXPANDED
[http://dx.doi.org/10.1016/j.ces.2004.08.012]
[20]
Liu Y, Fan W, Wang K, Wang J. Studies of CO 2 absorption/regeneration performances of novel aqueous monothanlamine (MEA)-based solutions. J Clean Prod 2016; 112: 4012-21. [WE - Science Citation Index Expanded [SCI-EXPANDED
[http://dx.doi.org/10.1016/j.jclepro.2015.08.116]
[21]
Sakwattanapong R, Aroonwilas A, Veawab A. Reaction rate of CO2 in aqueous MEA-AMP solution: Experiment and modeling. Energy Procedia 2009; 1(1): 217-24.
[http://dx.doi.org/10.1016/j.egypro.2009.01.031]
[22]
Kazemi S, Ghemi A, Tahvildari K. Experimental and thermodynamic modeling of CO2 absorption in aqueous dea and dea+pz blended solutions. Iran J Chem Chem Eng 2021; 40: 1162-78.
[http://dx.doi.org/10.30492/ijcce.2020.39175]
[23]
Yu LCY, Sadeek S, Williams DR, Campbell KLS. Investigating the corrosion due to high capacity and uptake promoter amine blends on carbon steel. Energy Procedia 2017; 114: 1998-2008.
[http://dx.doi.org/10.1016/j.egypro.2017.03.1334]
[24]
Babamohammadi S, Shamiri A, Aroua MK. A review of CO2 capture by absorption in ionic liquid-based solvents. Rev Chem Eng 2015; 31(4): 383-412.
[http://dx.doi.org/10.1515/revce-2014-0032]
[25]
Xie HB, Zhou Y, Zhang Y, Johnson JK. Reaction mechanism of monoethanolamine with CO2 in aqueous solution from molecular modeling. J Phys Chem A 2010; 114(43): 11844-52.
[http://dx.doi.org/10.1021/jp107516k] [PMID: 20939618]
[26]
Oexmann J, Kather A. Minimising the regeneration heat duty of post-combustion CO2 capture by wet chemical absorption: The misguided focus on low heat of absorption solvents. Int J Greenh Gas Control 2010; 4(1): 36-43.
[http://dx.doi.org/10.1016/j.ijggc.2009.09.010]
[27]
Kierzkowska-Pawlak H, Zarzycki R. Calorimetric measurements of CO2 absorption in aqueous N-methyldiethanolamine solutions. Chem Pap 2002; 56: 219-27.
[28]
Kierzkowska-Pawlak H, Sobala K. Heat of absorption of CO2 in aqueous solutions of DEEA and DEEA + MAPA blends-A new approach to measurement methodology. Int J Greenh Gas Control 2020; 100103102
[http://dx.doi.org/10.1016/j.ijggc.2020.103102]
[29]
Kim I, Hoff KA, Mejdell T. Heat of absorption of CO2 in aqueous solutions of mea: New experimental data. Energy Procedia 2014; 63: 1446-55.
[http://dx.doi.org/10.1016/j.egypro.2014.11.154]
[30]
Kim I, Svendsen HF. Heat of absorption of carbon dioxide (CO2) in monoethanolamine (MEA) and 2-(aminoethyl)ethanolamine (AEEA) solutions. Ind Eng Chem Res 2007; 46(17): 5803-9.
[http://dx.doi.org/10.1021/ie0616489]
[31]
Xiao M, Liu H, Idem R, Tontiwachwuthikul P, Liang Z. A study of structure–activity relationships of commercial tertiary amines for post-combustion CO2 capture. Appl Energy 2016; 184: 219-29.
[http://dx.doi.org/10.1016/j.apenergy.2016.10.006]
[32]
Wai SK, Nwaoha C, Saiwan C, Idem R, Supap T. Absorption heat, solubility, absorption and desorption rates, cyclic capacity, heat duty, and absorption kinetic modeling of AMP–DETA blend for post–combustion CO2 capture. Separ Purif Tech 2018; 194: 89-95.
[http://dx.doi.org/10.1016/j.seppur.2017.11.024]
[33]
Mukherjee S, Samanta AN. Heat of absorption of CO 2 and heat capacity measurements in aqueous solutions of Benzylamine, N -(2-Aminoethyl)-ethanolamine, and their blends using a reaction calorimeter. J Chem Eng Data 2019; 64(8): 3392-406.
[http://dx.doi.org/10.1021/acs.jced.9b00205]
[34]
Zheng Y, El Ahmar E, Simond M, Ballerat-Busserolles K, Zhang P. CO 2 Heat of absorption in aqueous solutions of MDEA and MDEA/Piperazine. J Chem Eng Data 2020; 65(8): 3784-93.
[http://dx.doi.org/10.1021/acs.jced.9b01163]
[35]
Guo Y, Tan C, Wang P, et al. Kinetic study on CO2 adsorption behaviors of amine-modified co-firing fly ash. J Taiwan Inst Chem Eng 2019; 96: 374-81.
[http://dx.doi.org/10.1016/j.jtice.2018.12.003]
[36]
Chen S, Zhou T, Wu H, Wu Y, Jiang Z. Embedding molecular amine functionalized polydopamine submicroparticles into polymeric membrane for carbon capture. Ind Eng Chem Res 2017; 56(28): 8103-10.
[http://dx.doi.org/10.1021/acs.iecr.7b01546]
[37]
Maheswari AU, Palanivelu K. Separation of carbon dioxide and nitrogen gases using novel composite membranes. Can J Chem 2017; 95(1): 57-67.
[http://dx.doi.org/10.1139/cjc-2016-0090]
[38]
Li Y, Liu C, Parnas R, Liu Y, Liang B, Lu H. The CO2 absorption and desorption performance of the triethylenetetramine + N,N-diethylethanolamine + H2O system. Chin J Chem Eng 2018; 26(11): 2351-60.
[http://dx.doi.org/10.1016/j.cjche.2018.04.014]
[39]
Zhao Y, Ding H, Zhong Q. Preparation and characterization of aminated graphite oxide for CO2 capture. Appl Surf Sci 2012; 258(10): 4301-7.
[http://dx.doi.org/10.1016/j.apsusc.2011.12.085]
[40]
Liebenthal U, Pinto DDD, Monteiro JGM-S, Svendsen HF, Kather A. Overall process analysis and optimisation for CO2 Capture from coal fired power plants based on phase change solvents forming two liquid phases. Energy Procedia 2013; 37: 1844-54.
[http://dx.doi.org/10.1016/j.egypro.2013.06.064]
[41]
Yu B, Yu H, Li K, et al. Characterisation and kinetic study of carbon dioxide absorption by an aqueous diamine solution. Appl Energy 2017; 208: 1308-17.
[http://dx.doi.org/10.1016/j.apenergy.2017.09.023]
[42]
Voice AK, Vevelstad SJ, Chen X, Nguyen T, Rochelle GT. Aqueous 3-(methylamino)propylamine for CO2 capture. Int J Greenh Gas Control 2013; 15: 70-7.
[http://dx.doi.org/10.1016/j.ijggc.2013.01.045]
[43]
Brúder P, Lauritsen KG, Mejdell T, Svendsen HF. CO2 capture into aqueous solutions of 3-methylaminopropylamine activated dimethyl-monoethanolamine. Chem Eng Sci 2012; 75: 28-37.
[http://dx.doi.org/10.1016/j.ces.2012.03.005]
[44]
Zhu D, Fang M, Lv Z, Wang Z, Luo Z. Selection of blended solvents for CO2 absorption from coal-fired flue gas. Part 1: Monoethanolamine (MEA)-based solvents. Energy Fuels 2012; 26(1): 147-53.
[http://dx.doi.org/10.1021/ef2011113]
[45]
Salazar J, Diwekar U, Joback K, Berger AH, Bhown AS. Solvent selection for post-combustion CO2 capture. Energy Procedia 2013; 37: 257-64.
[http://dx.doi.org/10.1016/j.egypro.2013.05.110]
[46]
Lim J, Kim DH, Yoon Y, Jeong SK, Park KT, Nam SC. Absorption of CO2 into aqueous potassium salt solutions of l -alanine and l -proline. Energy Fuels 2012; 26(6): 3910-8.
[http://dx.doi.org/10.1021/ef300453e]
[47]
Gabrielsen J, Michelsen ML, Stenby EH, Kontogeorgis GM. A model for estimating CO2 solubility in aqueous alkanolamines. Ind Eng Chem Res 2005; 44(9): 3348-54.
[http://dx.doi.org/10.1021/ie048857i]
[48]
El Hadri N, Quang DV, Goetheer ELV, Abu Zahra MRM. Aqueous amine solution characterization for post-combustion CO2 capture process. Appl Energy 2017; 185: 1433-49.
[http://dx.doi.org/10.1016/j.apenergy.2016.03.043]
[49]
Nwaoha C, Saiwan C, Tontiwachwuthikul P, et al. Carbon dioxide (CO2) capture: Absorption-desorption capabilities of 2-amino-2-methyl-1-propanol (AMP), piperazine (PZ) and monoethanolamine (MEA) tri-solvent blends. J Nat Gas Sci Eng 2016; 33: 742-50. [WE - Science Citation Index Expanded [SCI-EXPANDED
[http://dx.doi.org/10.1016/j.jngse.2016.06.002]
[50]
Sood A, Thakur A, Ahuja SM. Recent advancements in ionic liquid based carbon capture technologies. Chem Eng Commun 2021; 1-22.
[http://dx.doi.org/10.1080/00986445.2021.1990886]
[51]
Mac Dowell N, Shah N. Identification of the cost-optimal degree of CO2 capture: An optimisation study using dynamic process models. Int J Greenh Gas Control 2013; 13: 44-58.
[http://dx.doi.org/10.1016/j.ijggc.2012.11.029]
[52]
Li H, Ditaranto M, Yan J. Carbon capture with low energy penalty: Supplementary fired natural gas combined cycles. Appl Energy 2012; 97: 164-9.
[http://dx.doi.org/10.1016/j.apenergy.2011.12.034]
[53]
Sahraie S, Rashidi H, Valeh-e-Sheyda P. An optimization framework to investigate the CO2 capture performance by MEA: Experimental and statistical studies using Box-Behnken design. Process Saf Environ Prot 2019; 122: 161-8.
[http://dx.doi.org/10.1016/j.psep.2018.11.026]
[54]
Kim YE, Moon SJ, Yoon YI, et al. Heat of absorption and absorption capacity of CO2 in aqueous solutions of amine containing multiple amino groups. Separ Purif Tech 2014; 122: 112-8.
[http://dx.doi.org/10.1016/j.seppur.2013.10.030]
[55]
He F, Wang T, Fang M, Wang Z, Yu H, Ma Q. Screening test of amino acid salts for CO2 absorption at flue gas temperature in a membrane contactor. Energy Fuels 2017; 31(1): 770-7.
[http://dx.doi.org/10.1021/acs.energyfuels.6b02578]
[56]
Chen H, Liu W, Sun J, et al. Routine investigation of CO 2 sorption enhancement for extruded–spheronized cao-based pellets. Energy Fuels 2017; 31(9): 9660-7.
[http://dx.doi.org/10.1021/acs.energyfuels.7b00921]
[57]
Hu CC, Lin CH, Chiao YH, et al. Mixing effect of ligand on carbon dioxide capture behavior of zeolitic imidazolate framework/poly(amide- b -ethylene oxide) mixed matrix membranes. ACS Sustain Chem& Eng 2018; 6(11): 15341-8.
[http://dx.doi.org/10.1021/acssuschemeng.8b03789]
[58]
Vaidya PD, Kenig EY. CO2-alkanolamine reaction kinetics: A review of recent studies. Chem Eng Technol 2007; 30(11): 1467-74.
[http://dx.doi.org/10.1002/ceat.200700268]
[59]
Shi M, Xiong W, Tu Z, Zhang X, Hu X, Wu Y. Task-specific deep eutectic solvents for the highly efficient and selective separation of H2S. Separ Purif Tech 2021; 276119357
[http://dx.doi.org/10.1016/j.seppur.2021.119357]
[60]
Nakai H, Nishimura Y, Kaiho T, Kubota T, Sato H. Contrasting mechanisms for CO2 absorption and regeneration processes in aqueous amine solutions: Insights from density-functional tight-binding molecular dynamics simulations. Chem Phys Lett 2016; 647: 127-31. [WE - Science Citation Index Expanded [SCI-EXPANDED
[http://dx.doi.org/10.1016/j.cplett.2016.01.059]
[61]
Wang Y, Guo T, Hu X, Hao J, Guo Q. Mechanism and kinetics of CO2 adsorption for TEPA- impregnated hierarchical mesoporous carbon in the presence of water vapor. Powder Technol 2020; 368: 227-36.
[http://dx.doi.org/10.1016/j.powtec.2020.04.062]
[62]
Muchan P, Narku-Tetteh J, Saiwan C, Idem R, Supap T. Effect of number of amine groups in aqueous polyamine solution on carbon dioxide (CO2) capture activities. Separ Purif Tech 2017; 184: 128-34.
[http://dx.doi.org/10.1016/j.seppur.2017.04.031]
[63]
Yang X, Rees RJ, Conway W, Puxty G, Yang Q, Winkler DA. Computational modeling and simulation of CO2 capture by aqueous amines. Chem Rev 2017; 117(14): 9524-93.
[http://dx.doi.org/10.1021/acs.chemrev.6b00662] [PMID: 28517929]
[64]
Davran-Candan T. DFT modeling of CO2 interaction with various aqueous amine structures. J Phys Chem A 2014; 118(25): 4582-90.
[http://dx.doi.org/10.1021/jp503929g] [PMID: 24901496]
[65]
Jou FY, Otto FD, Mather AE. Vapor-liquid equilibrium of carbon dioxide in aqueous mixtures of monoethanolamine and methyldiethanolamine. Ind Eng Chem Res 1994; 33(8): 2002-5.
[http://dx.doi.org/10.1021/ie00032a016]
[66]
Lee JI, Otto FD, Mather AE. The solubility of H2 S and CO 2 in aqueous monoethanolamine solutions. Can J Chem Eng 1974; 52(6): 803-5.
[http://dx.doi.org/10.1002/cjce.5450520617]
[67]
Kim I, Hoff KA, Hessen ET, Haug-Warberg T, Svendsen HF. Enthalpy of absorption of CO2 with alkanolamine solutions predicted from reaction equilibrium constants. Chem Eng Sci 2009; 64(9): 2027-38.
[http://dx.doi.org/10.1016/j.ces.2008.12.037]
[68]
Kim I, Svendsen HF. Comparative study of the heats of absorption of post-combustion CO2 absorbents. Int J Greenh Gas Control 2011; 5(3): 390-5.
[http://dx.doi.org/10.1016/j.ijggc.2010.05.003]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy