Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

An Overview of Dietary Flavonoids as a Nutraceutical Nanoformulation Approach to Life-threatening Diseases

Author(s): Sonia Singh*, Ashima Ahuja, Himanshu Sharma and Pratik Maheshwari

Volume 24, Issue 14, 2023

Published on: 17 April, 2023

Page: [1740 - 1773] Pages: 34

DOI: 10.2174/1389201024666230314101654

Price: $65

Abstract

Obesity, heart disease, diabetes, and cancer are just a few chronic diseases for which proper nutrition has been demonstrated to be a crucial factor in prevention. Flavonoids, found in many fruits and vegetables, are a type of dietary polyphenol with potent antioxidant activity and anti-carcinogenic characteristics. Flavonoids and foods rich in flavonoids have been shown in recent years to have profound effects on cognitive function, aging, and neurodegenerative diseases like Alzheimer's. Foods high in flavonoids, such as green tea, chocolate, blueberries, and other fruits and vegetables, have ameliorated symptoms of cognitive impairment, Alzheimer's disease, and dementia in several animal models. As a result of their ability to prevent neuronal death generated by neurotoxic chemicals such as free radicals and β-amyloid proteins. Furthermore, flavonoids are also effective in slowing the evolution of clinical signs of neurodegenerative illnesses. In addition, flavonoids can improve lipid profiles by preventing the oxidation of low-density lipoproteins, and these antioxidant capabilities are responsible for their therapeutic impacts. Finally, the potential of flavonoids to induce vasodilation and control apoptotic processes in the endothelium is another way in which they benefit the cardiovascular system. This review aims to offer up-to-date information on categorizing these compounds, their primary methods of action in the human body, and their positive impacts on the management of neurodegenerative diseases, cardiovascular disorders, and other life-threatening diseases.

Keywords: Antioxidant, life-threatening diseases, dietary, flavonoids, polyphenolic, chronic diseases.

Graphical Abstract
[1]
Burak, M.; Imen, Y. Flavonoids and their antioxidant properties. Turk. Klin. Tip Bilim. Derg., 1999, 19, 296-304.
[2]
Castañeda-Ovando, A.; Pacheco-Hernández, M.L.; Páez-Hernández, M.E.; Rodríguez, J.A.; Galán-Vidal, C.A. Chemical studies of anthocyanins: A review. Food Chem., 2009, 113(4), 859-871.
[http://dx.doi.org/10.1016/j.foodchem.2008.09.001]
[3]
Lee, Y.K.; Yuk, D.Y.; Lee, J.W.; Lee, S.Y.; Ha, T.Y.; Oh, K.W.; Yun, Y.P.; Hong, J.T. (−)-Epigallocatechin-3-gallate prevents lipopolysaccharide-induced elevation of beta-amyloid generation and memory deficiency. Brain Res., 2009, 1250(1250), 164-174.
[http://dx.doi.org/10.1016/j.brainres.2008.10.012] [PMID: 18992719]
[4]
Yao, L.H.; Jiang, Y.M.; Shi, J.; Tomás-Barberán, F.A.; Datta, N.; Singanusong, R.; Chen, S.S. Flavonoids in food and their health benefits. Plant Foods Hum. Nutr., 2004, 59(3), 113-122.
[http://dx.doi.org/10.1007/s11130-004-0049-7] [PMID: 15678717]
[5]
Cook, N.; Samman, S. Flavonoids-Chemistry, metabolism, cardioprotective effects, and dietary sources. J. Nutr. Biochem., 1996, 7(2), 66-76.
[http://dx.doi.org/10.1016/0955-2863(95)00168-9]
[6]
Clifford, M.N. Anthocyanins - nature, occurrence and dietary burden. J. Sci. Food Agric., 2000, 80(7), 1063-1072.
[http://dx.doi.org/10.1002/(SICI)1097-0010(20000515)80:7<1063::AID-JSFA605>3.0.CO;2-Q]
[7]
Peterson, J.; Dwyer, J. Flavonoids: Dietary occurrence and biochemical activity. Nutr. Res., 1998, 18(12), 1995-2018.
[http://dx.doi.org/10.1016/S0271-5317(98)00169-9]
[8]
Griesbach, R.J. Biochemistry and genetics of flower color. Plant Breed. Rev., 2010, 25, 89-114.
[9]
Samanta, A.; Das, G.; Das, S.K. Roles of flavonoids in plants. Carbon, 2011, 100(6), 12-35.
[10]
Jorgensen, R.A. Cosuppression, flower color patterns, and metastable gene expression States. Science, 1995, 268(5211), 686-691.
[http://dx.doi.org/10.1126/science.268.5211.686] [PMID: 17832380]
[11]
Dixon, R.A.; Pasinetti, G.M. Flavonoids and isoflavonoids: From plant biology to agriculture and neuroscience. Plant Physiol., 2010, 154(2), 453-457.
[http://dx.doi.org/10.1104/pp.110.161430] [PMID: 20921162]
[12]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J., 2013, 2013, 1-16.
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[13]
Panche, A.; Chandra, S.; Ad, D.I.; Harke, S. Alzheimer’s and current therapeutics: A review. Asian J. Pharm. Clin. Res., 2015, 8(3), 14-19.
[14]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci., 2016, 5, e47.
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[15]
Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr., 2004, 79(5), 727-747.
[http://dx.doi.org/10.1093/ajcn/79.5.727] [PMID: 15113710]
[16]
Horowitz, R.M. Taste effects of flavonoids. Prog. Clin. Biol. Res., 1986, 213, 163-175.
[PMID: 3520586]
[17]
Herrmann, K. Flavonols and flavones in food plants: A review. Int. J. Food Sci. Technol., 1976, 11(5), 433-448.
[http://dx.doi.org/10.1111/j.1365-2621.1976.tb00743.x]
[18]
Martin, K. Flavonoids and isoflavones. In: Food science and technology.; nutrient metabolism; Martin, K., Ed.; Academic Press: Cambridge, Massachusetts, 2003; pp. 92-106.
[19]
Kristina, B.M.; Jessica, D.M.; Michael, K.M. Polyphenols and Intestinal Health. In: Nutrition and functional foods for healthy aging; Ronald, R.W., Ed.; Academic Press: Cambridge, Massachusetts, 2017; pp. 191-210.
[20]
Iwashina, T. Flavonoid properties of five families newly incorporated into the order Caryophyllales. Bull. Natl. Mus. Nat. Sci, 2013, 39, 25-51.
[21]
Sang, S. Tea: Chemistry and processing. In: Encyclopedia of food and health; Benjamin, C.; Paul, M.F.; Fidel, T., Eds.; Academic Press: Cambridge, Massachusetts, 2016; pp. 268-272.
[http://dx.doi.org/10.1016/B978-0-12-384947-2.00685-1]
[22]
Jeevan, K.P.; Stephen, B.; Wyss, J.M. Analyzing Ingredients in Dietary Supplements and their Metabolites. In: Polyphenols: Mechanisms of action in human health and disease, 2nd ed; Ronald, R.W.; Victor, R.P.; Sherma, Z., Eds.; Academic Press, Cambridge, Massachusetts, 2018; pp. 337-346.
[23]
Biharee, A.; Sharma, A.; Kumar, A.; Jaitak, V. Antimicrobial flavonoids as a potential substitute for overcoming antimicrobial resistance. Fitoterapia, 2020, 146, 104720.
[http://dx.doi.org/10.1016/j.fitote.2020.104720] [PMID: 32910994]
[24]
Kühnau, J. The flavonoids. A class of semi-essential food components: Their role in human nutrition. World Rev. Nutr. Diet., 1976, 24, 117-191.
[http://dx.doi.org/10.1159/000399407] [PMID: 790781]
[25]
Cassidy, A. Phytochemicals: Classification and Occurrence. In: Encyclopedia of human nutrition, 2nd ed; Caballero, B., Ed.; Elsevier: Amsterdam, 2005; pp. 490-497.
[http://dx.doi.org/10.1016/B0-12-226694-3/00252-0]
[26]
Herrero, M.; Plaza, M.; Cifuentes, A.; Ibáñez, E. Extraction Techniques for the Determination of Phenolic Compounds in Food. In: Comprehensive Sampling and Sample Preparation; Pawliszyn, J., Ed.; Academic Press: Cambridge, Massachusetts, 2012; pp. 159-180.
[http://dx.doi.org/10.1016/B978-0-12-381373-2.00132-0]
[27]
Yang, Y.; Li, P.Y.; Cheng, J.; Mao, L.; Wen, J.; Tan, X.Q.; Liu, Z.F.; Zeng, X.R. Function of BKCa channels is reduced in human vascular smooth muscle cells from Han Chinese patients with hypertension. Hypertension, 2013, 61(2), 519-525.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.00211] [PMID: 23232643]
[28]
Yamamoto, M.; Jokura, H.; Hashizume, K.; Ominami, H.; Shibuya, Y.; Suzuki, A.; Hase, T.; Shimotoyodome, A. Hesperidin metabolite hesperetin-7-O-glucuronide, but not hesperetin-3′-O-glucuronide, exerts hypotensive, vasodilatory, and anti-inflammatory activities. Food Funct., 2013, 4(9), 1346-1351.
[http://dx.doi.org/10.1039/c3fo60030k] [PMID: 23831969]
[29]
Liu, Y.; Niu, L.; Cui, L.; Hou, X.; Li, J.; Zhang, X.; Zhang, M. Hesperetin inhibits rat coronary constriction by inhibiting Ca2+ influx and enhancing voltage-gated K+ channel currents of the myocytes. Eur. J. Pharmacol., 2014, 735, 193-201.
[http://dx.doi.org/10.1016/j.ejphar.2014.03.057] [PMID: 24751712]
[30]
Salehi, B.; Sharifi-Rad, J.; Cappellini, F.; Reiner, Ž.; Zorzan, D.; Imran, M.; Sener, B.; Kilic, M.; El-Shazly, M.; Fahmy, N.M.; Al-Sayed, E.; Martorell, M.; Tonelli, C.; Petroni, K.; Docea, A.O.; Calina, D.; Maroyi, A. The therapeutic potential of anthocyanins: Current approaches based on their molecular mechanism of action. Front. Pharmacol., 2020, 11, 1300.
[http://dx.doi.org/10.3389/fphar.2020.01300] [PMID: 32982731]
[31]
Giusti, M.M.; Wrolstad, R.E. Acylated anthocyanins from edible sources and their applications in food systems. Biochem. Eng. J., 2003, 14(3), 217-225.
[http://dx.doi.org/10.1016/S1369-703X(02)00221-8]
[32]
Hertog, M.G.L.; Hollman, P.C.H.; Katan, M.B. Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands. J. Agric. Food Chem., 1992, 40(12), 2379-2383.
[http://dx.doi.org/10.1021/jf00024a011]
[33]
Justesen, U.; Knuthsen, P. Composition of flavonoids in fresh herbs and calculation of flavonoid intake by use of herbs in traditional Danish dishes. Food Chem., 2001, 73(2), 245-250.
[http://dx.doi.org/10.1016/S0308-8146(01)00114-5]
[34]
Stewart, A.J.; Bozonnet, S.; Mullen, W.; Jenkins, G.I.; Lean, M.E.J.; Crozier, A. Occurrence of flavonols in tomatoes and tomato-based products. J. Agric. Food Chem., 2000, 48(7), 2663-2669.
[http://dx.doi.org/10.1021/jf000070p] [PMID: 10898604]
[35]
Haytowitz, D.B.; Bhagwat, S.; Holden, J.M. Sources of variability in the flavonoid content of foods. Procedia Food Sci., 2013, 2, 46-51.
[http://dx.doi.org/10.1016/j.profoo.2013.04.008]
[36]
Zhang, Y.; Li, Y.; Cao, C.; Cao, J.; Chen, W.; Zhang, Y.; Wang, C.; Wang, J.; Zhang, X.; Zhao, X. Dietary flavonol and flavone intakes and their major food sources in Chinese adults. Nutr. Cancer, 2010, 62(8), 1120-1127.
[http://dx.doi.org/10.1080/01635581.2010.513800] [PMID: 21058200]
[37]
Sun, C.; Wang, H.; Wang, D.; Chen, Y.; Zhao, Y.; Xia, W. Using an FFQ to assess intakes of dietary flavonols and flavones among female adolescents in the Suihua area of northern China. Public Health Nutr., 2015, 18(4), 632-639.
[http://dx.doi.org/10.1017/S1368980014000780] [PMID: 24800753]
[38]
Kim, Y.J.; Park, M.Y.; Chang, N.; Kwon, O. Intake and major sources of dietary flavonoid in Korean adults: Korean National Health and Nutrition Examination Survey 2010-2012. Asia Pac. J. Clin. Nutr., 2015, 24(3), 456-463.
[39]
Jun, S.; Shin, S.; Joung, H. Estimation of dietary flavonoid intake and major food sources of Korean adults. Br. J. Nutr., 2016, 115(3), 480-489.
[http://dx.doi.org/10.1017/S0007114515004006] [PMID: 26489826]
[40]
Zamora-Ros, R.; Agudo, A.; Luján-Barroso, L.; Romieu, I.; Ferrari, P.; Knaze, V.; Bueno-de-Mesquita, H.B.; Leenders, M.; Travis, R.C.; Navarro, C.; Sánchez-Cantalejo, E.; Slimani, N.; Scalbert, A.; Fedirko, V.; Hjartåker, A.; Engeset, D.; Skeie, G.; Boeing, H.; Förster, J.; Li, K.; Teucher, B.; Agnoli, C.; Tumino, R.; Mattiello, A.; Saieva, C.; Johansson, I.; Stenling, R.; Redondo, M.L.; Wallström, P.; Ericson, U.; Khaw, K.T.; Mulligan, A.A.; Trichopoulou, A.; Dilis, V.; Katsoulis, M.; Peeters, P.H.M.; Igali, L.; Tjønneland, A.; Halkjær, J.; Touillaud, M.; Perquier, F.; Fagherazzi, G.; Amiano, P.; Ardanaz, E.; Bredsdorff, L.; Overvad, K.; Ricceri, F.; Riboli, E.; González, C.A. Dietary flavonoid and lignan intake and gastric adenocarcinoma risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Am. J. Clin. Nutr., 2012, 96(6), 1398-1408.
[http://dx.doi.org/10.3945/ajcn.112.037358] [PMID: 23076618]
[41]
Zamora-Ros, R.; Andres-Lacueva, C.; Lamuela-Raventós, R.M.; Berenguer, T.; Jakszyn, P.; Barricarte, A.; Ardanaz, E.; Amiano, P.; Dor-ronsoro, M.; Larrañaga, N.; Martínez, C.; Sánchez, M.J.; Navarro, C.; Chirlaque, M.D.; Tormo, M.J.; Quirós, J.R.; González, C.A. Estimation of dietary sources and flavonoid intake in a Spanish adult population (EPIC-Spain). J. Am. Diet. Assoc., 2010, 110(3), 390-398.
[http://dx.doi.org/10.1016/j.jada.2009.11.024] [PMID: 20184989]
[42]
Vogiatzoglou, A.; Mulligan, A.A.; Lentjes, M.A.H.; Luben, R.N.; Spencer, J.P.E.; Schroeter, H.; Khaw, K.T.; Kuhnle, G.G.C. Flavonoid intake in European adults (18 to 64 years). PLoS One, 2015, 10(5), e0128132.
[http://dx.doi.org/10.1371/journal.pone.0128132] [PMID: 26010916]
[43]
Johannot, L.; Somerset, S.M. Age-related variations in flavonoid intake and sources in the Australian population. Public Health Nutr., 2006, 9(8), 1045-1054.
[http://dx.doi.org/10.1017/PHN2006971] [PMID: 17125569]
[44]
Murphy, K.J.; Walker, K.M.; Dyer, K.A.; Bryan, J. Estimation of daily intake of flavonoids and major food sources in middle-aged Australian men and women. Nutr. Res., 2019, 61, 64-81.
[http://dx.doi.org/10.1016/j.nutres.2018.10.006] [PMID: 30683440]
[45]
Grotto, D.; Zied, E. The Standard American Diet and its relationship to the health status of Americans. Nutr. Clin. Pract., 2010, 25(6), 603-612.
[http://dx.doi.org/10.1177/0884533610386234] [PMID: 21139124]
[46]
Bertoia, M.L.; Rimm, E.B.; Mukamal, K.J.; Hu, F.B.; Willett, W.C.; Cassidy, A. Dietary flavonoid intake and weight maintenance: Three prospective cohorts of 124 086 US men and women followed for up to 24 years. BMJ, 2016, 352, i17.
[http://dx.doi.org/10.1136/bmj.i17] [PMID: 26823518]
[47]
Hostetler, G.L.; Ralston, R.A.; Schwartz, S.J. Flavones: Food sources bioavailability metabolism and bioactivity. Adv. Nutr., 2017, 8(3), 423-435.
[http://dx.doi.org/10.3945/an.116.012948] [PMID: 28507008]
[48]
Waheed Janabi, A.H.; Kamboh, A.A.; Saeed, M.; Xiaoyu, L. BiBi, J.; Majeed, F.; Naveed, M.; Mughal, M.J.; Korejo, N.A.; Kamboh, R.; Alagawany, M.; Lv, H. Flavonoid-rich foods (FRF): A promising nutraceutical approach against lifespan-shortening diseases. Iran. J. Basic Med. Sci., 2020, 23(2), 140-153.
[PMID: 32405356]
[49]
L Suraweera, T.; Rupasinghe, H.P.V.; Dellaire, G.; Xu, Z. Regulation of Nrf2/ARE pathway by dietary flavonoids: A friend or foe for cancer management? Antioxidants, 2020, 9(10), 973.
[http://dx.doi.org/10.3390/antiox9100973] [PMID: 33050575]
[50]
Ahmad, A.; Kaleem, M.; Ahmed, Z.; Shafiq, H. Therapeutic potential of flavonoids and their mechanism of action against microbial and viral infections—A review. Food Res. Int., 2015, 77, 221-235.
[http://dx.doi.org/10.1016/j.foodres.2015.06.021]
[51]
Chen, R.; Hollborn, M.; Grosche, A.; Reichenbach, A.; Wiedemann, P.; Bringmann, A.; Kohen, L. Effects of the vegetable polyphenols epigallocatechin-3-gallate, luteolin, apigenin, myricetin, quercetin, and cyanidin in primary cultures of human retinal pigment epithelial cells. Mol. Vis., 2014, 20, 242-258.
[PMID: 24623967]
[52]
Hollman, P.C.H.; Bijsman, M.N.C.P.; van Gameren, Y.; Cnossen, E.P.J.; de Vries, J.H.M.; Katan, M.B. The sugar moiety is a major determinant of the absorption of dietary flavonoid glycosides in man. Free Radic. Res., 1999, 31(6), 569-573.
[http://dx.doi.org/10.1080/10715769900301141] [PMID: 10630681]
[53]
Day, A.J.; Cañada, F.J.; Díaz, J.C.; Kroon, P.A.; Mclauchlan, R.; Faulds, C.B.; Plumb, G.W.; Morgan, M.R.A.; Williamson, G. Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Lett., 2000, 468(2-3), 166-170.
[http://dx.doi.org/10.1016/S0014-5793(00)01211-4] [PMID: 10692580]
[54]
Walle, T. Absorption and metabolism of flavonoids. Free Radic. Biol. Med., 2004, 36(7), 829-837.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.01.002] [PMID: 15019968]
[55]
Scheline, R.R. Metabolism of foreign compounds by gastrointestinal microorganisms. Pharmacol. Rev., 1973, 25(4), 451-523.
[PMID: 4587548]
[56]
Hollman, P.C. Absorption, bioavailability, and metabolism of flavonoids. Pharm. Biol., 2004, 42(S1), 74-83.
[57]
Breinholt, V.; Lauridsen, S.T.; Dragsted, L.O. Differential effects of dietary flavonoids on drug metabolizing and antioxidant enzymes in female rat. Xenobiotica, 1999, 29(12), 1227-1240.
[http://dx.doi.org/10.1080/004982599237903] [PMID: 10647909]
[58]
Kuhnle, G.; Spencer, J.P.E.; Schroeter, H.; Shenoy, B.; Debnam, E.S.; Srai, S.K.S.; Rice-Evans, C.; Hahn, U. Epicatechin and catechin are O-methylated and glucuronidated in the small intestine. Biochem. Biophys. Res. Commun., 2000, 277(2), 507-512.
[http://dx.doi.org/10.1006/bbrc.2000.3701] [PMID: 11032751]
[59]
Manach, C.; Morand, C.; Crespy, V.; Demigné, C.; Texier, O.; Régérat, F.; Rémésy, C. Quercetin is recovered in human plasma as conjugated derivatives which retain antioxidant properties. FEBS Lett., 1998, 426(3), 331-336.
[http://dx.doi.org/10.1016/S0014-5793(98)00367-6] [PMID: 9600261]
[60]
Grill, J.D.; Cummings, J.L. Novel targets for Alzheimer’s disease treatment. Expert Rev. Neurother., 2010, 10(5), 711.
[http://dx.doi.org/10.1586/ern.10.29] [PMID: 20420492]
[61]
Ahmad, S.; Ullah, F.; Sadiq, A.; Ayaz, M.; Imran, M.; Ali, I.; Zeb, A.; Ullah, F.; Shah, M.R. Chemical composition, antioxidant and anti-cholinesterase potentials of essential oil of Rumex hastatus D. Don collected from the North West of Pakistan. BMC Complement. Altern. Med., 2016, 16(1), 29.
[http://dx.doi.org/10.1186/s12906-016-0998-z]
[62]
Balducci, C.; Forloni, G. Novel targets in Alzheimer’s disease: A special focus on microglia. Pharmacol. Res., 2018, 130, 402-413.
[http://dx.doi.org/10.1016/j.phrs.2018.01.017] [PMID: 29391235]
[63]
Chaudhary, A.; Maurya, P.K.; Yadav, B.S.; Singh, S.; Mani, A. Current therapeutic targets for Alzheimer’s disease. J. Biomed., 2018, 3, 74-84.
[http://dx.doi.org/10.7150/jbm.26783]
[64]
Ayaz, M.; Sadiq, A.; Junaid, M.; Ullah, F.; Ovais, M.; Ullah, I.; Ahmed, J.; Shahid, M. Flavonoids as prospective neuroprotectants and their therapeutic propensity in aging associated neurological disorders. Front. Aging Neurosci., 2019, 11, 155.
[http://dx.doi.org/10.3389/fnagi.2019.00155]
[65]
Vepsäläinen, S.; Koivisto, H.; Pekkarinen, E.; Mäkinen, P.; Dobson, G.; McDougall, G.J.; Stewart, D.; Haapasalo, A.; Karjalainen, R.O.; Tanila, H.; Hiltunen, M. Anthocyanin-enriched bilberry and blackcurrant extracts modulate amyloid precursor protein processing and alleviate behavioral abnormalities in the APP/PS1 mouse model of Alzheimer’s disease. J. Nutr. Biochem., 2013, 24(1), 360-370.
[http://dx.doi.org/10.1016/j.jnutbio.2012.07.006] [PMID: 22995388]
[66]
Onozuka, H.; Nakajima, A.; Matsuzaki, K.; Shin, R.W.; Ogino, K.; Saigusa, D.; Tetsu, N.; Yokosuka, A.; Sashida, Y.; Mimaki, Y.; Yamakuni, T.; Ohizumi, Y. Nobiletin, a citrus flavonoid, improves memory impairment and Abeta pathology in a transgenic mouse model of Alzheimer’s disease. J. Pharmacol. Exp. Ther., 2008, 326(3), 739-744.
[http://dx.doi.org/10.1124/jpet.108.140293] [PMID: 18544674]
[67]
Wang, J.; Ho, L.; Zhao, W.; Ono, K.; Rosensweig, C.; Chen, L.; Humala, N.; Teplow, D.B.; Pasinetti, G.M. Grape-derived polyphenolics prevent Abeta oligomerization and attenuate cognitive deterioration in a mouse model of Alzheimer’s disease. J. Neurosci., 2008, 28(25), 6388-6392.
[http://dx.doi.org/10.1523/JNEUROSCI.0364-08.2008] [PMID: 18562609]
[68]
Rezai-Zadeh, K.; Douglas Shytle, R.; Bai, Y.; Tian, J.; Hou, H.; Mori, T.; Zeng, J.; Obregon, D.; Town, T.; Tan, J. Flavonoid-mediated presenilin-1 phosphorylation reduces Alzheimer’s disease β-amyloid production. J. Cell. Mol. Med., 2009, 13(3), 574-588.
[http://dx.doi.org/10.1111/j.1582-4934.2008.00344.x] [PMID: 18410522]
[69]
Rezai-Zadeh, K.; Arendash, G.W.; Hou, H.; Fernandez, F.; Jensen, M.; Runfeldt, M.; Shytle, R.D.; Tan, J. Green tea epigallocatechin-3-gallate (EGCG) reduces β-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice. Brain Res., 2008, 1214, 177-187.
[http://dx.doi.org/10.1016/j.brainres.2008.02.107] [PMID: 18457818]
[70]
Rezai-Zadeh, K.; Shytle, D.; Sun, N.; Mori, T.; Hou, H.; Jeanniton, D.; Ehrhart, J.; Townsend, K.; Zeng, J.; Morgan, D.; Hardy, J.; Town, T.; Tan, J. Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J. Neurosci., 2005, 25(38), 8807-8814.
[http://dx.doi.org/10.1523/JNEUROSCI.1521-05.2005] [PMID: 16177050]
[71]
Shimmyo, Y.; Kihara, T.; Akaike, A.; Niidome, T.; Sugimoto, H. Epigallocatechin-3-gallate and curcumin suppress amyloid beta-induced beta-site APP cleaving enzyme-1 upregulation. Neuroreport, 2008, 19(13), 1329-1333.
[http://dx.doi.org/10.1097/WNR.0b013e32830b8ae1] [PMID: 18695518]
[72]
Asha, D.; Sumathi, T. Nootropic activity of isorhamnetin in amyloid beta 25-35 induced cognitive dysfunction and its related mRNA expressions in alzheimer’s disease. Int. J. Pharm. Sci. Res., 2016, 7(8), 3233.
[73]
Ishola, I.O.; Osele, M.O.; Chijioke, M.C.; Adeyemi, O.O. Isorhamnetin enhanced cortico-hippocampal learning and memory capability in mice with scopolamine-induced amnesia: Role of antioxidant defense, cholinergic and BDNF signaling. Brain Res., 2019, 1712, 188-196.
[http://dx.doi.org/10.1016/j.brainres.2019.02.017] [PMID: 30772273]
[74]
Babaei, P.; Kouhestani, S.; Jafari, A. Kaempferol attenuates cognitive deficit via regulating oxidative stress and neuroinflammation in an ovariectomized rat model of sporadic dementia. Neural Regen. Res., 2018, 13(10), 1827-1832.
[http://dx.doi.org/10.4103/1673-5374.238714] [PMID: 30136699]
[75]
Darbandi, N.; Ramezani, M.; Khodagholi, F.; Noori, M. Kaempferol promotes memory retention and density of hippocampal CA1 neurons in intra-cerebroventricular STZ-induced experimental AD model in Wistar rats. Biologija, 2016, 62(3), 157-168.
[http://dx.doi.org/10.6001/biologija.v62i3.3368]
[76]
Wang, D.M.; Li, S.Q.; Wu, W.L.; Zhu, X.Y.; Wang, Y.; Yuan, H.Y. Effects of long-term treatment with quercetin on cognition and mitochondrial function in a mouse model of Alzheimer’s disease. Neurochem. Res., 2014, 39(8), 1533-1543.
[http://dx.doi.org/10.1007/s11064-014-1343-x] [PMID: 24893798]
[77]
File, S.; Jarrett, N.; Fluck, E.; Duffy, R.; Casey, K.; Wiseman, H. Eating soya improves human memory. Psychopharmacology, 2001, 157(4), 430-436.
[http://dx.doi.org/10.1007/s002130100845] [PMID: 11605103]
[78]
Pan, Y.; Anthony, M.; Clarkson, T.B. Effect of estradiol and soy phytoestrogens on choline acetyltransferase and nerve growth factor mRNAs in the frontal cortex and hippocampus of female rats. Exp. Biol. Med., 1999, 221(2), 118-125.
[http://dx.doi.org/10.3181/00379727-221-44393] [PMID: 10352122]
[79]
Pan, Y.; Anthony, M.; Clarkson, T.B. Evidence for up-regulation of brain-derived neurotrophic factor mRNA by soy phytoestrogens in the frontal cortex of retired breeder female rats. Neurosci. Lett., 1999, 261(1-2), 17-20.
[http://dx.doi.org/10.1016/S0304-3940(98)00994-X] [PMID: 10081916]
[80]
Krikorian, R.; Nash, T.A.; Shidler, M.D.; Shukitt-Hale, B.; Joseph, J.A. Concord grape juice supplementation improves memory function in older adults with mild cognitive impairment. Br. J. Nutr., 2010, 103(5), 730-734.
[http://dx.doi.org/10.1017/S0007114509992364] [PMID: 20028599]
[81]
Scholey, A.B.; French, S.J.; Morris, P.J.; Kennedy, D.O.; Milne, A.L.; Haskell, C.F. Consumption of cocoa flavanols results in acute improvements in mood and cognitive performance during sustained mental effort. J. Psychopharmacol., 2010, 24(10), 1505-1514.
[http://dx.doi.org/10.1177/0269881109106923] [PMID: 19942640]
[82]
Shukitt-Hale, B. Blueberries and neuronal aging. Gerontology, 2012, 58(6), 518-523.
[http://dx.doi.org/10.1159/000341101] [PMID: 22907211]
[83]
Peluso, M.R. Flavonoids attenuate cardiovascular disease, inhibit phosphodiesterase, and modulate lipid homeostasis in adipose tissue and liver. Exp. Biol. Med., 2006, 231(8), 1287-1299.
[http://dx.doi.org/10.1177/153537020623100802] [PMID: 16946397]
[84]
Gao, Y.; Chen, T.; Raj, J.U. Endothelial and smooth muscle cell interactions in the pathobiology of pulmonary hypertension. Am. J. Respir. Cell Mol. Biol., 2016, 54(4), 451-460.
[http://dx.doi.org/10.1165/rcmb.2015-0323TR] [PMID: 26744837]
[85]
Puzserova, A.; Bernatova, I. Blood pressure regulation in stress: Focus on nitric oxide-dependent mechanisms. Physiol. Res., 2016, 65(Suppl. 3), S309-S342.
[http://dx.doi.org/10.33549/physiolres.933442] [PMID: 27775419]
[86]
Ciumărnean, L.; Milaciu, M.V.; Runcan, O.; Vesa, Ș.C.; Răchișan, A.L.; Negrean, V.; Perné, M.G.; Donca, V.I.; Alexescu, T.G.; Para, I.; Dogaru, G. The effects of flavonoids in cardiovascular diseases. Molecules, 2020, 25(18), 4320.
[http://dx.doi.org/10.3390/molecules25184320] [PMID: 32967119]
[87]
Saponara, S.; Testai, L.; Iozzi, D.; Martinotti, E.; Martelli, A.; Chericoni, S.; Sgaragli, G.; Fusi, F.; Calderone, V. (+/−)‐Naringenin as large conductance Ca2+‐activated K+ (BKCa) channel opener in vascular smooth muscle cells. Br. J. Pharmacol., 2006, 149(8), 1013-1021.
[http://dx.doi.org/10.1038/sj.bjp.0706951] [PMID: 17088866]
[88]
Tamminen, M.; Mottino, G.; Qiao, J.H.; Breslow, J.L.; Frank, J.S. Ultrastructure of early lipid accumulation in ApoE-deficient mice. Arterioscler. Thromb. Vasc. Biol., 1999, 19(4), 847-853.
[http://dx.doi.org/10.1161/01.ATV.19.4.847] [PMID: 10195908]
[89]
Auger, C.; Gérain, P.; Laurent-Bichon, F.; Portet, K.; Bornet, A.; Caporiccio, B.; Cros, G.; Teissédre, P.L.; Rouanet, J.M. Phenolics from commercialized grape extracts prevent early atherosclerotic lesions in hamsters by mechanisms other than antioxidant effect. J. Agric. Food Chem., 2004, 52(16), 5297-5302.
[http://dx.doi.org/10.1021/jf040125d] [PMID: 15291511]
[90]
Kim, J.W.; Lim, S.C.; Lee, M.Y.; Lee, J.W.; Oh, W.K.; Kim, S.K.; Kang, K.W. Inhibition of neointimal formation by trans-resveratrol: Role of phosphatidyl inositol 3-kinase-dependent Nrf2 activation in heme oxygenase-1 induction. Mol. Nutr. Food Res., 2010, 54(10), 1497-1505.
[http://dx.doi.org/10.1002/mnfr.201000016] [PMID: 20486211]
[91]
Caton, P.W.; Pothecary, M.R.; Lees, D.M.; Khan, N.Q.; Wood, E.G.; Shoji, T.; Kanda, T.; Rull, G.; Corder, R. Regulation of vascular endothelial function by procyanidin-rich foods and beverages. J. Agric. Food Chem., 2010, 58(7), 4008-4013.
[http://dx.doi.org/10.1021/jf9031876] [PMID: 20108902]
[92]
Fernandes, I.; Pérez-Gregorio, R.; Soares, S.; Mateus, N.; de Freitas, V. Wine flavonoids in health and disease prevention. Molecules, 2017, 22(2), 292.
[http://dx.doi.org/10.3390/molecules22020292] [PMID: 28216567]
[93]
Gaetano, G.; Curtis, A.; Castelnuovo, A.; Donati, M.B.; Iacoviello, L.; Rotondo, S. Antithrombotic effect of polyphenols in experimental models: A mechanism of reduced vascular risk by moderate wine consumption. Ann. N. Y. Acad. Sci., 2002, 957(1), 174-188.
[http://dx.doi.org/10.1111/j.1749-6632.2002.tb02915.x] [PMID: 12074971]
[94]
Murphy, K.J.; Chronopoulos, A.K.; Singh, I.; Francis, M.A.; Moriarty, H.; Pike, M.J.; Turner, A.H.; Mann, N.J.; Sinclair, A.J. Dietary flavanols and procyanidin oligomers from cocoa (Theobroma cacao) inhibit platelet function. Am. J. Clin. Nutr., 2003, 77(6), 1466-1473.
[http://dx.doi.org/10.1093/ajcn/77.6.1466] [PMID: 12791625]
[95]
Schewe, T.; Sadik, C.; Klotz, LO.; Yoshimoto, T.; Kühn, H.; Sies, H. Polyphenols of cocoa: Inhibition of mammalian 15-lipoxygenase. Biol. Chem., 2001, 382(12), 1687-1696.
[96]
Gross, M. Flavonoids and cardiovascular disease. Pharma. Biol., 2004, 42(S1), 21-35.
[97]
Tavani, A.; Spertini, L.; Bosetti, C.; Parpinel, M.; Gnagnarella, P.; Bravi, F.; Peterson, J.; Dwyer, J.; Lagiou, P.; Negri, E.; La Vecchia, C. Intake of specific flavonoids and risk of acute myocardial infarction in Italy. Public Health Nutr., 2006, 9(3), 369-374.
[http://dx.doi.org/10.1079/PHN2006859] [PMID: 16684389]
[98]
Cassidy, A.; Mukamal, K.J.; Liu, L.; Franz, M.; Eliassen, A.H.; Rimm, E.B. High anthocyanin intake is associated with a reduced risk of myocardial infarction in young and middle-aged women. Circulation, 2013, 127(2), 188-196.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.122408] [PMID: 23319811]
[99]
Lin, B. Polyphenols and neuroprotection against ischemia and neurodegeneration. Mini Rev. Med. Chem., 2011, 11(14), 1222-1238.
[PMID: 22070681]
[100]
Gottlieb, M.; Leal-Campanario, R.; Campos-Esparza, M.R.; Sánchez-Gómez, M.V.; Alberdi, E.; Arranz, A.; Delgado-García, J.M.; Gruart, A.; Matute, C. Neuroprotection by two polyphenols following excitotoxicity and experimental ischemia. Neurobiol. Dis., 2006, 23(2), 374-386.
[http://dx.doi.org/10.1016/j.nbd.2006.03.017] [PMID: 16806951]
[101]
Rees, A.; Dodd, G.; Spencer, J. The effects of flavonoids on cardiovascular health: A review of human intervention trials and implications for cerebrovascular function. Nutrients, 2018, 10(12), 1852.
[http://dx.doi.org/10.3390/nu10121852] [PMID: 30513729]
[102]
Macdonald, I.A.; Mader, J.A.; Bussard, R.G. The role of rutin and quercitrin in stimulating flavonol glycosidase activity by cultured cell-free microbial preparations of human feces and saliva. Mutat. Mutat. Res. Lett., 1983, 122(2), 95-102.
[http://dx.doi.org/10.1016/0165-7992(83)90044-1] [PMID: 6419088]
[103]
Cao, G.; Sofic, E.; Prior, R.L. Antioxidant and prooxidant behavior of flavonoids: Structure-activity relationships. Free Radic. Biol. Med., 1997, 22(5), 749-760.
[http://dx.doi.org/10.1016/S0891-5849(96)00351-6] [PMID: 9119242]
[104]
Halliwell, B.; Gutteridge, J.M. Free radicals in biology and medicine; Oxford University Press: USA, 2015.
[http://dx.doi.org/10.1093/acprof:oso/9780198717478.001.0001]
[105]
Brown, E.J.; Khodr, H.; Hider, C.R.; Rice-Evans, C.A. Structural dependence of flavonoid interactions with Cu2+ ions: Implications for their antioxidant properties. Biochem. J., 1998, 330(3), 1173-1178.
[http://dx.doi.org/10.1042/bj3301173] [PMID: 9494082]
[106]
Ratty, A.K.; Das, N.P. Effects of flavonoids on nonenzymatic lipid peroxidation: Structure-activity relationship. Biochem. Med. Metab. Biol., 1988, 39(1), 69-79.
[http://dx.doi.org/10.1016/0885-4505(88)90060-6] [PMID: 3355718]
[107]
Vennat, B.; Bos, M.; Pourrat, A.; Bastide, P. Procyanidins from tormentil: Fractionation and study of the anti-radical activity towards superoxide anion. Biol. Pharm. Bull., 1994, 17(12), 1613-1615.
[http://dx.doi.org/10.1248/bpb.17.1613] [PMID: 7735205]
[108]
Tapas, A.R.; Sakarkar, D.M.; Kakde, R.B. Flavonoids as nutraceuticals: A review. Trop. J. Pharm. Res., 2008, 7(3), 1089-1099.
[http://dx.doi.org/10.4314/tjpr.v7i3.14693]
[109]
Zhu, W.; Jia, Q.; Wang, Y.; Zhang, Y.; Xia, M. The anthocyanin cyanidin-3-O-β-glucoside, a flavonoid, increases hepatic glutathione synthesis and protects hepatocytes against reactive oxygen species during hyperglycemia: Involvement of a cAMP–PKA-dependent signaling pathway. Free Radic. Biol. Med., 2012, 52(2), 314-327.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.10.483] [PMID: 22085656]
[110]
Sonnenbichler, J.; Zetl, I. Biochemical effects of the flavonolignane silibinin on RNA, protein and DNA synthesis in rat livers. Prog. Clin. Biol. Res., 1986, 213, 319-331.
[PMID: 2424029]
[111]
He, Q.; Kim, J.; Sharma, R.P. Silymarin protects against liver damage in BALB/c mice exposed to fumonisin B1 despite increasing accumulation of free sphingoid bases. Toxicol. Sci., 2004, 80(2), 335-342.
[http://dx.doi.org/10.1093/toxsci/kfh148] [PMID: 15103051]
[112]
Saller, R.; Meier, R.; Brignoli, R. The use of silymarin in the treatment of liver diseases. Drugs, 2001, 61(14), 2035-2063.
[http://dx.doi.org/10.2165/00003495-200161140-00003] [PMID: 11735632]
[113]
Spencer, J.P.E.; Vauzour, D.; Rendeiro, C. Flavonoids and cognition: The molecular mechanisms underlying their behavioural effects. Arch. Biochem. Biophys., 2009, 492(1-2), 1-9.
[http://dx.doi.org/10.1016/j.abb.2009.10.003] [PMID: 19822127]
[114]
Kim, S.M.; Kang, K.; Jho, E.H.; Jung, Y.J.; Nho, C.W.; Um, B.H.; Pan, C.H. Hepatoprotective effect of flavonoid glycosides from Lespedeza cuneata against oxidative stress induced by tert-butyl hyperoxide. Phytother. Res., 2011, 25(7), 1011-1017.
[http://dx.doi.org/10.1002/ptr.3387] [PMID: 21226126]
[115]
Wu, Y.; Wang, F.; Zheng, Q.; Lu, L.; Yao, H.; Zhou, C.; Wu, X.; Zhao, Y. Hepatoprotective effect of total flavonoids from Laggera alata against carbon tetrachloride-induced injury in primary cultured neonatal rat hepatocytes and in rats with hepatic damage. J. Biomed. Sci., 2006, 13(4), 569-578.
[http://dx.doi.org/10.1007/s11373-006-9081-y] [PMID: 16547767]
[116]
Cushnie, T.P.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents, 2005, 26(5), 343-356.
[http://dx.doi.org/10.1016/j.ijantimicag.2005.09.002] [PMID: 16323269]
[117]
Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev., 1999, 12(4), 564-582.
[http://dx.doi.org/10.1128/CMR.12.4.564] [PMID: 10515903]
[118]
Borris, R.P. Natural products research: Perspectives from a major pharmaceutical company. J. Ethnopharmacol., 1996, 51(1-3), 29-38.
[http://dx.doi.org/10.1016/0378-8741(95)01347-4] [PMID: 9213624]
[119]
Moerman, D.E. An analysis of the food plants and drug plants of native North America. J. Ethnopharmacol., 1996, 52(1), 1-22.
[http://dx.doi.org/10.1016/0378-8741(96)01393-1] [PMID: 8733114]
[120]
Mori, A.; Nishino, C.; Enoki, N.; Tawata, S. Antibacterial activity and mode of action of plant flavonoids against Proteus vulgaris and Staphylococcus aureus. Phytochemistry, 1987, 26(8), 2231-2234.
[http://dx.doi.org/10.1016/S0031-9422(00)84689-0]
[121]
Ohemeng, K.A.; Schwender, C.F.; Fu, K.P.; Barrett, J.F. DNA gyrase inhibitory and antibacterial activity of some flavones(1). Bioorg. Med. Chem. Lett., 1993, 3(2), 225-230.
[http://dx.doi.org/10.1016/S0960-894X(01)80881-7]
[122]
Haraguchi, H.; Tanimoto, K.; Tamura, Y.; Mizutani, K.; Kinoshita, T. Mode of antibacterial action of retrochalcones from Glycyrrhiza inflata. Phytochemistry, 1998, 48(1), 125-129.
[http://dx.doi.org/10.1016/S0031-9422(97)01105-9] [PMID: 9621457]
[123]
Foudah, A.I.; Abdel-Kader, M.S. Isoflavonoids. In: Flavonoids-from biosynthesis to human health; IntechOpen: London, UK, 2017.
[124]
Kesava Reddy, M.; Vijaya Bhaskar Reddy, M.; Jayakrishna, G.; Gunasekar, D.; Caux, C.; Bodo, B. Two new flavonoids from Andrographis rothii. Chem. Pharm. Bull., 2003, 51(2), 191-193.
[http://dx.doi.org/10.1248/cpb.51.191] [PMID: 12576654]
[125]
Bhaskar Reddy, M.V.; Kishore, P.H.; Rao, C.V.; Gunasekar, D.; Caux, C.; Bodo, B. New 2′-oxygenated flavonoids from Andrographis affinis. J. Nat. Prod., 2003, 66(2), 295-297.
[http://dx.doi.org/10.1021/np020331k] [PMID: 12608871]
[126]
Jayaprakasam, B.; Damu, A.G.; Gunasekar, D.; Blond, A.; Bodo, B. Dihydroechioidinin, a flavanone from Andrographis echioides. Phytochemistry, 1999, 52(5), 935-937.
[http://dx.doi.org/10.1016/S0031-9422(99)00295-2]
[127]
Hari Kishore, P.; Vijaya Bhaskar Reddy, M.; Kesava Reddy, M.; Gunasekar, D.; Caux, C.; Bodo, B. Flavonoids from Andrographis lineata. Phytochemistry, 2003, 63(4), 457-461.
[http://dx.doi.org/10.1016/S0031-9422(02)00702-1] [PMID: 12770598]
[128]
Ahmed, E.; Imran, M.; Malik, A.; Ashraf, M. Antioxidant activity with flavonoidal constituents from Aerva persica. Arch. Pharm. Res., 2006, 29(5), 343-347.
[http://dx.doi.org/10.1007/BF02968582] [PMID: 16756077]
[129]
Zhang, H.L.; Wang, S.; Chen, R.Y.; Yu, D.Q. Studies on chemical constituents of Uvaria macrophylia. Yao Xue Xue Bao, 2002, 37(2), 124-127.
[PMID: 12579957]
[130]
Wang, S.; Zhang, P.C.; Chen, R.Y.; Wang, Y.H.; He, W.Y.; Yu, D.Q. A novel dihydroflavone from the roots of Uvaria macrophylla. Chin. Chem. Lett., 2002, 13(9), 857-858.
[131]
Ahmed, M.S.; Galal, A.M.; Ross, S.A.; Ferreira, D.; ElSohly, M.A.; Ibrahim, A.R.S.; Mossa, J.S.; El-Feraly, F.S. A weakly antimalarial biflavanone from Rhus retinorrhoea. Phytochemistry, 2001, 58(4), 599-602.
[http://dx.doi.org/10.1016/S0031-9422(01)00244-8] [PMID: 11576606]
[132]
Tewtrakul, S.; Nakamura, N.; Hattori, M.; Fujiwara, T.; Supavita, T. Flavanone and flavonol glycosides from the leaves of Thevetia peruviana and their HIV-1 reverse transcriptase and HIV-1 integrase inhibitory activities. Chem. Pharm. Bull., 2002, 50(5), 630-635.
[http://dx.doi.org/10.1248/cpb.50.630] [PMID: 12036017]
[133]
Emam, A.M.; Elias, R.; Moussa, A.M.; Faure, R.; Debrauwer, L.; Balansard, G. Two flavonoid triglycosides from Buddleja madagascariensis. Phytochemistry, 1998, 48(4), 739-742.
[http://dx.doi.org/10.1016/S0031-9422(97)01043-1] [PMID: 9664703]
[134]
Zhang, S.X.; Tani, T.; Yamaji, S.; Ma, C.M.; Wang, M.C.; Cai, S.Q.; Zhao, Y.Y. Glycosyl flavonoids from the roots and rhizomes of Asarum longerhizomatosum. J. Asian Nat. Prod. Res., 2003, 5(1), 25-30.
[http://dx.doi.org/10.1080/1028602031000080423] [PMID: 12608635]
[135]
Flagg, M.L.; Wächter, G.A.; Davis, A.L.; Montenegro, G.; Timmermann, B.N. Two novel flavanones from Greigia sphacelata. J. Nat. Prod., 2000, 63(12), 1689-1691.
[http://dx.doi.org/10.1021/np0003387] [PMID: 11141119]
[136]
Srivastava, S.K.; Srivastava, S.D. New biologically active constituents from Terminalia chebula stem bark. ChemInform, 2005, 36(17), 36.
[http://dx.doi.org/10.1002/chin.200517197]
[137]
Shaiq Ali, M.; Ahmed, F.; Kashif Pervez, M.; Azhar, I.; Ibrahim, S.A. Parkintin: A new flavanone with epoxy-isopentyl moiety from Parkinsonia aculeata linn. (Caesalpiniaceae). Nat. Prod. Res., 2005, 19(1), 53-56.
[http://dx.doi.org/10.1080/14786410310001643812] [PMID: 15700645]
[138]
Srivastava, S.K.; Srivastava, S.D.; Chouksey, B.K. New constituents of Terminalia alata. Fitoterapia, 1999, 70(4), 390-394.
[http://dx.doi.org/10.1016/S0367-326X(99)00060-X] [PMID: 11223218]
[139]
Deng, Y.; Lee, J.P.; Tianasoa-Ramamonjy, M.; Snyder, J.K.; Des Etages, S.A.; Kanada, D.; Snyder, M.P.; Turner, C.J. New antimicrobial flavanones from Physena madagascariensis. J. Nat. Prod., 2000, 63(8), 1082-1089.
[http://dx.doi.org/10.1021/np000054m] [PMID: 10978202]
[140]
Braca, A.; Bilia, A.; Mendez, J.; Morelli, I. Three flavonoids from Licania densiflora. Phytochemistry, 1999, 51(8), 1125-1128.
[http://dx.doi.org/10.1016/S0031-9422(99)00187-9]
[141]
Maver, M.; Queiroz, E.F.; Wolfender, J.L.; Hostettmann, K. Flavonoids from the Stem of Eriophorum s cheuchzeri. J. Nat. Prod., 2005, 68(7), 1094-1098.
[http://dx.doi.org/10.1021/np0580107] [PMID: 16038557]
[142]
Mahidol, C.; Prawat, H.; Prachyawarakorn, V.; Ruchirawat, S. Investigation of some bioactive Thai medicinal plants. Phytochem. Rev., 2002, 1(3), 287-297.
[http://dx.doi.org/10.1023/A:1026085724239]
[143]
Matsuda, H.; Morikawa, T.; Toguchida, I.; Harima, S.; Yoshikawa, M. Medicinal flowers. VI. Absolute stereostructures of two new flavanone glycosides and a phenylbutanoid glycoside from the flowers of Chrysanthemum indicum L.: their inhibitory activities for rat lens aldose reductase. Chem. Pharm. Bull., 2002, 50(7), 972-975.
[http://dx.doi.org/10.1248/cpb.50.972] [PMID: 12130858]
[144]
Carvalho, M.G.; Costa, P.M.; Abreu, H.S. Flavanones from Vernonia diffusa. J. Braz. Chem. Soc., 1999, 10(2), 163-166.
[http://dx.doi.org/10.1590/S0103-50531999000200015]
[145]
Yadava, R.N.; Singh, S.K. New anti-inflammatory active flavanone glycoside from Echinops echinatus the Roxb; NISCAIR-CSIR: India, 2006, pp. 1004-1100.
[146]
Garo, E.; Wolfender, J.L.; Hostettmann, K.; Hiller, W.; Antus, S.N.; Mavi, S. Prenylated flavanones from Monotes engleri: Online structure elucidation by LC/UV/NMR. Helv. Chim. Acta, 1998, 81(3-4), 754-763.
[http://dx.doi.org/10.1002/hlca.19980810325]
[147]
Jang, D.S.; Cuendet, M.; Hawthorne, M.E.; Kardono, L.B.S.; Kawanishi, K.; Fong, H.H.S.; Mehta, R.G.; Pezzuto, J.M.; Kinghorn, A.D. Prenylated flavonoids of the leaves of Macaranga conifera with inhibitory activity against cyclooxygenase-2. Phytochemistry, 2002, 61(7), 867-872.
[http://dx.doi.org/10.1016/S0031-9422(02)00378-3] [PMID: 12453581]
[148]
Takahashi, H.; Hirata, S.; Minami, H.; Fukuyama, Y. Triterpene and flavanone glycoside from Rhododendron simsii. Phytochemistry, 2001, 56(8), 875-879.
[http://dx.doi.org/10.1016/S0031-9422(00)00493-3] [PMID: 11324921]
[149]
Tseng, M.H.; Chou, C.H.; Chen, Y.M.; Kuo, Y.H. Allelopathic prenylflavanones from the fallen leaves of Macaranga tanarius. J. Nat. Prod., 2001, 64(6), 827-828.
[http://dx.doi.org/10.1021/np0100338] [PMID: 11421757]
[150]
Phommart, S.; Sutthivaiyakit, P.; Chimnoi, N.; Ruchirawat, S.; Sutthivaiyakit, S. Constituents of the Leaves of Macaranga t anarius. J. Nat. Prod., 2005, 68(6), 927-930.
[http://dx.doi.org/10.1021/np0500272] [PMID: 15974621]
[151]
Barakat, H.H.; Souleman, A.M.; Hussein, S.A.; Ibrahiem, O.A.; Nawwar, M.A. Flavonoid galloyl glucosides from the pods of Acaciafarnesiana. Phytochemistry, 1999, 51(1), 139-142.
[http://dx.doi.org/10.1016/S0031-9422(97)00010-1] [PMID: 9891938]
[152]
Zhang, Y.J.; Abe, T.; Tanaka, T.; Yang, C.R.; Kouno, I. Two new acylated flavanone glycosides from the leaves and branches of Phyllanthus emblica. Chem. Pharm. Bull., 2002, 50(6), 841-843.
[http://dx.doi.org/10.1248/cpb.50.841] [PMID: 12045344]
[153]
Ohyama, M.; Tanaka, T.; Iinuma, M. A prenylated flavanone from roots of Amorpha fruticosa. Phytochemistry, 1998, 48(5), 907-909.
[http://dx.doi.org/10.1016/S0031-9422(97)00960-6]
[154]
Singh, V.P.; Yadav, B.; Pandey, V.B. Flavanone glycosides from Alhagi pseudalhagi. Phytochemistry, 1999, 51(4), 587-590.
[http://dx.doi.org/10.1016/S0031-9422(99)00010-2] [PMID: 10389270]
[155]
Nanayakkara, N.P.D.; Burandt, C.L., Jr; Jacob, M.R. Flavonoids with activity against methicillin-resistant staphylococcus aureus from Dalea scandens var. paucifolia. Planta Med., 2002, 68(6), 519-522.
[http://dx.doi.org/10.1055/s-2002-32554] [PMID: 12094295]
[156]
Yadava, R.N.; Singh, R.K. A novel epoxyflavanone from Atylosia scarabaeoides roots. Fitoterapia, 1998, 69(2), 122-124.
[157]
Yadava, R.N.; Mathews, S.R.; Jain, N. Naringenin-4′-O-alpha-L-rhamnopyranoside: A novel flavanone glycoside from the stem of Crotalaria striata DC. J. Indian Chem. Soc., 1997, 74(5), 426-427.
[158]
Srinivas, K.V.N.S.; Koteswara Rao, Y.; Mahender, I.; Das, B.; Rama Krishna, K.V.S.; Hara Kishore, K.; Murty, U.S.N. Flavanoids from Caesalpinia pulcherrima. Phytochemistry, 2003, 63(7), 789-793.
[http://dx.doi.org/10.1016/S0031-9422(03)00325-X] [PMID: 12877920]
[159]
Yenesew, A.; Midiwo, J.O.; Miessner, M.; Heydenreich, M.; Peter, M.G. Two prenylated flavanones from stem bark of Erythrina burttii. Phytochemistry, 1998, 48(8), 1439-1443.
[http://dx.doi.org/10.1016/S0031-9422(97)00945-X]
[160]
Chacha, M.; Bojasemoleta, G.; Majinda, R. Antimicrobial and radical scavenging flavonoids from the stem wood of. Phytochemistry, 2005, 66(1), 99-104.
[http://dx.doi.org/10.1016/j.phytochem.2004.10.013] [PMID: 15649516]
[161]
Yenesew, A.; Induli, M.; Derese, S.; Midiwo, J.O.; Heydenreich, M.; Peter, M.G.; Akala, H.; Wangui, J.; Liyala, P.; Waters, N.C. Anti-plasmodial flavonoids from the stem bark of Erythrina abyssinica. Phytochemistry, 2004, 65(22), 3029-3032.
[http://dx.doi.org/10.1016/j.phytochem.2004.08.050] [PMID: 15504437]
[162]
Machumi, F.; Bojase-Moleta, G.; Mapitse, R.; Masesane, I.; Majinda, R.R. Radical scavenging-flavonoids from Erythrina abyssinica. Nat. Prod. Commun., 2006, 1(4), 287-292.
[163]
Lo, W.L.; Chang, F.R.; Hsieh, T.J.; Wu, Y.C. Coumaronochromones and flavanones from Euchresta formosana roots. Phytochemistry, 2002, 60(8), 839-845.
[http://dx.doi.org/10.1016/S0031-9422(02)00017-1] [PMID: 12150810]
[164]
Rukachaisirikul, T.; Innok, P.; Aroonrerk, N.; Boonamnuaylap, W.; Limrangsun, S.; Boonyon, C.; Woonjina, U.; Suksamrarn, A. Antibacterial pterocarpans from Erythrina subumbrans. J. Ethnopharmacol., 2007, 110(1), 171-175.
[http://dx.doi.org/10.1016/j.jep.2006.09.022] [PMID: 17055201]
[165]
Wächter, G.A.; Hoffmann, J.J.; Furbacher, T.; Blake, M.E.; Timmermann, B.N. Antibacterial and antifungal flavanones from Eysenhardtia texana. Phytochemistry, 1999, 52(8), 1469-1471.
[http://dx.doi.org/10.1016/S0031-9422(99)00221-6] [PMID: 10647219]
[166]
Sreedevi, E.; Rao, J.T. A new prenylated flavanone glycoside from the seeds of Glircidia maculata. Fitoterapia, 2000, 71(4), 392-394.
[http://dx.doi.org/10.1016/S0367-326X(00)00137-4] [PMID: 10925009]
[167]
Shengzhang, Y. A novel flavanone glycoside from Glycyrrhiza uralensis Fisch. Zhongguo Yaoke Daxue Xuebao, 1999, 30(1), 19-20.
[168]
Yuldashev, M.P. New flavanonglycoside from Glycyrrhiza glabra. Chem. Nat. Compd., 2001, 37(3), 224-225.
[http://dx.doi.org/10.1023/A:1012505721054]
[169]
Wang, B.; Zou, K.; Yang, X.B.; He, W.Y.; Zhao, Y.Y.; Zhang, R.Y. Two new flavanone glycosides from Glycyrrhizia inflata. Yao Xue Xue Bao, 1997, 32(3), 199-202.
[PMID: 11327021]
[170]
Shiao, Y.J.; Wang, C.N.; Wang, W.Y.; Lin, Y.L. Neuroprotective flavonoids from Flemingia macrophylla. Planta Med., 2005, 71(9), 835-840.
[http://dx.doi.org/10.1055/s-2005-871297] [PMID: 16206038]
[171]
Magalhães, A.F.; Tozzi, A.M.A.; Magalhães, E.G.; Nogueira, M.A.; Queiroz, S.C.N. Flavonoids from Lonchocarpus latifolius roots. Phytochemistry, 2000, 55(7), 787-792.
[http://dx.doi.org/10.1016/S0031-9422(00)00300-9] [PMID: 11190397]
[172]
Ahn, E.M.; Nakamura, N.; Akao, T.; Komatsu, K.; Qui, M.H.; Hattori, M. Prenylated flavonoids from Moghania philippinensis. Phytochemistry, 2003, 64(8), 1389-1394.
[http://dx.doi.org/10.1016/j.phytochem.2003.09.003] [PMID: 14630004]
[173]
Sritularak, B.; Likhitwitayawuid, K.; Conrad, J.; Kraus, W. Flavonoids from the roots of Millettia erythrocalyx. Phytochemistry, 2002, 61(8), 943-947.
[http://dx.doi.org/10.1016/S0031-9422(02)00337-0] [PMID: 12453522]
[174]
Carcache-Blanco, E.J.; Kang, Y.H.; Park, E.J.; Su, B.N.; Kardono, L.B.S.; Riswan, S.; Fong, H.H.S.; Pezzuto, J.M.; Kinghorn, A.D. Constituents of the stem bark of Pongamia pinnata with the potential to induce quinone reductase. J. Nat. Prod., 2003, 66(9), 1197-1202.
[http://dx.doi.org/10.1021/np030207g] [PMID: 14510596]
[175]
Cao, S.; Schilling, J.K.; Miller, J.S.; Andriantsiferana, R.; Rasamison, V.E.; Kingston, D.G.I. Cytotoxic compounds from Mundulea chapelieri from the Madagascar Rainforest. J. Nat. Prod., 2004, 67(3), 454-456.
[http://dx.doi.org/10.1021/np0303815] [PMID: 15043430]
[176]
Kuroyanagi, M.; Arakawa, T.; Hirayama, Y.; Hayashi, T. Antibacterial and antiandrogen flavonoids from Sophora flavescens. J. Nat. Prod., 1999, 62(12), 1595-1599.
[http://dx.doi.org/10.1021/np990051d] [PMID: 10654410]
[177]
Kang, S.S.; Kim, J.S.; Son, K.H.; Chang, H.W.; Kim, H.P. A new prenylated flavanone from the roots of Sophora flavescens. Fitoterapia, 2000, 71(5), 511-515.
[http://dx.doi.org/10.1016/S0367-326X(00)00165-9] [PMID: 11449498]
[178]
Kang, T.H.; Jeong, S.J.; Ko, W.G.; Kim, N.Y.; Lee, B.H.; Inagaki, M.; Miyamoto, T.; Higuchi, R.; Kim, Y.C. Cytotoxic lavandulyl flavanones from Sophora flavescens. J. Nat. Prod., 2000, 63(5), 680-681.
[http://dx.doi.org/10.1021/np990567x] [PMID: 10843587]
[179]
Jang, D.S.; Park, E.J.; Kang, Y.H.; Hawthorne, M.E.; Vigo, J.S.; Graham, J.G.; Cabieses, F.; Fong, H.H.S.; Mehta, R.G.; Pezzuto, J.M.; Kinghorn, A.D. Potential cncer chemopreventive flavonoids from the stems of Tephrosia toxicaria. J. Nat. Prod., 2003, 66(9), 1166-1170.
[http://dx.doi.org/10.1021/np0302100] [PMID: 14510590]
[180]
Moulari, B.; Pellequer, Y.; Lboutounne, H.; Girard, C.; Chaumont, J.P.; Millet, J.; Muyard, F. Isolation and in vitro antibacterial activity of astilbin, the bioactive flavanone from the leaves of Harungana madagascariensis Lam. ex Poir. (Hypericaceae). J. Ethnopharmacol., 2006, 106(2), 272-278.
[http://dx.doi.org/10.1016/j.jep.2006.01.008] [PMID: 16483735]
[181]
Es-Safi, N.E.; Khlifi, S.; Kerhoas, L.; Kollmann, A.; El Abbouyi, A.; Ducrot, P-H. Antioxidant constituents of the aerial parts of Globularia a Lypum growing in Morocco. J. Nat. Prod., 2005, 68(8), 1293-1296.
[http://dx.doi.org/10.1021/np0501233] [PMID: 16124783]
[182]
Stevens, J.F.; Ivancic, M.; Deinzer, M.L.; Wollenweber, E. A novel 2-hydroxyflavanone from Collinsonia canadensis. J. Nat. Prod., 1999, 62(2), 392-394.
[http://dx.doi.org/10.1021/np980421i] [PMID: 10075799]
[183]
Ahmad, I.; Anis, I.; Malik, A.; Nawaz, S.A.; Choudhary, M.I. Cholinesterase inhibitory constituents from Onosma hispida. Chem. Pharm. Bull., 2003, 51(4), 412-414.
[http://dx.doi.org/10.1248/cpb.51.412] [PMID: 12672994]
[184]
Shaiq Ali, M.; Saleem, M.; Ahmad, W.; Parvez, M.; Yamdagni, R. A chlorinated monoterpene ketone, acylated β-sitosterol glycosides and a flavanone glycoside from Mentha longifolia (Lamiaceae). Phytochemistry, 2002, 59(8), 889-895.
[http://dx.doi.org/10.1016/S0031-9422(01)00490-3] [PMID: 11937172]
[185]
Ngadjui, B.T.; Dongo, E.; Abegaz, B.M.; Fotso, S.; Tamboue, H.; Dinklagins, A. Dinklagins A, B and C: Three prenylated flavonoids and other constituents from the twigs of Dorstenia dinklagei. Phytochemistry, 2002, 61(1), 99-104.
[http://dx.doi.org/10.1016/S0031-9422(02)00130-9] [PMID: 12165307]
[186]
El-Sohly, H.N.; Joshi, A.; Li, X.C.; Ross, S.A. Flavonoids from Maclura tinctoria. Phytochemistry, 1999, 52(1), 141-145.
[http://dx.doi.org/10.1016/S0031-9422(99)00126-0] [PMID: 10466226]
[187]
Ye, C.L.; Lu, Y.H.; Wei, D.Z. Flavonoids from Cleistocalyx operculatus. Phytochemistry, 2004, 65(4), 445-447.
[http://dx.doi.org/10.1016/j.phytochem.2003.11.002] [PMID: 14759539]
[188]
Mustafa, K.A.; Perry, N.B.; Weavers, R.T. 2-Hydroxyflavanones from Leptospermum polygalifolium subsp. Polygalifolium Equilibrating sets of hemiacetal isomers. Phytochemistry, 2003, 64(7), 1285-1293.
[http://dx.doi.org/10.1016/j.phytochem.2003.09.006] [PMID: 14599527]
[189]
Makino, M.; Fujimoto, Y. Flavanones from Baeckea frutescens. Phytochemistry, 1999, 50(2), 273-277.
[http://dx.doi.org/10.1016/S0031-9422(98)00534-2]
[190]
Huang, Y.L.; Yeh, P.Y.; Shen, C.C.; Chen, C.C. Antioxidant flavonoids from the rhizomes of Helminthostachys zeylanica. Phytochemistry, 2003, 64(7), 1277-1283.
[http://dx.doi.org/10.1016/j.phytochem.2003.09.009] [PMID: 14599526]
[191]
Likhitwitayawuid, K.; Rungserichai, R.; Ruangrungsi, N.; Phadungcharoen, T. Flavonoids from Ochna integerrima. Phytochemistry, 2001, 56(4), 353-357.
[http://dx.doi.org/10.1016/S0031-9422(00)00409-X] [PMID: 11249100]
[192]
Zhou, Y.; Zhang, G.L.; Li, B.G.; Chen, Y.Z.; Zhang, G.L. Three new compounds from Oxyria digyna (L.). Hill. Indian J. Chem. Sect. B, 2001, 40, 1219-1222.
[193]
Hsieh, Y.L.; Fang, J.M.; Cheng, Y.S. Terpenoids and flavonoids from Pseudotsuga wilsoniana. Phytochemistry, 1998, 47(5), 845-850.
[http://dx.doi.org/10.1016/S0031-9422(97)00671-7]
[194]
Yi, J.H.; Zhang, G.L.; Li, B.G. Studies on the chemical constituents of Pseudotsuga sinensis. Yao Xue Xue Bao, 2002, 37(5), 352-354.
[PMID: 12579839]
[195]
Koorbanally, N.A.; Randrianarivelojosia, M.; Mulholland, D.A.; Quarles van Ufford, L.; van den Berg, A.J.J. Bioactive Constituents of Cedrelopsis microfoliata. J. Nat. Prod., 2002, 65(9), 1349-1352.
[http://dx.doi.org/10.1021/np0200562] [PMID: 12350164]
[196]
Kumar, N.; Singh, B.; Kaul, V.K. Flavonoids from Rosa Damascena Mill. Natural Product Communications, 2006, 1(8), 623-626.
[http://dx.doi.org/10.1177/1934578X0600100805]
[197]
Rahman, M.M.; Gray, A.I. Antimicrobial constituents from the stem bark of Feronia limonia. Phytochemistry, 2002, 59(1), 73-77.
[http://dx.doi.org/10.1016/S0031-9422(01)00423-X] [PMID: 11754947]
[198]
Kim, H.; Jeon, W.; Ko, B. Flavanone glycosides from Citrus junos and their anti-influenza virus activity. Planta Med., 2001, 67(6), 548-549.
[http://dx.doi.org/10.1055/s-2001-16484] [PMID: 11509977]
[199]
Iwase, Y.; Takahashi, M.; Takemura, Y.; Ju-Ichi, M.; Ito, C.; Furukawa, H.; Yano, M. Isolation and identification of two new flavanones and a chalcone from Citrus kinokuni. Chem. Pharm. Bull., 2001, 49(10), 1356-1358.
[http://dx.doi.org/10.1248/cpb.49.1356] [PMID: 11605671]
[200]
Wattanapiromsakul, C.; Waterman, P.G. Flavanone, triterpene and chromene derivatives from the stems of Paramignya griffithii. Phytochemistry, 2000, 55(3), 269-273.
[http://dx.doi.org/10.1016/S0031-9422(00)00311-3] [PMID: 11142854]
[201]
Chen, J.; Montanari, A.M. Isolation and identification of new polymethoxyflavonoids from dancy tangerine leaves. J. Agric. Food Chem., 1998, 46(4), 1235-1238.
[http://dx.doi.org/10.1021/jf970606f]
[202]
Shetgiri, N.P.; Rege, L.N. Phytosterol and flavanone from roots of Zanthoxylum budrunga. Asian J. Chem., 1998, 10(4), 848.
[203]
Reddy, N.P.; Reddy, B.A.K.; Gunasekar, D.; Blond, A.; Bodo, B.; Murthy, M.M. Flavonoids from Limnophila indica. Phytochemistry, 2007, 68(5), 636-639.
[http://dx.doi.org/10.1016/j.phytochem.2006.12.018] [PMID: 17291552]
[204]
Murphy, B.T.; Cao, S.; Norris, A.; Miller, J.S.; Ratovoson, F.; Andriantsiferana, R.; Rasamison, V.E.; Kingston, D.G.I. Cytotoxic flavanones of Schizolaena hystrix from the Madagascar rainforest. J. Nat. Prod., 2005, 68(3), 417-419.
[http://dx.doi.org/10.1021/np049639x] [PMID: 15787448]
[205]
Lin, J.H.; Chiou, Y.N.; Lin, Y.L. Phenolic glycosides from Viscum angulatum. J. Nat. Prod., 2002, 65(5), 638-640.
[http://dx.doi.org/10.1021/np010548z] [PMID: 12027732]
[206]
Yao, H.; Liao, Z.X.; Wu, Q.; Lei, G.Q.; Liu, Z.J.; Chen, D.F.; Chen, J.K.; Zhou, T.S. Antioxidative flavanone glycosides from the branches and leaves of Viscum coloratum. Chem. Pharm. Bull., 2006, 54(1), 133-135.
[http://dx.doi.org/10.1248/cpb.54.133] [PMID: 16394568]
[207]
Chou, C.J.; Ko, H.C.; Lin, L.C. Flavonoid glycosides from viscum alniformosanae. J. Nat. Prod., 1999, 62(10), 1421-1422.
[http://dx.doi.org/10.1021/np990049m] [PMID: 10543905]
[208]
Chen, J.J.; Lee, H.H.; Duh, C.Y.; Chen, I.S. Cytotoxic chalcones and flavonoids from the leaves of Muntingia calabura. Planta Med., 2005, 71(10), 970-973.
[http://dx.doi.org/10.1055/s-2005-871223] [PMID: 16254834]
[209]
Anam, EM Novel flavone and chalcone glycosides from Clerodendron phlomidis (Verbenaceae). Ind. J. Chem., 1999, 1307-1310.
[210]
Kumar, P.; Ahamad, T.; Mishra, D.P.; Khan, M.F. Plant Neoflavonoids: Chemical Structures and Biological Functions. In: Plant-derived Bioactives; Springer: Singapore, 2020.
[http://dx.doi.org/10.1007/978-981-15-2361-8_3]
[211]
Yang, B.; Dong, Y.; Wang, F.; Zhang, Y. Nanoformulations to enhance the bioavailability and physiological functions of polyphenols. Molecules, 2020, 25(20), 4613.
[http://dx.doi.org/10.3390/molecules25204613] [PMID: 33050462]
[212]
Yang, J.H.; Zhang, L.; Li, J.S.; Chen, L.H.; Zheng, Q.; Chen, T.; Chen, Z.P.; Fu, T.M.; Di, L.Q. Enhanced oral bioavailability and prophylactic effects on oxidative stress and hepatic damage of an oil solution containing a rosmarinic acid–phospholipid complex. J. Funct. Foods, 2015, 19, 63-73.
[http://dx.doi.org/10.1016/j.jff.2015.09.013]
[213]
Tedesco, D.; Steidler, S.; Galletti, S.; Tameni, M.; Sonzogni, O.; Ravarotto, L. Efficacy of silymarin-phospholipid complex in reducing the toxicity of aflatoxin B1 in broiler chicks. Poult. Sci., 2004, 83(11), 1839-1843.
[http://dx.doi.org/10.1093/ps/83.11.1839] [PMID: 15554059]
[214]
Mirzaei, H.; Shakeri, A.; Rashidi, B.; Jalili, A.; Banikazemi, Z.; Sahebkar, A. Phytosomal curcumin: A review of pharmacokinetic, experimental and clinical studies. Biomed. Pharmacother., 2017, 85, 102-112.
[http://dx.doi.org/10.1016/j.biopha.2016.11.098] [PMID: 27930973]
[215]
Allam, A.N.; Komeil, I.A.; Fouda, M.A.; Abdallah, O.Y. Preparation, characterization and in vivo evaluation of curcumin self-nano phospholipid dispersion as an approach to enhance oral bioavailability. Int. J. Pharm., 2015, 489(1-2), 117-123.
[http://dx.doi.org/10.1016/j.ijpharm.2015.04.067] [PMID: 25936626]
[216]
Lim, A.W.; Ng, P.Y.; Chieng, N.; Ng, S.F. Moringa oleifera leaf extract–loaded phytophospholipid complex for potential application as wound dressing. J. Drug Deliv. Sci. Technol., 2019, 54, 101329.
[http://dx.doi.org/10.1016/j.jddst.2019.101329]
[217]
Cheng, C.; Peng, S.; Li, Z.; Zou, L.; Liu, W.; Liu, C. Improved bioavailability of curcumin in liposomes prepared using a pH-driven, organic solvent-free, easily scalable process. RSC Advances, 2017, 7(42), 25978-25986.
[http://dx.doi.org/10.1039/C7RA02861J]
[218]
Vanaja, K.; Wahl, M.A.; Bukarica, L.; Heinle, H. Liposomes as carriers of the lipid soluble antioxidant resveratrol: Evaluation of amelioration of oxidative stress by additional antioxidant vitamin. Life Sci., 2013, 93(24), 917-923.
[http://dx.doi.org/10.1016/j.lfs.2013.10.019] [PMID: 24177602]
[219]
Odeh, F.; Nsairat, H.; Alshaer, W.; Alsotari, S.; Buqaien, R.; Ismail, S.; Awidi, A.; Al Bawab, A. Remote loading of curcumin-in-modified β-cyclodextrins into liposomes using a transmembrane pH gradient. RSC Advances, 2019, 9(64), 37148-37161.
[http://dx.doi.org/10.1039/C9RA07560G] [PMID: 35542296]
[220]
Pandita, D.; Kumar, S.; Poonia, N.; Lather, V. Solid lipid nanoparticles enhance oral bioavailability of resveratrol, a natural polyphenol. Food Res. Int., 2014, 62, 1165-1174.
[http://dx.doi.org/10.1016/j.foodres.2014.05.059]
[221]
Jose, S.; Anju, S.S.; Cinu, T.A.; Aleykutty, N.A.; Thomas, S.; Souto, E.B. In vivo pharmacokinetics and biodistribution of resveratrol-loaded solid lipid nanoparticles for brain delivery. Int. J. Pharm., 2014, 474(1-2), 6-13.
[http://dx.doi.org/10.1016/j.ijpharm.2014.08.003] [PMID: 25102112]
[222]
Ramalingam, P.; Yoo, S.W.; Ko, Y.T. Nanodelivery systems based on mucoadhesive polymer coated solid lipid nanoparticles to improve the oral intake of food curcumin. Food Res. Int., 2016, 84, 113-119.
[http://dx.doi.org/10.1016/j.foodres.2016.03.031]
[223]
Pinheiro, R.G.R.; Granja, A.; Loureiro, J.A.; Pereira, M.C.; Pinheiro, M.; Neves, A.R.; Reis, S. Quercetin lipid nanoparticles functionalized with transferrin for Alzheimer’s disease. Eur. J. Pharm. Sci., 2020, 148, 105314.
[http://dx.doi.org/10.1016/j.ejps.2020.105314] [PMID: 32200044]
[224]
Esmaili, M.; Ghaffari, S.M.; Moosavi-Movahedi, Z.; Atri, M.S.; Sharifizadeh, A.; Farhadi, M.; Yousefi, R.; Chobert, J.M.; Haertlé, T.; Moosavi-Movahedi, A.A. Beta casein-micelle as a nano vehicle for solubility enhancement of curcumin; food industry application. Lebensm. Wiss. Technol., 2011, 44(10), 2166-2172.
[http://dx.doi.org/10.1016/j.lwt.2011.05.023]
[225]
Li, J.; Sabliov, C. PLA/PLGA nanoparticles for delivery of drugs across the blood-brain barrier. Nanotechnol. Rev., 2013, 2(3), 241-257.
[http://dx.doi.org/10.1515/ntrev-2012-0084]
[226]
Pan, Q.; Li, W.; Yuan, X.; Rakhmanov, Y.; Wang, P.; Lu, R.; Mao, Z.; Shang, X.; You, H. Chondrogenic effect of cell-based scaffold of self-assembling peptides/PLGA-PLL loading the hTGFβ3 plasmid DNA. J. Mater. Sci. Mater. Med., 2016, 27(1), 19.
[http://dx.doi.org/10.1007/s10856-015-5631-z] [PMID: 26676865]
[227]
Aiello, P.; Consalvi, S.; Poce, G.; Raguzzini, A.; Toti, E.; Palmery, M.; Biava, M.; Bernardi, M.; Kamal, M.A.; Perry, G.; Peluso, I. Dietary flavonoids: Nano delivery and nanoparticles for cancer therapy. Semin. Cancer Biol., 2021, 69, 150-165.
[http://dx.doi.org/10.1016/j.semcancer.2019.08.029] [PMID: 31454670]
[228]
Kumar, S.S.; Shanmugasundaram, P.; Komala, M.; Bhargavi, B.; Padmavathy, J. Nanoparticle formulation of bioflavonoids for enhanced anti-cancer activity. Int. J. Appl. Pharm., 2020, 12(5), 29-35.
[http://dx.doi.org/10.22159/ijap.2020v12i5.38425]
[229]
Backes, M.; Vössing, T.; Ley, JP.; Paetz, S. Use of certain neoflavonoids for intensifying and/or producing a sensory impression of sweetness. Patent US9131719B2 2015.
[230]
Das, S.; Das, J.; Samadder, A.; Paul, A.; Khuda-Bukhsh, A.R. Efficacy of PLGA-loaded apigenin nanoparticles in Benzo[a]pyrene and ultraviolet-B induced skin cancer of mice: Mitochondria mediated apoptotic signalling cascades. Food Chem. Toxicol., 2013, 62, 670-680.
[http://dx.doi.org/10.1016/j.fct.2013.09.037] [PMID: 24120900]
[231]
Abcha, I.; Souilem, S.; Neves, M.A.; Wang, Z.; Nefatti, M.; Isoda, H.; Nakajima, M. Ethyl oleate food-grade O/W emulsions loaded with apigenin: Insights to their formulation characteristics and physico-chemical stability. Food Res. Int., 2019, 116, 953-962.
[http://dx.doi.org/10.1016/j.foodres.2018.09.032] [PMID: 30717028]
[232]
Eatemadi, A.; Daraee, H.; Aiyelabegan, H.T.; Negahdari, B.; Rajeian, B.; Zarghami, N. Synthesis and characterization of chrysin-loaded PCL-PEG-PCL nanoparticle and its effect on breast cancer cell line. Biomed. Pharmacother., 2016, 84, 1915-1922.
[http://dx.doi.org/10.1016/j.biopha.2016.10.095] [PMID: 27847208]
[233]
Sabra, S.A.; Elzoghby, A.O.; Sheweita, S.A.; Haroun, M.; Helmy, M.W.; Eldemellawy, M.A.; Xia, Y.; Goodale, D.; Allan, A.L.; Rohani, S. Self-assembled amphiphilic zein-lactoferrin micelles for tumor targeted co-delivery of rapamycin and wogonin to breast cancer. Eur. J. Pharm. Biopharm., 2018, 128, 156-169.
[http://dx.doi.org/10.1016/j.ejpb.2018.04.023] [PMID: 29689288]
[234]
Kavithaa, K.; Paulpandi, M.; Padma, P.R.; Sumathi, S. Induction of intrinsic apoptotic pathway and cell cycle arrest via baicalein loaded iron oxide nanoparticles as a competent nano-mediated system for triple negative breast cancer therapy. RSC Advances, 2016, 6(69), 64531-64543.
[http://dx.doi.org/10.1039/C6RA11658B]
[235]
Majumdar, D.; Jung, K.H.; Zhang, H.; Nannapaneni, S.; Wang, X.; Amin, A.R.M.R.; Chen, Z.; Chen, Z.G.; Shin, D.M. Luteolin nanoparticle in chemoprevention: in vitro and in vivo anticancer activity. Cancer Prev. Res., 2014, 7(1), 65-73.
[http://dx.doi.org/10.1158/1940-6207.CAPR-13-0230] [PMID: 24403290]
[236]
Roshini, A.; Jagadeesan, S.; Arivazhagan, L.; Cho, Y.J.; Lim, J.H.; Doh, Y.H.; Kim, S.J.; Na, J.; Choi, K.H. pH-sensitive tangeretin-ZnO quantum dots exert apoptotic and anti-metastatic effects in metastatic lung cancer cell line. Mater. Sci. Eng. C, 2018, 92, 477-488.
[http://dx.doi.org/10.1016/j.msec.2018.06.073] [PMID: 30184773]
[237]
Liao, W.; Liu, Z.; Zhang, T.; Sun, S.; ye, J.; Li, Z.; Mao, L.; Ren, J. Enhancement of anti-inflammatory properties of nobiletin in macrophages by a nano-emulsion preparation. J. Agric. Food Chem., 2018, 66(1), 91-98.
[http://dx.doi.org/10.1021/acs.jafc.7b03953] [PMID: 29236498]
[238]
Lin, X.Q.; He, J.B.; Zha, Z.G. Simultaneous determination of quercetin and rutin at a multi-wall carbon-nanotube paste electrodes by reversing differential pulse voltammetry. Sens. Actuators B Chem., 2006, 119(2), 608-614.
[http://dx.doi.org/10.1016/j.snb.2006.01.016]
[239]
Kumar, A.; Gupta, G.K.; Khedgikar, V.; Gautam, J.; Kushwaha, P.; Changkija, B.; Nagar, G.K.; Gupta, V.; Verma, A.; Dwivedi, A.K.; Chattopadhyay, N.; Mishra, P.R.; Trivedi, R. In vivo efficacy studies of layer-by-layer nano-matrix bearing kaempferol for the conditions of osteoporosis: A study in ovariectomized rat model. Eur. J. Pharm. Biopharm., 2012, 82(3), 508-517.
[http://dx.doi.org/10.1016/j.ejpb.2012.08.001] [PMID: 22926146]
[240]
Raeisi, S.; Chavoshi, H.; Mohammadi, M.; Ghorbani, M.; Sabzichi, M.; Ramezani, F. Naringenin-loaded nano-structured lipid carrier fortifies oxaliplatin-dependent apoptosis in HT-29 cell line. Process Biochem., 2019, 83, 168-175.
[http://dx.doi.org/10.1016/j.procbio.2019.05.013]
[241]
Chakraborty, S.; Basu, S.; Basak, S. Effect of β-cyclodextrin on the molecular properties of myricetin upon nano-encapsulation: Insight from optical spectroscopy and quantum chemical studies. Carbohydr. Polym., 2014, 99, 116-125.
[http://dx.doi.org/10.1016/j.carbpol.2013.08.008] [PMID: 24274487]
[242]
Chakraborty, S.; Stalin, S.; Das, N.; Thakur Choudhury, S.; Ghosh, S.; Swarnakar, S. The use of nano-quercetin to arrest mitochondrial damage and MMP-9 upregulation during prevention of gastric inflammation induced by ethanol in rat. Biomaterials, 2012, 33(10), 2991-3001.
[http://dx.doi.org/10.1016/j.biomaterials.2011.12.037] [PMID: 22257724]
[243]
Ahmad, M.; Mudgil, P.; Gani, A.; Hamed, F.; Masoodi, F.A.; Maqsood, S. Nano-encapsulation of catechin in starch nanoparticles: Characterization, release behavior and bioactivity retention during simulated in vitro digestion. Food Chem., 2019, 270, 95-104.
[http://dx.doi.org/10.1016/j.foodchem.2018.07.024] [PMID: 30174096]
[244]
Wang, X.; Xie, Y.; Ge, H.; Chen, L.; Wang, J.; Zhang, S.; Guo, Y.; Li, Z.; Feng, X. Physical properties and antioxidant capacity of chitosan/epigallocatechin-3-gallate films reinforced with nano-bacterial cellulose. Carbohydr. Polym., 2018, 179, 207-220.
[http://dx.doi.org/10.1016/j.carbpol.2017.09.087] [PMID: 29111045]
[245]
Wu, Y.R.; Choi, H.J.; Kang, Y.G.; Kim, J.K.; Shin, J.W. In vitro study on anti-inflammatory effects of epigallocatechin-3-gallate-loaded nano and microscale particles. Int. J. Nanomedicine, 2017, 12, 7007-7013.
[http://dx.doi.org/10.2147/IJN.S146296] [PMID: 29026297]
[246]
Kim, H.; Kawazoe, T.; Han, D.W.; Matsumara, K.; Suzuki, S.; Tsutsumi, S.; Hyon, S.H. Enhanced wound healing by an epigallocatechin gallate-incorporated collagen sponge in diabetic mice. Wound Repair Regen., 2008, 16(5), 714-720.
[http://dx.doi.org/10.1111/j.1524-475X.2008.00422.x] [PMID: 19128267]
[247]
Avadhani, K.S.; Manikkath, J.; Tiwari, M.; Chandrasekhar, M.; Godavarthi, A.; Vidya, S.M.; Hariharapura, R.C.; Kalthur, G.; Udupa, N.; Mutalik, S. Skin delivery of epigallocatechin-3-gallate (EGCG) and hyaluronic acid loaded nano-transfersomes for antioxidant and anti-aging effects in UV radiation induced skin damage. Drug Deliv., 2017, 24(1), 61-74.
[http://dx.doi.org/10.1080/10717544.2016.1228718] [PMID: 28155509]
[248]
Zhen, L.L.; Ma, T.H.; Tang, J.H.; Xia, T.F.; Ge, J.; Yuan, W.J.; Chen, L.; Wan, R.; Cheng, J.X.; Chen, Z.K.; Cheng, Z.H.; Song, W. Hesperitin enhances the ability of daunorubicin by co-loading with MPEG-PCL nanoparticles to induce apoptosis in gastric cancer. Oncotarget, 2017, 5.
[http://dx.doi.org/10.18632/oncotarget.22182]
[249]
Rao, K.; Aziz, S.; Roome, T.; Razzak, A.; Sikandar, B.; Jamali, KS.; Imran, M.; Jabri, T.; Shah, M.R. Gum acacia stabilized silver nanoparticles based nano-cargo for enhanced anti-arthritic potentials of hesperidin in adjuvant induced arthritic rats. Artif. Cells Nanomed. Biotechnol., 2018, 46(S1), 597-607.
[http://dx.doi.org/10.1080/21691401.2018.1431653]
[250]
Sahu, N.; Soni, D.; Chandrashekhar, B.; Satpute, D.B.; Saravanadevi, S.; Sarangi, B.K.; Pandey, R.A. Synthesis of silver nanoparticles using flavonoids: hesperidin, naringin and diosmin, and their antibacterial effects and cytotoxicity. Int. Nano Lett., 2016, 6(3), 173-181.
[http://dx.doi.org/10.1007/s40089-016-0184-9]
[251]
Sandhu, P.S.; Kumar, R.; Beg, S.; Jain, S.; Kushwah, V.; Katare, O.P.; Singh, B. Natural lipids enriched self-nano-emulsifying systems for effective co-delivery of tamoxifen and naringenin: Systematic approach for improved breast cancer therapeutics. Nanomedicine, 2017, 13(5), 1703-1713.
[http://dx.doi.org/10.1016/j.nano.2017.03.003] [PMID: 28343014]
[252]
Maity, S.; Mukhopadhyay, P.; Kundu, P.P.; Chakraborti, A.S. Alginate coated chitosan core-shell nanoparticles for efficient oral delivery of naringenin in diabetic animals—An in vitro and in vivo approach. Carbohydr. Polym., 2017, 170, 124-132.
[http://dx.doi.org/10.1016/j.carbpol.2017.04.066] [PMID: 28521977]
[253]
Rasaee, S.; Ghanbarzadeh, S.; Mohammadi, M.; Hamishehkar, H. Nano phytosomes of quercetin: A promising formulation for fortification of food products with antioxidants. Pharm. Sci., 2014, 20(3), 96-101.
[254]
Singh, A.K.; Jiang, Y.; Gupta, S.; Younus, M.; Ramzan, M. Anti-inflammatory potency of nano-formulated puerarin and curcumin in rats subjected to the lipopolysaccharide-induced inflammation. J. Med. Food, 2013, 16(10), 899-911.
[http://dx.doi.org/10.1089/jmf.2012.0049] [PMID: 24138167]
[255]
Zou, T.; Gu, L. TPGS emulsified zein nanoparticles enhanced oral bioavailability of daidzin: In vitro characteristics and in vivo performance. Mol. Pharm., 2013, 10(5), 2062-2070.
[http://dx.doi.org/10.1021/mp400086n] [PMID: 23557122]
[256]
Pham, J.; Grundmann, O.; Elbayoumi, T. Mitochondriotropic Nanoemulsified Genistein-Loaded Vehicles for Cancer Therapy. In: Mitochondrial Medicine. Methods in Molecular Biology; Humana Press: New York, NY, 2015; p. 1265.
[http://dx.doi.org/10.1007/978-1-4939-2288-8_7]
[257]
Harwansh, R.K.; Deshmukh, R.; Rahman, M.A. Nanoemulsion: Promising nanocarrier system for delivery of herbal bioactives. J. Drug Deliv. Sci. Technol., 2019, 51, 224-233.
[http://dx.doi.org/10.1016/j.jddst.2019.03.006]
[258]
Bajpai, M.; Shafi, H.; Kumari, S. Nanoparticles: Importance and Need for Regulations. In: Nanoformulations in human health; , 2020; pp. 93-107.
[259]
Singh, S.; Bajpai, M.; Mishra, P. Self-emulsifying drug delivery system (SEDDS): An emerging dosage form to improve the bioavailability of poorly absorbed drugs. Crit. Rev. Ther. Drug Carrier Syst., 2020, 37(4), 305-329.
[260]
Verma, T.; Sinha, M.; Bansal, N.; Yadav, S.R.; Shah, K. Chauhan, NS Plants used as Antihypertensive. Nat Prod Bioprospect., 2021, 11(2), 155-184.
[261]
Gupta, J. Recent advances in nanomaterials for therapy and diagnosis of cardiovascular disease. J. Pharm. Res. Int., 2021, 33(59A), 229-244.
[http://dx.doi.org/10.9734/jpri/2021/v33i59A34268]
[262]
Zhang, Q.; Zhao, X.; Qiu, H. Flavones and Flavonols: Phytochemistry and Biochemistry. In: Natural Products; Springer: Berlin, Heidelberg, 2013.
[http://dx.doi.org/10.1007/978-3-642-22144-6_60]
[263]
Effects of Flavonoids on Cognitive Performance in Healthy Young Adults. ClinicalTrials.gov Identifier: NCT01312597, Available from: https://www.clinicaltrials.gov/ct2/show/NCT01312597
[264]
Bisol, Â.; Campos, P.S.; Lamers, M.L. Flavonoids as anticancer therapies: A systematic review of clinical trials. Phytother. Res., 2020, 34(3), 568-582.
[http://dx.doi.org/10.1002/ptr.6551] [PMID: 31752046]
[265]
Davinelli, S.; Ali, S.; Scapagnini, G.; Costagliola, C. Effects of flavonoid supplementation on common eye disorders: A systematic review and meta-analysis of clinical trials. Front. Nutr., 2021, 8, 651441.
[http://dx.doi.org/10.3389/fnut.2021.651441] [PMID: 34124119]
[266]
Bondonno, N.P.; Dalgaard, F.; Kyrø, C.; Murray, K.; Bondonno, C.P.; Lewis, J.R.; Croft, K.D.; Gislason, G.; Scalbert, A.; Cassidy, A.; Tjønneland, A.; Overvad, K.; Hodgson, J.M. Flavonoid intake is associated with lower mortality in the Danish Diet Cancer and Health Cohort. Nat. Commun., 2019, 10(1), 3651.
[http://dx.doi.org/10.1038/s41467-019-11622-x] [PMID: 31409784]
[267]
An Acute Human Intervention With Flavonoid to Investigate Absorption, Metabolism and Excretion. NCT01922869, Available from: https://ichgcp.net/clinical-trials-registry/NCT01922869
[268]
Mukwembi, S.; Nyabadza, F. Predicting anti-cancer activity in flavonoids - a graph theoretic approach. medrxiv, 2021, 1-13. (preprint).
[http://dx.doi.org/10.1101/2021.08.20.21262354]
[269]
Randy, H. Flavonoids for treatment of Diabetes. Patent WO 2003/026561 A3, 2003.
[270]
Compositions comprising antioxidant and mitoprotective flavonoids with neuroprotective properties. Patent WO 2009/087568 A3, 2009.
[271]
Brewster, RM.; Manthey, MA. Flavonoid compositions and uses thereof. Patent WO 2015/153648 A1, 2015.
[272]
Redda, K.; Mills, C.J.; Mateeva, N. Synthetic flavonoids and pharmaceutical compositions and therapeutic methods of treatment of HIV infection and other pathologies. Patent US 8314143 B2, 2012.
[273]
Nieuwenhuizen, A.; Laere, KV.; Raggers, R. Combination of flavonoid and procyanidin for the reduction of the mammalian appetite. Patent US 2006/135444A1, 2006.
[274]
Vijgh, WJF.; Bast, A.; Bruynzeel, AME.; Groeningen, CJV. Enhancement of anticancer therapy by flavonoids. Patent WO 2008/108647A2, 2008.
[275]
Antimalarial composition comprising flavonoid c-glycoside as active ingredient. Patent JP2004013678A, 2004.
[276]
Flavonoids isolated from oroxylum indicum for treatment of gastrointestinal toxicity. associated symptoms and ulcers. Patent WO2007080484A2, 2007.
[277]
Use of citrus limonoids flavonoids and tocotrienols as cancer treatment. Patent JS2003510240A, 2003.
[278]
Flavonoids extract containing naringin and application thereof. Patent CN102716233, 2003.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy