Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Endoplasmic Reticulum as a Therapeutic Target in Cancer: Is there a Role for Flavonoids?

Author(s): Ava Aghakhani, Mehrnoush Baradaran Hezave, Asma Rasouli, Masoumeh Saberi Rounkian, Fatemeh Soleimanlou, Arian Alhani, Nasim Sabet Eqlidi, Maryam Pirani, Saba Mehrtabar, Nasibeh Zerangian, Asiyeh Pormehr-Yabandeh, Kimia Keylani, Neda Tizro and Niloofar Deravi*

Volume 24, Issue 3, 2024

Published on: 12 May, 2023

Page: [298 - 315] Pages: 18

DOI: 10.2174/1566524023666230320103429

Price: $65

Abstract

Flavonoids are classified into subclasses of polyphenols, a multipurpose category of natural compounds which comprises secondary metabolites extracted from vascular plants and are plentiful in the human diet. Although the details of flavonoid mechanisms are still not realized correctly, they are generally regarded as antimicrobial, anti-fungal, anti-inflammatory, anti-oxidative; anti-mutagenic; anti-neoplastic; anti-aging; anti-diabetic, cardio-protective, etc. The anti-cancer properties of flavonoids are evident in functions such as prevention of proliferation, metastasis, invasion, inflammation and activation of cell death. Tumors growth and enlargement expose cells to acidosis, hypoxia, and lack of nutrients which result in endoplasmic reticulum (ER) stress; it triggers the unfolded protein response (UPR), which reclaims homeostasis or activates autophagy. Steady stimulation of ER stress can switch autophagy to apoptosis. The connection between ER stress and cancer, in association with UPR, has been explained. The signals provided by UPR can activate or inhibit anti-apoptotic or apoptotic pathways depending on the period and grade of ER stress. In this review, we will peruse the link between flavonoids and their impact on the endoplasmic reticulum in association with cancer therapy.

Keywords: Flavonoid, endoplasmic reticulum, ER stress, cancer, malignancy, tumor.

[1]
Jin H, Leng Q, Li C. Dietary flavonoid for preventing colorectal neoplasms. Cochrane Database Syst Rev 2012; (8): CD009350.
[PMID: 22895989]
[2]
Wen K, Fang X, Yang J, et al. Recent research on flavonoids and their biomedical applications. Curr Med Chem 2021; 28(5): 1042-66.
[http://dx.doi.org/10.2174/1875533XMTA4BMTMl5] [PMID: 32660393]
[3]
AL-Ishaq RK, Abotaleb M, Kubatka P, Kajo K, Büsselberg D. Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels. Biomolecules 2019; 9(9): 430.
[http://dx.doi.org/10.3390/biom9090430] [PMID: 31480505]
[4]
Kandaswami C, Lee LT, Lee PP, et al. The antitumor activities of flavonoids. In Vivo 2005; 19(5): 895-909.
[PMID: 16097445]
[5]
Hazafa A, Rehman KU, Jahan N, Jabeen Z. The role of polyphenol (flavonoids) compounds in the treatment of cancer cells. Nutr Cancer 2020; 72(3): 386-97.
[http://dx.doi.org/10.1080/01635581.2019.1637006] [PMID: 31287738]
[6]
Calis Z, Mogulkoc R, Baltaci AK. The roles of flavonols/flavonoids in neurodegeneration and neuroinflammation. Mini Rev Med Chem 2020; 20(15): 1475-88.
[http://dx.doi.org/10.2174/1389557519666190617150051] [PMID: 31288717]
[7]
Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. Sci World J 2013; 2013: 1-16.
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[8]
Zeng X, Xi Y, Jiang W. Protective roles of flavonoids and flavonoid-rich plant extracts against urolithiasis: A review. Crit Rev Food Sci Nutr 2019; 59(13): 2125-35.
[http://dx.doi.org/10.1080/10408398.2018.1439880] [PMID: 29432040]
[9]
Fardoun M, Iratni R, Dehaini H, et al. 7-O-methylpunctatin, a novel homoisoflavonoid, inhibits phenotypic switch of human arteriolar smooth muscle cells. Biomolecules 2019; 9(11): 716.
[http://dx.doi.org/10.3390/biom9110716] [PMID: 31717401]
[10]
Ghorbani A. Mechanisms of antidiabetic effects of flavonoid rutin. Biomed Pharmacother 2017; 96: 305-12.
[http://dx.doi.org/10.1016/j.biopha.2017.10.001] [PMID: 29017142]
[11]
Afzal O, Dalhat MH, Altamimi ASA, et al. Green tea catechins attenuate neurodegenerative diseases and cognitive deficits. Molecules 2022; 27(21): 7604.
[http://dx.doi.org/10.3390/molecules27217604] [PMID: 36364431]
[12]
Nakajima A, Ohizumi Y. Potential benefits of nobiletin, a citrus flavonoid, against alzheimer’s disease and parkinson’s disease. Int J Mol Sci 2019; 20(14): 3380.
[http://dx.doi.org/10.3390/ijms20143380] [PMID: 31295812]
[13]
Zhang J, Zhang H, Xin X, Zhu Y, Ye Y, Li D. Efficacy of flavonoids on animal models of polycystic ovary syndrome: a systematic review and meta-analysis. Nutrients 2022; 14(19): 4128.
[http://dx.doi.org/10.3390/nu14194128] [PMID: 36235780]
[14]
Adinew GM, Taka E, Mendonca P, Messeha SS, Soliman KFA. The anticancer effects of flavonoids through mirnas modulations in triple-negative breast cancer. Nutrients 2021; 13(4): 1212.
[http://dx.doi.org/10.3390/nu13041212] [PMID: 33916931]
[15]
Asensi M, Ortega A, Mena S, Feddi F, Estrela JM. Natural polyphenols in cancer therapy. Crit Rev Clin Lab Sci 2011; 48(5-6): 197-216.
[http://dx.doi.org/10.3109/10408363.2011.631268] [PMID: 22141580]
[16]
Attari F, Keighobadi F, Abdollahi M, et al. Inhibitory effect of flavonoid xanthomicrol on triple‐negative breast tumor via regulation of cancer‐associated microRNAs. Phytother Res 2021; 35(4): 1967-82.
[http://dx.doi.org/10.1002/ptr.6940] [PMID: 33217075]
[17]
Saraei R, Marofi F, Naimi A, et al. Leukemia therapy by flavonoids: Future and involved mechanisms. J Cell Physiol 2019; 234(6): 8203-20.
[http://dx.doi.org/10.1002/jcp.27628] [PMID: 30500074]
[18]
Chen KTJ, Militao GGC, Anantha M, Witzigmann D, Leung AWY, Bally MB. Development and characterization of a novel flavopiridol formulation for treatment of acute myeloid leukemia. J Control Release 2021; 333: 246-57.
[http://dx.doi.org/10.1016/j.jconrel.2021.03.042] [PMID: 33798663]
[19]
Hoensch H, Richling E, Kruis W, Kirch W. Colorectal cancer prevention by flavonoids. Med Klin 2010; 105(8): 554-9.
[http://dx.doi.org/10.1007/s00063-010-1094-7] [PMID: 20824413]
[20]
Rothwell JA, Knaze V, Zamora-Ros R. Polyphenols. Curr Opin Clin Nutr Metab Care 2017; 20(6): 512-21.
[http://dx.doi.org/10.1097/MCO.0000000000000424] [PMID: 28915128]
[21]
Oakes SA. Endoplasmic reticulum stress signaling in cancer cells. Am J Pathol 2020; 190(5): 934-46.
[http://dx.doi.org/10.1016/j.ajpath.2020.01.010] [PMID: 32112719]
[22]
Chen X, Cubillos-Ruiz JR. Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nat Rev Cancer 2021; 21(2): 71-88.
[http://dx.doi.org/10.1038/s41568-020-00312-2] [PMID: 33214692]
[23]
Cubillos-Ruiz JR, Bettigole SE, Glimcher LH. Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer. Cell 2017; 168(4): 692-706.
[http://dx.doi.org/10.1016/j.cell.2016.12.004] [PMID: 28187289]
[24]
Kim C, Kim B. Anti-cancer natural products and their bioactive compounds inducing ER stress-mediated apoptosis: A review. Nutrients 2018; 10(8): 1021.
[http://dx.doi.org/10.3390/nu10081021] [PMID: 30081573]
[25]
O’Malley J, Kumar R, Inigo J, Yadava N, Chandra D. Mitochondrial stress response and cancer. Trends Cancer 2020; 6(8): 688-701.
[http://dx.doi.org/10.1016/j.trecan.2020.04.009] [PMID: 32451306]
[26]
Urra H, Dufey E, Avril T, Chevet E, Hetz C. Endoplasmic reticulum stress and the hallmarks of cancer. Trends Cancer 2016; 2(5): 252-62.
[http://dx.doi.org/10.1016/j.trecan.2016.03.007] [PMID: 28741511]
[27]
Yadav RK, Chae SW, Kim HR, Chae HJ. Endoplasmic reticulum stress and cancer. J Cancer Prev 2014; 19(2): 75-88.
[http://dx.doi.org/10.15430/JCP.2014.19.2.75] [PMID: 25337575]
[28]
Zeng L, Tan J, Lu T, Lei Q, Chen C, Hu Z. Small heat shock proteins and the endoplasmic reticulum: potential attractive therapeutic targets? Curr Mol Med 2015; 15(1): 38-46.
[http://dx.doi.org/10.2174/1566524015666150114111745] [PMID: 25601467]
[29]
Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem 2022; 383: 132531.
[http://dx.doi.org/10.1016/j.foodchem.2022.132531] [PMID: 35413752]
[30]
Oršolić N, Nemrava J, Jeleč Ž. et al. Antioxidative and antiinflammatory activities of chrysin and naringenin in a druginduced bone loss model in rats Int J Mol Sci 2022; 23(5): 2872.
[http://dx.doi.org/ 10.3390/ijms23052872] [PMID: 35270014]
[31]
Meshack S, Gupta S. A review of plants with remarkable hepatoprotective activity. J Drug Deliv Ther 2022; 12(1): 194-202.
[http://dx.doi.org/10.22270/jddt.v12i1.5283]
[32]
Tan Z, Deng J, Ye Q, Zhang Z. The antibacterial activity of natural-derived flavonoids. Curr Top Med Chem 2022; 22(12): 1009-19.
[http://dx.doi.org/10.2174/1568026622666220221110506] [PMID: 35189804]
[33]
Al-Khayri JM, Sahana GR, Nagella P, Joseph BV, Alessa FM, Al-Mssallem MQ. Flavonoids as potential anti-inflammatory molecules: a review. Molecules 2022; 27(9): 2901.
[http://dx.doi.org/10.3390/molecules27092901] [PMID: 35566252]
[34]
Slika H, Mansour H, Wehbe N, et al. Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms. Biomed Pharmacother 2022; 146: 112442.
[http://dx.doi.org/10.1016/j.biopha.2021.112442] [PMID: 35062053]
[35]
Salvamani S, Gunasekaran B, Shaharuddin NA, Ahmad SA, Shukor MY. Antiartherosclerotic effects of plant flavonoids. BioMed Res Int 2014; 2014: 480258.
[http://dx.doi.org/10.1155/2014/480258]
[36]
Salehi B, Fokou P, Sharifi-Rad M, et al. The therapeutic potential of naringenin: A review of clinical trials. Pharmaceuticals 2019; 12(1): 11.
[http://dx.doi.org/10.3390/ph12010011] [PMID: 30634637]
[37]
Dunnick J, Hailey JR. Toxicity and carcinogenicity studies of quercetin, a natural component of foods. Fundam Appl Toxicol 1992; 19(3): 423-31.
[http://dx.doi.org/10.1016/0272-0590(92)90181-G] [PMID: 1459373]
[38]
Ito N, Hagiwara A, Tamano S, et al. Lack of carcinogenicity of quercetin in F344/DuCrj rats. Jpn J Cancer Res 1989; 80(4): 317-25.
[http://dx.doi.org/10.1111/j.1349-7006.1989.tb02313.x] [PMID: 2501248]
[39]
Program NT. Toxicology and carcinogenesis studies of quercetin (CAS no. 117-39-5) in F344 rats (feed studies). Natl Toxicol Program Tech Rep Ser 1992; 409: 1-171.
[PMID: 12621521]
[40]
Andres S, Pevny S, Ziegenhagen R, et al. Safety aspects of the use of quercetin as a dietary supplement. Mol Nutr Food Res 2018; 62(1): 1700447.
[http://dx.doi.org/10.1002/mnfr.201700447] [PMID: 29127724]
[41]
Egert S, Bosy-Westphal A, Seiberl J, et al. Quercetin reduces systolic blood pressure and plasma oxidised low-density lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype: A double-blinded, placebo-controlled cross-over study. Br J Nutr 2009; 102(7): 1065-74.
[http://dx.doi.org/10.1017/S0007114509359127] [PMID: 19402938]
[42]
Harwood M, Danielewska-Nikiel B, Borzelleca JF, Flamm GW, Williams GM, Lines TC. A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties. Food Chem Toxicol 2007; 45(11): 2179-205.
[http://dx.doi.org/10.1016/j.fct.2007.05.015] [PMID: 17698276]
[43]
International Agency for Research on C. Some Chemicals that Cause Tumours of the Kidney or Urinary Bladder in Rodents and Some Other Substances. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans 1999; 73: 131-82.
[44]
Makena PS, Pierce SC, Chung KT, Sinclair SE. Comparative mutagenic effects of structurally similar flavonoids quercetin and taxifolin on tester strains Salmonella typhimurium TA102 and Escherichia coli WP-2 uvrA. Environ Mol Mutagen 2009; 50(6): 451-9.
[http://dx.doi.org/10.1002/em.20487] [PMID: 19326464]
[45]
Okamoto T. Safety of quercetin for clinical application. Int J Mol Med 2005; 16(2): 275-8.
[http://dx.doi.org/10.3892/ijmm.16.2.275] [PMID: 16012761]
[46]
Beazley KE, Nurminskaya M. Effects of dietary quercetin on female fertility in mice: implication of transglutaminase 2. Reprod Fertil Dev 2016; 28(7): 974-81.
[http://dx.doi.org/10.1071/RD14155] [PMID: 25557047]
[47]
Mira L, Tereza Fernandez M, Santos M, Rocha R, Helena Florêncio M, Jennings KR. Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity. Free Radic Res 2002; 36(11): 1199-208.
[http://dx.doi.org/10.1080/1071576021000016463] [PMID: 12592672]
[48]
Calderón-Montaño JM, Burgos-Morón E, Pérez-Guerrero C, López-Lázaro M. A review on the dietary flavonoid kaempferol. Mini Rev Med Chem 2011; 11(4): 298-344.
[http://dx.doi.org/10.2174/138955711795305335] [PMID: 21428901]
[49]
Salehi B, Venditti A, Sharifi-Rad M, et al. The therapeutic potential of apigenin. Int J Mol Sci 2019; 20(6): 1305.
[http://dx.doi.org/10.3390/ijms20061305] [PMID: 30875872]
[50]
Storniolo A, Raciti M, Cucina A, Bizzarri M, Di Renzo L. Quercetin affects Hsp70/IRE1α mediated protection from death induced by endoplasmic reticulum stress. Oxid Med Cell Longev 2015; 2015: 1-11.
[http://dx.doi.org/10.1155/2015/645157] [PMID: 25922642]
[51]
Zhang X, Huang J, Yu C, et al. Quercetin enhanced paclitaxel therapeutic effects towards PC-3 prostate cancer through er stress induction and ROS production. OncoTargets Ther 2020; 13: 513-23.
[http://dx.doi.org/10.2147/OTT.S228453] [PMID: 32021294]
[52]
Looi CY, Arya A, Cheah FK, et al. Induction of apoptosis in human breast cancer cells via caspase pathway by vernodalin isolated from Centratherum anthelminticum (L.) seeds. PLoS One 2013; 8(2): e56643.
[http://dx.doi.org/10.1371/journal.pone.0056643] [PMID: 23437193]
[53]
Wang Y, He QY, Sun RWY, Che CM, Chiu JF. GoldIII porphyrin 1a induced apoptosis by mitochondrial death pathways related to reactive oxygen species. Cancer Res 2005; 65(24): 11553-64.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2867] [PMID: 16357165]
[54]
Yang J, Li TZ, Xu GH, Luo BB, Chen YX, Zhang T. Low-concentration capsaicin promotes colorectal cancer metastasis by triggering ROS production and modulating Akt/mTOR and STAT-3 pathways. Neoplasma 2013; 60(4): 364-72.
[http://dx.doi.org/10.4149/neo_2013_048] [PMID: 23581408]
[55]
Takenokuchi M, Miyamoto K, Saigo K, Taniguchi T. Bortezomib causes ER stress-related death of acute promyelocytic leukemia cells through excessive accumulation of PML–RARA. Anticancer Res 2015; 35(6): 3307-16.
[PMID: 26026090]
[56]
Ma YS, Yao CN, Liu HC, et al. Quercetin induced apoptosis of human oral cancer SAS cells through mitochondria and endoplasmic reticulum mediated signaling pathways. Oncol Lett 2018; 15(6): 9663-72.
[http://dx.doi.org/10.3892/ol.2018.8584] [PMID: 29928342]
[57]
Yi L, Zongyuan Y, Cheng G, Lingyun Z. GuiLian Y, Wei G. Quercetin enhances apoptotic effect of tumor necrosis factor‐related apoptosis‐inducing ligand (TRAIL) in ovarian cancer cells through reactive oxygen species (ROS) mediated CCAAT enhancer‐binding protein homologous protein (CHOP)‐death receptor 5 pathway. Cancer Sci 2014; 105(5): 520-7.
[http://dx.doi.org/10.1111/cas.12395] [PMID: 24612139]
[58]
Gong C, Yang Z, Zhang L, Wang Y, Gong W, Liu Y. Quercetin suppresses DNA double-strand break repair and enhances the radiosensitivity of human ovarian cancer cells via p53-dependent endoplasmic reticulum stress pathway. OncoTargets Ther 2017; 11: 17-27.
[http://dx.doi.org/10.2147/OTT.S147316] [PMID: 29317830]
[59]
Yang Z, Liu Y, Liao J, et al. Retracted: Quercetin induces endoplasmic reticulum stress to enhance c DDP cytotoxicity in ovarian cancer: involvement of STAT 3 signaling. FEBS J 2015; 282(6): 1111-25.
[http://dx.doi.org/10.1111/febs.13206] [PMID: 25611565]
[60]
Liu Y, Gong W, Yang ZY, et al. Quercetin induces protective autophagy and apoptosis through ER stress via the p-STAT3/Bcl-2 axis in ovarian cancer. Apoptosis 2017; 22(4): 544-57.
[http://dx.doi.org/10.1007/s10495-016-1334-2] [PMID: 28188387]
[61]
Khan I, Paul S, Jakhar R, Bhardwaj M, Han J, Kang SC. Novel quercetin derivative TEF induces ER stress and mitochondria-mediated apoptosis in human colon cancer HCT-116 cells. Biomed Pharmacother 2016; 84: 789-99.
[http://dx.doi.org/10.1016/j.biopha.2016.09.094] [PMID: 27721177]
[62]
He C, Lu X, Li J, et al. The effect of quercetin on cervical cancer cells as determined by inducing tumor endoplasmic reticulum stress and apoptosis and its mechanism of action. Am J Transl Res 2021; 13(5): 5240-7.
[PMID: 34150114]
[63]
Dihal AA, de Boer VCJ, van der Woude H, et al. Quercetin, but not its glycosidated conjugate rutin, inhibits azoxymethane-induced colorectal carcinogenesis in F344 rats. J Nutr 2006; 136(11): 2862-7.
[http://dx.doi.org/10.1093/jn/136.11.2862] [PMID: 17056814]
[64]
Jang E, Kim IY, Kim H, et al. Quercetin and chloroquine synergistically kill glioma cells by inducing organelle stress and disrupting Ca2+ homeostasis. Biochem Pharmacol 2020; 178: 114098.
[http://dx.doi.org/10.1016/j.bcp.2020.114098] [PMID: 32540484]
[65]
Murakami A, Ashida H, Terao J. Multitargeted cancer prevention by quercetin. Cancer Lett 2008; 269(2): 315-25.
[http://dx.doi.org/10.1016/j.canlet.2008.03.046] [PMID: 18467024]
[66]
Tavana E, Mollazadeh H, Mohtashami E, et al. Quercetin: A promising phytochemical for the treatment of glioblastoma multiforme. Biofactors 2020; 46(3): 356-66.
[http://dx.doi.org/10.1002/biof.1605] [PMID: 31880372]
[67]
Kusaczuk M. Krętowski R, Naumowicz M, Stypułkowska A, Cechowska-Pasko M. A preliminary study of the effect of quercetin on cytotoxicity, apoptosis, and stress responses in glioblastoma cell lines. Int J Mol Sci 2022; 23(3): 1345.
[http://dx.doi.org/10.3390/ijms23031345] [PMID: 35163269]
[68]
Gasparrini M, Giampieri F, Alvarez Suarez JM, et al. AMPK as a new attractive therapeutic target for disease prevention: the role of dietary compounds AMPK and disease prevention. Curr Drug Targets 2016; 17(8): 865-89.
[http://dx.doi.org/10.2174/1573399811666150615150235] [PMID: 26844571]
[69]
Wu CH, Yang MY, Wang CJ. Quercetin-3-O-glucuronide inhibits doxorubicin resistance by reducing endoplasmic reticulum stress in hepatocellular carcinoma cells. J Funct Foods 2019; 54: 301-9.
[http://dx.doi.org/10.1016/j.jff.2019.01.015]
[70]
Afrin S, Giampieri F, Cianciosi D, et al. Strawberry tree honey as a new potential functional food. Part 1: Strawberry tree honey reduces colon cancer cell proliferation and colony formation ability, inhibits cell cycle and promotes apoptosis by regulating EGFR and MAPKs signaling pathways. J Funct Foods 2019; 57: 439-52.
[http://dx.doi.org/10.1016/j.jff.2019.04.035]
[71]
Nejabati HR, Roshangar L. Kaempferol: A potential agent in the prevention of colorectal cancer. Physiol Rep 2022; 10(20): e15488.
[http://dx.doi.org/10.14814/phy2.15488] [PMID: 36259115]
[72]
Abdullah A, Talwar P, d’Hellencourt CL, Ravanan P. IRE 1α is critical for Kaempferol‐induced neuroblastoma differentiation. FEBS J 2019; 286(7): 1375-92.
[http://dx.doi.org/10.1111/febs.14776] [PMID: 30719816]
[73]
Kim TW, Lee SY, Kim M, Cheon C, Ko SG. Kaempferol induces autophagic cell death via IRE1-JNK-CHOP pathway and inhibition of G9a in gastric cancer cells. Cell Death Dis 2018; 9(9): 875.
[http://dx.doi.org/10.1038/s41419-018-0930-1] [PMID: 30158521]
[74]
Lee GA, Choi KC, Hwang KA. Treatment with phytoestrogens reversed triclosan and bisphenol a-induced anti-apoptosis in breast cancer cells. Biomol Ther 2018; 26(5): 503-11.
[http://dx.doi.org/10.4062/biomolther.2017.160] [PMID: 29310425]
[75]
Guo H, Lin W, Zhang X, et al. Kaempferol induces hepatocellular carcinoma cell death via endoplasmic reticulum stress-CHOP-autophagy signaling pathway. Oncotarget 2017; 8(47): 82207-16.
[http://dx.doi.org/10.18632/oncotarget.19200] [PMID: 29137257]
[76]
El-Kott AF, Shati AA, Al-Kahtani MA, Alharbi SA. Kaempferol induces cell death in a2780 ovarian cancer cells and increases their sensitivity to cisplatin by activation of cytotoxic endoplasmic reticulum-mediated autophagy and inhibition of protein kinase B. Folia Biol 2020; 66(1): 36-46.
[PMID: 32512657]
[77]
Zhang X, Cook KL, Warri A, et al. Lifetime genistein intake increases the response of mammary tumors to tamoxifen in rats. Clin Cancer Res 2017; 23(3): 814-24.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1735] [PMID: 28148690]
[78]
Yang YM, Yang Y, Dai WW, Li XM, Ma JQ, Tang LP. Genistein-induced apoptosis is mediated by endoplasmic reticulum stress in cervical cancer cells. Eur Rev Med Pharmacol Sci 2016; 20(15): 3292-6.
[PMID: 27467006]
[79]
Hsiao YC, Peng SF, Lai KC, et al. Genistein induces apoptosis in vitro and has antitumor activity against human leukemia HL-60 cancer cell xenograft growth in vivo. Environ Toxicol 2019; 34(4): 443-56.
[http://dx.doi.org/10.1002/tox.22698] [PMID: 30618158]
[80]
Heo JR, Lee GA, Kim GS, Hwang KA, Choi KC. Phytochemical-induced reactive oxygen species and endoplasmic reticulum stress-mediated apoptosis and differentiation in malignant melanoma cells. Phytomedicine 2018; 39: 100-10.
[http://dx.doi.org/10.1016/j.phymed.2017.12.006] [PMID: 29433671]
[81]
Kim TW, Lee HG. Apigenin induces autophagy and cell death by targeting EZH2 under hypoxia conditions in gastric cancer cells. Int J Mol Sci 2021; 22(24): 13455.
[http://dx.doi.org/10.3390/ijms222413455] [PMID: 34948250]
[82]
Wang B, Zhao XH. Apigenin induces both intrinsic and extrinsic pathways of apoptosis in human colon carcinoma HCT-116 cells. Oncol Rep 2017; 37(2): 1132-40.
[http://dx.doi.org/10.3892/or.2016.5303] [PMID: 27959417]
[83]
Lantto T, Laakso I, Dorman H, et al. Cellular stress and p53-associated apoptosis by juniperus communis l. berry extract treatment in the human sh-sy5y neuroblastoma cells. Int J Mol Sci 2016; 17(7): 1113.
[http://dx.doi.org/10.3390/ijms17071113] [PMID: 27420050]
[84]
Tiwari P, Mishra KP. Role of plant-derived flavonoids in cancer treatment. Nutr Cancer 2023; 75(2): 430-49.
[http://dx.doi.org/10.1080/01635581.2022.2135744] [PMID: 36264133]
[85]
Salmani JMM, Zhang XP, Jacob JA, Chen BA. Apigenin’s anticancer properties and molecular mechanisms of action: Recent advances and future prospectives. Chin J Nat Med 2017; 15(5): 321-9.
[http://dx.doi.org/10.1016/S1875-5364(17)30052-3] [PMID: 28558867]
[86]
Yan X, Qi M, Li P, Zhan Y, Shao H. Apigenin in cancer therapy: anti-cancer effects and mechanisms of action. Cell Biosci 2017; 7(1): 50.
[http://dx.doi.org/10.1186/s13578-017-0179-x] [PMID: 29034071]
[87]
Park SH, Kim J, Do KH, et al. Activating transcription factor 3-mediated chemo-intervention with cancer chemokines in a noncanonical pathway under endoplasmic reticulum stress. J Biol Chem 2014; 289(39): 27118-33.
[http://dx.doi.org/10.1074/jbc.M114.568717] [PMID: 25122760]
[88]
Intuyod K, Priprem A, Pairojkul C, et al. Anthocyanin complex exerts anti-cholangiocarcinoma activities and improves the efficacy of drug treatment in a gemcitabine-resistant cell line. Int J Oncol 2018; 52(5): 1715-26.
[http://dx.doi.org/10.3892/ijo.2018.4306] [PMID: 29512768]
[89]
Fang Z, Hongfei Z, Bolin Z, Yanping J. Blueberry anthocyanin induces apoptosis in HepG-2 cells and the mechanism of the process. Eur Food Res Technol 2018; 244(2): 301-11.
[http://dx.doi.org/10.1007/s00217-017-2956-5]
[90]
Liu K, Chen P, Lu J, et al. Protective effect of purple tomato anthocyanidin on chromium (VI)-induced autophagy in LMH cells by inhibiting endoplasmic reticulum stress. Biol Trace Elem Res 2020; 194(2): 570-80.
[http://dx.doi.org/10.1007/s12011-019-01795-3] [PMID: 31264128]
[91]
Yu Z, Luo X, Wang C, et al. Baicalin promoted site‐2 protease and not site‐1 protease in endoplasmic reticulum stress‐induced apoptosis of human hepatocellular carcinoma cells. FEBS Open Bio 2016; 6(11): 1093-101.
[http://dx.doi.org/10.1002/2211-5463.12130] [PMID: 27833850]
[92]
Wang Z, Jiang C, Chen W, Zhang G, Luo D, Cao Y, et al. Baicalein induces apoptosis and autophagy via endoplasmic reticulum stress in hepatocellular carcinoma cells Bio Med Res Int 2014 2014.
[http://dx.doi.org/ 10.1155/2014/732516]
[93]
Wang M, Kaufman RJ. The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat Rev Cancer 2014; 14(9): 581-97.
[http://dx.doi.org/10.1038/nrc3800] [PMID: 25145482]
[94]
Imani A, Maleki N, Bohlouli S, Kouhsoltani M, Sharifi S, Maleki Dizaj S. Molecular mechanisms of anticancer effect of rutin. Phytother Res 2021; 35(5): 2500-13.
[http://dx.doi.org/10.1002/ptr.6977] [PMID: 33295678]
[95]
Gregersen N, Bross P. Protein misfolding and cellular stress: An overview. Protein misfolding and cellular stress in disease and aging 2010; 3-23.
[http://dx.doi.org/10.1007/978-1-60761-756-3_1]
[96]
Viskupicov J, Ondrejovič M, Sturdík E. The potential and practical applications of acylated flavonoids. Pharmazie 2009; 64(6): 355-60.
[PMID: 19618669]
[97]
Rodríguez Y, Májeková M. Structural changes of sarco/endoplasmic reticulum Ca2+-ATPase induced by rutin arachidonate: A molecular dynamics study. Biomolecules 2020; 10(2): 214.
[http://dx.doi.org/10.3390/biom10020214] [PMID: 32024167]
[98]
Grover AK, Kwan CY, Samson SE. Effects of peroxynitrite on sarco/endoplasmic reticulum Ca 2+ pump isoforms SERCA2b and SERCA3a. Am J Physiol Cell Physiol 2003; 285(6): C1537-43.
[http://dx.doi.org/10.1152/ajpcell.00299.2003] [PMID: 14600079]
[99]
Periasamy M, Kalyanasundaram A. SERCA pump isoforms: Their role in calcium transport and disease. Muscle Nerve 2007; 35(4): 430-42.
[http://dx.doi.org/10.1002/mus.20745] [PMID: 17286271]
[100]
Nasri Nasrabadi P, Zareian S, Nayeri Z, et al. A detailed image of rutin underlying intracellular signaling pathways in human SW480 colorectal cancer cells based on miRNAs‐lncRNAs‐mRNAs‐TFs interactions. J Cell Physiol 2019; 234(9): 15570-80.
[http://dx.doi.org/10.1002/jcp.28204] [PMID: 30697726]
[101]
Jiang Y, Zhang Y, Wark L, et al. Wolfberry water soluble phytochemicals down-regulate ER stress biomarkers and modulate multiple signaling pathways leading to inhibition of proliferation and induction of apoptosis in jurkat cells. J Nutr Food Sci 2011; S2: 001.
[PMID: 22685690]
[102]
Lee CW, Huang CCY, Chi MC, et al. Naringenin induces ROS-mediated ER stress, autophagy, and apoptosis in human osteosarcoma cell lines. Molecules 2022; 27(2): 373.
[http://dx.doi.org/10.3390/molecules27020373] [PMID: 35056691]
[103]
Lin R, Hu X, Chen S, Shi Q, Chen H. Naringin induces endoplasmic reticulum stress-mediated apoptosis, inhibits β-catenin pathway and arrests cell cycle in cervical cancer cells. Acta Biochim Pol 2020; 67(2): 181-8.
[PMID: 32343512]
[104]
Harding HP, Zhang Y, Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 1999; 397(6716): 271-4.
[http://dx.doi.org/10.1038/16729] [PMID: 9930704]
[105]
Shi Y, Vattem KM, Sood R, et al. Identification and characterization of pancreatic eukaryotic initiation factor 2 α-subunit kinase, PEK, involved in translational control. Mol Cell Biol 1998; 18(12): 7499-509.
[http://dx.doi.org/10.1128/MCB.18.12.7499] [PMID: 9819435]
[106]
Harding HP, Zhang Y, Zeng H, et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 2003; 11(3): 619-33.
[http://dx.doi.org/10.1016/S1097-2765(03)00105-9] [PMID: 12667446]
[107]
Xu Y, Tong Y, Ying J, et al. Chrysin induces cell growth arrest, apoptosis, and ER stress and inhibits the activation of STAT3 through the generation of ROS in bladder cancer cells. Oncol Lett 2018; 15(6): 9117-25.
[http://dx.doi.org/10.3892/ol.2018.8522] [PMID: 29805643]
[108]
Ryu S, Lim W, Bazer FW, Song G. Chrysin induces death of prostate cancer cells by inducing ROS and ER stress. J Cell Physiol 2017; 232(12): 3786-97.
[http://dx.doi.org/10.1002/jcp.25861] [PMID: 28213961]
[109]
Syed DN, Lall RK, Chamcheu JC, Haidar O, Mukhtar H. Involvement of ER stress and activation of apoptotic pathways in fisetin induced cytotoxicity in human melanoma. Arch Biochem Biophys 2014; 563: 108-17.
[http://dx.doi.org/10.1016/j.abb.2014.06.034] [PMID: 25016296]
[110]
Su CH, Kuo CL, Lu KW, et al. Fisetin-induced apoptosis of human oral cancer SCC-4 cells through reactive oxygen species production, endoplasmic reticulum stress, caspase-, and mitochondria-dependent signaling pathways. Environ Toxicol 2017; 32(6): 1725-41.
[http://dx.doi.org/10.1002/tox.22396] [PMID: 28181380]
[111]
Park GB, Kim YS, Lee HK, et al. Endoplasmic reticulum stress-mediated apoptosis of EBV-transformed B cells by cross-linking of CD70 is dependent upon generation of reactive oxygen species and activation of p38 MAPK and JNK pathway. J Immunol 2010; 185(12): 7274-84.
[http://dx.doi.org/10.4049/jimmunol.1001547] [PMID: 21078900]
[112]
Kang KA, Piao MJ, Madduma Hewage SRK, et al. Fisetin induces apoptosis and endoplasmic reticulum stress in human non-small cell lung cancer through inhibition of the MAPK signaling pathway. Tumour Biol 2016; 37(7): 9615-24.
[http://dx.doi.org/10.1007/s13277-016-4864-x] [PMID: 26797785]
[113]
Wang Y, Yu H, Zhang J, Gao J, Ge X, Lou G. Hesperidin inhibits HeLa cell proliferation through apoptosis mediated by endoplasmic reticulum stress pathways and cell cycle arrest. BMC Cancer 2015; 15(1): 682.
[http://dx.doi.org/10.1186/s12885-015-1706-y] [PMID: 26459308]
[114]
Zhao J, Li Y, Gao J, De Y. Hesperidin inhibits ovarian cancer cell viability through endoplasmic reticulum stress signaling pathways. Oncol Lett 2017; 14(5): 5569-74.
[http://dx.doi.org/10.3892/ol.2017.6873] [PMID: 29142606]
[115]
Yu X, Zhu M, Wang J, et al. LW-213 induces cell apoptosis in human cutaneous T-cell lymphomas by activating PERK–eIF2α–ATF4–CHOP axis. Acta Pharmacol Sin 2021; 42(2): 290-300.
[http://dx.doi.org/10.1038/s41401-020-0466-7] [PMID: 32747719]
[116]
Feng Q, Wang H, Pang J, et al. Prevention of wogonin on colorectal cancer tumorigenesis by regulating p53 nuclear translocation. Front Pharmacol 2018; 9: 1356.
[http://dx.doi.org/10.3389/fphar.2018.01356] [PMID: 30532707]
[117]
Huang Y, Fang J, Lu W, Wang Z, Wang Q, Hou Y, et al. A systems pharmacology approach uncovers wogonoside as an angiogenesis inhibitor of triple-negative breast cancer by targeting hedgehog signaling. Cell chemical biology 2019; 26(8): 1143-58.
[http://dx.doi.org/10.1016/j.chembiol.2019.05.004]
[118]
Li H, Yu X, Liu X, et al. Wogonoside induces depalmitoylation and translocation of PLSCR 1 and N‐ RAS in primary acute myeloid leukaemia cells. J Cell Mol Med 2018; 22(4): 2117-30.
[http://dx.doi.org/10.1111/jcmm.13481] [PMID: 29377576]
[119]
Luo M, Mo J, Yu Q, et al. Wogonoside induces apoptosis in human non-small cell lung cancer A549 cells by promoting mitochondria dysfunction. Biomed Pharmacother 2018; 106: 593-8.
[http://dx.doi.org/10.1016/j.biopha.2018.06.077] [PMID: 29990847]
[120]
Chen S, Wu Z, Ke Y, et al. Wogonoside inhibits tumor growth and metastasis in endometrial cancer via ER stress-Hippo signaling axis. Acta Biochim Biophys Sin 2019; 51(11): 1096-105.
[http://dx.doi.org/10.1093/abbs/gmz109] [PMID: 31696210]
[121]
Kim JK, Kang KA, Ryu YS, et al. Induction of endoplasmic reticulum stress via reactive oxygen species mediated by luteolin in melanoma cells. Anticancer Res 2016; 36(5): 2281-9.
[PMID: 27127134]
[122]
Wang Q, Wang H, Jia Y, Pan H, Ding H. Luteolin induces apoptosis by ROS/ER stress and mitochondrial dysfunction in gliomablastoma. Cancer Chemother Pharmacol 2017; 79(5): 1031-41.
[http://dx.doi.org/10.1007/s00280-017-3299-4] [PMID: 28393257]
[123]
Park SH, Park HS, Lee JH, et al. Induction of endoplasmic reticulum stress-mediated apoptosis and non-canonical autophagy by luteolin in NCI-H460 lung carcinoma cells. Food Chem Toxicol 2013; 56: 100-9.
[http://dx.doi.org/10.1016/j.fct.2013.02.022] [PMID: 23454208]
[124]
Lee Y, Kwon YH. Regulation of apoptosis and autophagy by luteolin in human hepatocellular cancer Hep3B cells. Biochem Biophys Res Commun 2019; 517(4): 617-22.
[http://dx.doi.org/10.1016/j.bbrc.2019.07.073] [PMID: 31383362]
[125]
Singh MP, Han J, Kang SC. 3′5-dihydroxy-3,4′7-trimethoxyflavone-induces ER-stress-associated HCT-116 programmed cell death via redox signaling. Biomed Pharmacother 2017; 88: 151-61.
[http://dx.doi.org/10.1016/j.biopha.2017.01.027] [PMID: 28103509]
[126]
Bhardwaj M, Kim NH, Paul S, Jakhar R, Han J, Kang SC. 5-Hydroxy-7-methoxyflavone triggers mitochondrial-associated cell death via reactive oxygen species signaling in human colon carcinoma cells. PLoS One 2016; 11(4): e0154525.
[http://dx.doi.org/10.1371/journal.pone.0154525] [PMID: 27116119]
[127]
Park YJ, Ko JW, Jang Y, Kwon YH. Activation of AMP-activated protein kinase alleviates homocysteine-mediated neurotoxicity in SH-SY5Y cells. Neurochem Res 2013; 38(8): 1561-71.
[http://dx.doi.org/10.1007/s11064-013-1057-5] [PMID: 23624826]
[128]
Lu KH, Lee HY, Chu YL, Ho CT, Sheen LY. Bitter orange peel extract induces endoplasmic reticulum-mediated autophagy in human hepatoma cells. J Funct Foods 2019; 60: 103404.
[http://dx.doi.org/10.1016/j.jff.2019.06.006]
[129]
Boussabbeh M, Prola A, Ben Salem I, et al. Crocin and quercetin prevent PAT-induced apoptosis in mammalian cells: Involvement of ROS-mediated ER stress pathway. Environ Toxicol 2016; 31(12): 1851-8.
[http://dx.doi.org/10.1002/tox.22185] [PMID: 26314699]
[130]
Obiorah IE, Fan P, Jordan VC. Breast cancer cell apoptosis with phytoestrogens is dependent on an estrogen-deprived state. Cancer Prev Res 2014; 7(9): 939-49.
[http://dx.doi.org/10.1158/1940-6207.CAPR-14-0061] [PMID: 24894196]
[131]
Tang Z, Zhang Q. The potential toxic side effects of flavonoids. Biocell 2022; 46(2): 357-66.
[http://dx.doi.org/10.32604/biocell.2022.015958]
[132]
Boots AW, Haenen GRMM, Bast A. Health effects of quercetin: From antioxidant to nutraceutical. Eur J Pharmacol 2008; 585(2-3): 325-37.
[http://dx.doi.org/10.1016/j.ejphar.2008.03.008] [PMID: 18417116]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy