Review Article

橙皮苷治疗脑部疾病的神经保护作用:临床前循证综述

卷 24, 期 3, 2024

发表于: 18 April, 2023

页: [316 - 326] 页: 11

弟呕挨: 10.2174/1566524023666230320144722

价格: $65

摘要

神经退行性疾病(NDs)是一种进行性疾病,是世界人口老龄化中一个严重的健康问题。当代世界对传统疗法和植物药物领域的兴趣高涨,由于它们促进健康的作用和较少的副作用,被研究人员广泛接受。橙皮苷是一种存在于柑橘类水果果皮中的黄酮苷,具有多种生物活性,包括抗炎和抗氧化作用。在各种临床前研究中,橙皮苷对阿尔茨海默病、癫痫、帕金森病、多发性硬化症、抑郁症、神经性疼痛等多种脑部疾病均有显著的保护作用,并对其机制进行了研究。研究结果表明,橙皮苷的神经保护作用是通过调节抗氧化防御活性和神经生长因子,减少细胞凋亡和神经炎症途径介导的。本文综述了橙皮苷在管理和治疗多种脑部疾病中的潜在作用。

关键词: 橙皮苷,类黄酮,神经保护,癫痫,阿尔茨海默病,帕金森病。

[1]
Gao HM, Hong JS. Why neurodegenerative diseases are progressive: Uncontrolled inflammation drives disease progression. Trends Immunol 2008; 29(8): 357-65.
[http://dx.doi.org/10.1016/j.it.2008.05.002] [PMID: 18599350]
[2]
Uttara B, Singh A, Zamboni P, Mahajan R. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 2009; 7(1): 65-74.
[http://dx.doi.org/10.2174/157015909787602823] [PMID: 19721819]
[3]
Kovacs GG. Concepts and classification of neurodegenerative diseases. Handb Clin Neurol 2018; 145: 301-7.
[http://dx.doi.org/10.1016/B978-0-12-802395-2.00021-3] [PMID: 28987178]
[4]
Zhou J, Gennatas ED, Kramer JH, Miller BL, Seeley WW. Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron 2012; 73(6): 1216-27.
[http://dx.doi.org/10.1016/j.neuron.2012.03.004] [PMID: 22445348]
[5]
Fu H, Hardy J, Duff KE. Selective vulnerability in neurodegenerative diseases. Nat Neurosci 2018; 21(10): 1350-8.
[http://dx.doi.org/10.1038/s41593-018-0221-2] [PMID: 30250262]
[6]
Das SK, Ray BK, Paul N, et al. Prevalence, burden, and risk factors of migraine: A community-based study from Eastern India. Neurol India 2017; 65(6): 1280-8.
[http://dx.doi.org/10.4103/0028-3886.217979] [PMID: 29133701]
[7]
Mishra A, Bandopadhyay R, Singh PK, Mishra PS, Sharma N, Khurana N. Neuroinflammation in neurological disorders: Pharmacotherapeutic targets from bench to bedside. Metab Brain Dis 2021; 36(7): 1591-626.
[http://dx.doi.org/10.1007/s11011-021-00806-4] [PMID: 34387831]
[8]
Dhingra A, Chopra B, Bonthagarala B. Natural anti-inflammatory agents: Recent progress and future perspectives. Ann Pharmacol Pharm 2018; 3(5): 1158.
[9]
Havsteen BH. The biochemistry and medical significance of the flavonoids. Pharmacol Ther 2002; 96(2-3): 67-202.
[http://dx.doi.org/10.1016/S0163-7258(02)00298-X] [PMID: 12453566]
[10]
Maan G, Sikdar B, Kumar A, Shukla R, Mishra A. Role of flavonoids in neurodegenerative diseases: Limitations and future perspectives. Curr Top Med Chem 2020; 20(13): 1169-94.
[http://dx.doi.org/10.2174/1568026620666200416085330] [PMID: 32297582]
[11]
Maher P. The potential of flavonoids for the treatment of neurodegenerative diseases. Int J Mol Sci 2019; 20(12): 3056.
[http://dx.doi.org/10.3390/ijms20123056] [PMID: 31234550]
[12]
Ko YH, Kim SK, Lee SY, Jang CG. Flavonoids as therapeutic candidates for emotional disorders such as anxiety and depression. Arch Pharm Res 2020; 43(11): 1128-43.
[http://dx.doi.org/10.1007/s12272-020-01292-5] [PMID: 33225387]
[13]
Mishra A, Goel RK. Chronic 5-HT3 receptor antagonism ameliorates seizures and associated memory deficit in pentylenetetrazole-kindled mice. Neuroscience 2016; 339: 319-28.
[http://dx.doi.org/10.1016/j.neuroscience.2016.10.010] [PMID: 27746348]
[14]
Li C, Schluesener H. Health-promoting effects of the citrus flavanone hesperidin. Crit Rev Food Sci Nutr 2017; 57(3): 613-31.
[http://dx.doi.org/10.1080/10408398.2014.906382] [PMID: 25675136]
[15]
Suzuki H, Asakawa A, Kawamura N, Yagi T, Inui A. Hesperidin potentiates ghrelin signaling. Recent Pat Food Nutr Agric 2014; 6(1): 60-3.
[http://dx.doi.org/10.2174/2212798406666140825120623] [PMID: 25176345]
[16]
Aggarwal V, Tuli HS, Thakral F, et al. Molecular mechanisms of action of hesperidin in cancer: Recent trends and advancements. Exp Biol Med 2020; 245(5): 486-97.
[http://dx.doi.org/10.1177/1535370220903671] [PMID: 32050794]
[17]
Youdim KA, Dobbie MS, Kuhnle G, Proteggente AR, Abbott NJ, Rice-Evans C. Interaction between flavonoids and the blood-brain barrier: In vitro studies. J Neurochem 2003; 85(1): 180-92.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01652.x] [PMID: 12641740]
[18]
Parhiz H, Roohbakhsh A, Soltani F, Rezaee R, Iranshahi M. Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: An updated review of their molecular mechanisms and experimental models. Phytother Res 2015; 29(3): 323-31.
[http://dx.doi.org/10.1002/ptr.5256] [PMID: 25394264]
[19]
Roohbakhsh A, Parhiz H, Soltani F, Rezaee R, Iranshahi M. Molecular mechanisms behind the biological effects of hesperidin and hesperetin for the prevention of cancer and cardiovascular diseases. Life Sci 2015; 124: 64-74.
[http://dx.doi.org/10.1016/j.lfs.2014.12.030] [PMID: 25625242]
[20]
Mesquita E, Monteiro M. Simultaneous HPLC determination of flavonoids and phenolic acids profile in Pêra-Rio orange juice. Food Res Int 2018; 106: 54-63.
[http://dx.doi.org/10.1016/j.foodres.2017.12.025] [PMID: 29579958]
[21]
Shimoda K, Hamada H, Hamada H. Glycosylation of hesperetin by plant cell cultures. Phytochemistry 2008; 69(5): 1135-40.
[http://dx.doi.org/10.1016/j.phytochem.2007.11.008] [PMID: 18160083]
[22]
Tejada S, Pinya S, Martorell M, et al. Potential anti-inflammatory effects of hesperidin from the genus citrus. Curr Med Chem 2019; 25(37): 4929-45.
[http://dx.doi.org/10.2174/0929867324666170718104412] [PMID: 28721824]
[23]
Ramana KVR, Govindarajan VS, Ranganna S, Kefford JF. Citrus fruits-Varieties, chemistry, technology, and quality evaluation. Part I: Varieties, production, handling, and storage. CRC Crit Rev Food Sci Nutr 1981; 15(4): 353-431.
[http://dx.doi.org/10.1080/10408398109527321] [PMID: 7037309]
[24]
Mitsunaga Y, Takanaga H, Matsuo H, et al. Effect of bioflavonoids on vincristine transport across blood–brain barrier. Eur J Pharmacol 2000; 395(3): 193-201.
[http://dx.doi.org/10.1016/S0014-2999(00)00180-1] [PMID: 10812049]
[25]
Lev N, Barhum Y, Ben-Zur T, Melamed E, Steiner I, Offen D. Knocking out DJ-1 attenuates astrocytes neuroprotection against 6-hydroxydopamine toxicity. J Mol Neurosci 2013; 50(3): 542-50.
[http://dx.doi.org/10.1007/s12031-013-9984-9] [PMID: 23536331]
[26]
Shulman JM, De Jager PL, Feany MB. Parkinson’s disease: Genetics and pathogenesis. Annu Rev Pathol 2011; 6(1): 193-222.
[http://dx.doi.org/10.1146/annurev-pathol-011110-130242] [PMID: 21034221]
[27]
Antunes MS, Goes ATR, Boeira SP, Prigol M, Jesse CR. Protective effect of hesperidin in a model of Parkinson’s disease induced by 6-hydroxydopamine in aged mice. Nutrition 2014; 30(11-12): 1415-22.
[http://dx.doi.org/10.1016/j.nut.2014.03.024] [PMID: 25280422]
[28]
Poetini MR, Araujo SM, Trindade de Paula M, et al. Hesperidin attenuates iron-induced oxidative damage and dopamine depletion in Drosophila melanogaster model of Parkinson’s disease. Chem Biol Interact 2018; 279: 177-86.
[http://dx.doi.org/10.1016/j.cbi.2017.11.018] [PMID: 29191452]
[29]
Kesh S, Kannan RR, Sivaji K, Balakrishnan A. Hesperidin downregulates kinases lrrk2 and gsk3β in a 6-OHDA induced Parkinson’s disease model. Neurosci Lett 2021; 740: 135426.
[http://dx.doi.org/10.1016/j.neulet.2020.135426] [PMID: 33075420]
[30]
Antunes MS, Cattelan Souza L, Ladd FVL, et al. Hesperidin ameliorates anxiety-depressive-like behavior in 6-ohda model of parkinson’s disease by regulating striatal cytokine and neurotrophic factors levels and dopaminergic innervation loss in the striatum of mice. Mol Neurobiol 2020; 57(7): 3027-41.
[http://dx.doi.org/10.1007/s12035-020-01940-3] [PMID: 32458386]
[31]
Tamilselvam K, Braidy N, Manivasagam T, et al. Neuroprotective effects of hesperidin, a plant flavanone, on rotenone-induced oxidative stress and apoptosis in a cellular model for Parkinson’s disease. Oxid Med Cell Longev 2013; 2013: 1-11.
[http://dx.doi.org/10.1155/2013/102741] [PMID: 24205431]
[32]
Cummings J. New approaches to symptomatic treatments for Alzheimer’s disease. Mol Neurodegener 2021; 16(1): 2.
[http://dx.doi.org/10.1186/s13024-021-00424-9] [PMID: 33441154]
[33]
Wang D, Liu L, Zhu X, Wu W, Wang Y. Hesperidin alleviates cognitive impairment, mitochondrial dysfunction and oxidative stress in a mouse model of Alzheimer’s disease. Cell Mol Neurobiol 2014; 34(8): 1209-21.
[http://dx.doi.org/10.1007/s10571-014-0098-x] [PMID: 25135708]
[34]
Thenmozhi AJ, Raja TRW, Janakiraman U, Manivasagam T. Neuroprotective effect of hesperidin on aluminium chloride induced Alzheimer’s disease in Wistar rats. Neurochem Res 2015; 40(4): 767-76.
[http://dx.doi.org/10.1007/s11064-015-1525-1] [PMID: 25630717]
[35]
Li C, Zug C, Qu H, Schluesener H, Zhang Z. Hesperidin ameliorates behavioral impairments and neuropathology of transgenic APP/PS1 mice. Behav Brain Res 2015; 281: 32-42.
[http://dx.doi.org/10.1016/j.bbr.2014.12.012] [PMID: 25510196]
[36]
Lee D, Kim N, Jeon SH, et al. Hesperidin improves memory function by enhancing neurogenesis in a mouse model of alzheimer’s disease. Nutrients 2022; 14(15): 3125.
[http://dx.doi.org/10.3390/nu14153125] [PMID: 35956303]
[37]
Correale J, Gaitán MI, Ysrraelit MC, Fiol MP. Progressive multiple sclerosis: From pathogenic mechanisms to treatment. Brain 2017; 140(3): 527-46.
[PMID: 27794524]
[38]
Farzaei MH, Shahpiri Z, Bahramsoltani R. nia MM, Najafi F, Rahimi R. Efficacy and tolerability of phytomedicines in multiple sclerosis patients: A review. CNS Drugs 2017; 31(10): 867-89.
[http://dx.doi.org/10.1007/s40263-017-0466-4] [PMID: 28948486]
[39]
Ciftci O, Ozcan C, Kamisli O, Cetin A, Basak N, Aytac B. Hesperidin, a citrus flavonoid, has the ameliorative effects against experimental autoimmune encephalomyelitis (EAE) in a C57BL/J6 mouse model. Neurochem Res 2015; 40(6): 1111-20.
[http://dx.doi.org/10.1007/s11064-015-1571-8] [PMID: 25859982]
[40]
Haghmorad D, Mahmoudi MB, Salehipour Z, et al. Hesperidin ameliorates immunological outcome and reduces neuroinflammation in the mouse model of multiple sclerosis. J Neuroimmunol 2017; 302: 23-33.
[http://dx.doi.org/10.1016/j.jneuroim.2016.11.009] [PMID: 27912911]
[41]
Rosas HD, Hevelone ND, Zaleta AK, Greve DN, Salat DH, Fischl B. Regional cortical thinning in preclinical Huntington disease and its relationship to cognition. Neurology 2005; 65(5): 745-7.
[http://dx.doi.org/10.1212/01.wnl.0000174432.87383.87] [PMID: 16157910]
[42]
Kumar P, Kumar A. Protective effect of hesperidin and naringin against 3-nitropropionic acid induced Huntington’s like symptoms in rats: Possible role of nitric oxide. Behav Brain Res 2010; 206(1): 38-46.
[http://dx.doi.org/10.1016/j.bbr.2009.08.028] [PMID: 19716383]
[43]
Kumar A, Chaudhary T, Mishra J. Minocycline modulates neuroprotective effect of hesperidin against quinolinic acid induced Huntington’s disease like symptoms in rats: Behavioral, biochemical, cellular and histological evidences. Eur J Pharmacol 2013; 720(1-3): 16-28.
[http://dx.doi.org/10.1016/j.ejphar.2013.10.057] [PMID: 24211676]
[44]
Fakhoury M. Spinal cord injury: Overview of experimental approaches used to restore locomotor activity. Rev Neurosci 2015; 26(4): 397-405.
[http://dx.doi.org/10.1515/revneuro-2015-0001] [PMID: 25870961]
[45]
Jorge A, Taylor T, Agarwal N, Hamilton DK. Current agents and related therapeutic targets for inflammation after acute traumatic spinal cord injury. World Neurosurg 2019; 132: 138-47.
[http://dx.doi.org/10.1016/j.wneu.2019.08.108] [PMID: 31470153]
[46]
Heo SD, Kim J, Choi Y, Ekanayake P, Ahn M, Shin T. Hesperidin improves motor disability in rat spinal cord injury through anti-inflammatory and antioxidant mechanism via Nrf-2/HO-1 pathway. Neurosci Lett 2020; 715: 134619.
[http://dx.doi.org/10.1016/j.neulet.2019.134619] [PMID: 31715292]
[47]
Yurtal Z, Altug ME, Unsaldi E, Secinti IE, Kucukgul A. Investigation of neuroprotective and therapeutic effect of hesperidin in experimental spinal cord injury. Turk Neurosurg 2020; 30(6): 899-906.
[http://dx.doi.org/10.5137/1019-5149.JTN.29611-20.2] [PMID: 33216334]
[48]
Gaur V, Kumar A. Hesperidin pre-treatment attenuates NO-mediated cerebral ischemic reperfusion injury and memory dysfunction. Pharmacol Rep 2010; 62(4): 635-48.
[http://dx.doi.org/10.1016/S1734-1140(10)70321-2] [PMID: 20885004]
[49]
Oztanir MN, Ciftci O, Cetin A, Aladag MA. Hesperidin attenuates oxidative and neuronal damage caused by global cerebral ischemia/reperfusion in a C57BL/J6 mouse model. Neurol Sci 2014; 35(9): 1393-9.
[http://dx.doi.org/10.1007/s10072-014-1725-5] [PMID: 24676696]
[50]
Anovadiya AP, Sanmukhani JJ, Tripathi CB. Epilepsy: Novel therapeutic targets. J Pharmacol Pharmacother 2012; 3(2): 112-7.
[PMID: 22629084]
[51]
Kumar A, Lalitha S, Mishra J. Hesperidin potentiates the neuroprotective effects of diazepam and gabapentin against pentylenetetrazole-induced convulsions in mice: Possible behavioral, biochemical and mitochondrial alterations. Indian J Pharmacol 2014; 46(3): 309-15.
[http://dx.doi.org/10.4103/0253-7613.132180] [PMID: 24987179]
[52]
Kumar A, Lalitha S, Mishra J. Possible nitric oxide mechanism in the protective effect of hesperidin against pentylenetetrazole (PTZ)-induced kindling and associated cognitive dysfunction in mice. Epilepsy Behav 2013; 29(1): 103-11.
[http://dx.doi.org/10.1016/j.yebeh.2013.06.007] [PMID: 23939034]
[53]
Costigan M, Scholz J, Woolf CJ. Neuropathic pain: A maladaptive response of the nervous system to damage. Annu Rev Neurosci 2009; 32(1): 1-32.
[http://dx.doi.org/10.1146/annurev.neuro.051508.135531] [PMID: 19400724]
[54]
Tao J, Liu L, Fan Y, et al. Role of hesperidin in P2X3 receptor-mediated neuropathic pain in the dorsal root ganglia. Int J Neurosci 2019; 129(8): 784-93.
[http://dx.doi.org/10.1080/00207454.2019.1567512] [PMID: 30621504]
[55]
Carballo-Villalobos AI, González-Trujano ME, Alvarado-Vázquez N, López-Muñoz FJ. Pro-inflammatory cytokines involvement in the hesperidin antihyperalgesic effects at peripheral and central levels in a neuropathic pain model. Inflammopharmacology 2017; 25(2): 265-9.
[http://dx.doi.org/10.1007/s10787-017-0326-3] [PMID: 28265836]
[56]
Semis HS, Kandemir FM, Kaynar O, Dogan T, Arikan SM. The protective effects of hesperidin against paclitaxel-induced peripheral neuropathy in rats. Life Sci 2021; 287: 120104.
[http://dx.doi.org/10.1016/j.lfs.2021.120104] [PMID: 34743946]
[57]
Visnagri A, Kandhare AD, Chakravarty S, Ghosh P, Bodhankar SL. Hesperidin, a flavanoglycone attenuates experimental diabetic neuropathy via modulation of cellular and biochemical marker to improve nerve functions. Pharm Biol 2014; 52(7): 814-28.
[http://dx.doi.org/10.3109/13880209.2013.870584] [PMID: 24559476]
[58]
Cuijpers P, Quero S, Dowrick C, Arroll B. Psychological treatment of depression in primary care: recent developments. Curr Psychiatry Rep 2019; 21(12): 129.
[http://dx.doi.org/10.1007/s11920-019-1117-x] [PMID: 31760505]
[59]
Kosari-Nasab M, Shokouhi G, Ghorbanihaghjo A, Abbasi MM, Salari AA. Hesperidin attenuates depression-related symptoms in mice with mild traumatic brain injury. Life Sci 2018; 213: 198-205.
[http://dx.doi.org/10.1016/j.lfs.2018.10.040] [PMID: 30352242]
[60]
Zhu X, Liu H, Liu Y, et al. The antidepressant-like effects of hesperidin in streptozotocin-induced diabetic rats by activating Nrf2/ARE/Glyoxalase 1 pathway. Front Pharmacol 2020; 11: 1325.
[http://dx.doi.org/10.3389/fphar.2020.01325]
[61]
Manach C, Morand C, Gil-Izquierdo A, Bouteloup-Demange C, Rémésy C. Bioavailability in humans of the flavanones hesperidin and narirutin after the ingestion of two doses of orange juice. Eur J Clin Nutr 2003; 57(2): 235-42.
[http://dx.doi.org/10.1038/sj.ejcn.1601547] [PMID: 12571654]
[62]
Ávila-Gálvez MÁ, Giménez-Bastida JA, González-Sarrías A, Espín JC. New insights into the metabolism of the flavanones eriocitrin and hesperidin: A comparative human pharmacokinetic study. Antioxidants 2021; 10(3): 435.
[http://dx.doi.org/10.3390/antiox10030435] [PMID: 33799874]
[63]
Khan MK. Zill-E-Huma, Dangles O. A comprehensive review on flavanones, the major citrus polyphenols. J Food Compos Anal 2014; 33(1): 85-104.
[http://dx.doi.org/10.1016/j.jfca.2013.11.004]
[64]
Kuntić V, Brborić J, Holclajtner-Antunović I, Uskoković-Marković S. Evaluating the bioactive effects of flavonoid hesperidin: A new literature data survey. Vojnosanit Pregl 2014; 71(1): 60-5.
[http://dx.doi.org/10.2298/VSP1401060K] [PMID: 24516992]
[65]
Dimpfel W. Different anticonvulsive effects of hesperidin and its aglycone hesperetin on electrical activity in the rat hippocampus in-vitro. J Pharm Pharmacol 2010; 58(3): 375-9.
[http://dx.doi.org/10.1211/jpp.58.3.0012] [PMID: 16536905]
[66]
Zhu X, Liu H, Deng Z, Yan C, Liu Y, Yin X. Hesperidin exerts anxiolytic-like effects in rats with streptozotocin-induced diabetes via PKA/CREB signaling. Curr Mol Pharmacol 2022; 15.
[http://dx.doi.org/10.2174/1573413718666220314140848] [PMID: 35289260]
[67]
Justin Thenmozhi A, William Raja TR, Manivasagam T, Janakiraman U, Essa MM. Hesperidin ameliorates cognitive dysfunction, oxidative stress and apoptosis against aluminium chloride induced rat model of Alzheimer’s disease. Nutr Neurosci 2017; 20(6): 360-8.
[http://dx.doi.org/10.1080/1028415X.2016.1144846] [PMID: 26878879]
[68]
Lee B, Choi GM, Sur B. Antidepressant-like effects of hesperidin in animal model of post-traumatic stress disorder. Chin J Integr Med 2021; 27(1): 39-46.
[http://dx.doi.org/10.1007/s11655-020-2724-4] [PMID: 32445019]
[69]
Wang T, Zheng L, Zhang W. Hesperidin alleviates bupivacaine anesthesia‐induced neurotoxicity in SH‐SY5Y cells by regulating apoptosis and oxidative damage. J Biochem Mol Toxicol 2021; 35(7): e22787.
[http://dx.doi.org/10.1002/jbt.22787] [PMID: 33830595]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy