Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Induced Pluripotent Stem Cells in the Era of Precise Genome Editing

Author(s): Meeti Punetha, Sheetal Saini, Suman Chaudhary, Prem Singh Yadav, Kristin Whitworth, Jonathan Green, Dharmendra Kumar* and Wilfried A. Kues*

Volume 19, Issue 3, 2024

Published on: 04 April, 2023

Page: [307 - 315] Pages: 9

DOI: 10.2174/1574888X18666230307115326

Price: $65

Open Access Journals Promotions 2
Abstract

Genome editing has enhanced our ability to understand the role of genetics in a number of diseases by facilitating the development of more precise cellular and animal models to study pathophysiological processes. These advances have shown extraordinary promise in a multitude of areas, from basic research to applied bioengineering and biomedical research. Induced pluripotent stem cells (iPSCs) are known for their high replicative capacity and are excellent targets for genetic manipulation as they can be clonally expanded from a single cell without compromising their pluripotency. Clustered, regularly interspaced short palindromic repeats (CRISPR) and CRISPR/Cas RNA-guided nucleases have rapidly become the method of choice for gene editing due to their high specificity, simplicity, low cost, and versatility. Coupling the cellular versatility of iPSCs differentiation with CRISPR/Cas9-mediated genome editing technology can be an effective experimental technique for providing new insights into the therapeutic use of this technology. However, before using these techniques for gene therapy, their therapeutic safety and efficacy following models need to be assessed. In this review, we cover the remarkable progress that has been made in the use of genome editing tools in iPSCs, their applications in disease research and gene therapy as well as the hurdles that remain in the actual implementation of CRISPR/Cas systems.

Keywords: CRISPR/Cas9, pluripotent stem cells, gene therapy, non-homologous end-joining, DNA, homologous dependent repair.

Graphical Abstract
[1]
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663-76.
[http://dx.doi.org/10.1016/j.cell.2006.07.024] [PMID: 16904174]
[2]
Kumar D, Anand T, Kues WA. Clinical potential of human-induced pluripotent stem cells. Cell Biol Toxicol 2017; 33(2): 99-112.
[http://dx.doi.org/10.1007/s10565-016-9370-9] [PMID: 27900567]
[3]
Kumar D, Anand T, Talluri TR, Kues WA. Potential of transposon-mediated cellular reprogramming towards cell-based therapies. World J Stem Cells 2020; 12(7): 527-44.
[http://dx.doi.org/10.4252/wjsc.v12.i7.527] [PMID: 32843912]
[4]
Kumar D, Talluri TR, Selokar NL, Hyder I, Kues WA. Perspectives of pluripotent stem cells in livestock. World J Stem Cells 2021; 13(1): 1-29.
[http://dx.doi.org/10.4252/wjsc.v13.i1.1] [PMID: 33584977]
[5]
Punetha M, Bajwa KK, Dua S, et al. Pluripotent stem cells for livestock health and production. Curr Stem Cell Res Ther 2022; 17(3): 252-66.
[http://dx.doi.org/10.2174/1574888X16666210803162019] [PMID: 34344296]
[6]
Shi Y, Inoue H, Wu JC, Yamanaka S. Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov 2017; 16(2): 115-30.
[http://dx.doi.org/10.1038/nrd.2016.245] [PMID: 27980341]
[7]
Moradi S, Mahdizadeh H, Šarić T, et al. Research and therapy with induced pluripotent stem cells (iPSCs): social, legal, and ethical considerations. Stem Cell Res Ther 2019; 10(1): 341.
[http://dx.doi.org/10.1186/s13287-019-1455-y] [PMID: 31753034]
[8]
Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther 2019; 10(1): 68.
[http://dx.doi.org/10.1186/s13287-019-1165-5] [PMID: 30808416]
[9]
Ding Q, Regan SN, Xia Y, Oostrom LA, Cowan CA, Musunuru K. Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell 2013; 12(4): 393-4.
[http://dx.doi.org/10.1016/j.stem.2013.03.006] [PMID: 23561441]
[10]
Bauer DE, Canver MC, Orkin SH. Generation of genomic deletions in mammalian cell lines via CRISPR/Cas9. J Vis Exp 2014; 95(83): e52118.
[http://dx.doi.org/10.3791/52118] [PMID: 25549070]
[11]
Byrne SM, Ortiz L, Mali P, Aach J, Church GM. Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells. Nucleic Acids Res 2015; 43(3): e21.
[http://dx.doi.org/10.1093/nar/gku1246] [PMID: 25414332]
[12]
Lino CA, Harper JC, Carney JP, Timlin JA. Delivering CRISPR: a review of the challenges and approaches. Drug Deliv 2018; 25(1): 1234-57.
[http://dx.doi.org/10.1080/10717544.2018.1474964] [PMID: 29801422]
[13]
Kumar D, Kues WA. Application of genome editing in farm animals. In: Genomics and biotechnological advances in veterinary, poultry, and fisheries. USA Academic Press 2019; pp. 131-49.
[http://dx.doi.org/10.1016/B978-0-12-816352-8.00005-9]
[14]
Kumar S, Punetha M, Jose B, et al. Modulation of granulosa cell function via CRISPR-Cas fuelled editing of BMPR-IB gene in goats (Capra hircus). Sci Rep 2020; 10(1): 20446.
[http://dx.doi.org/10.1038/s41598-020-77596-9] [PMID: 33235250]
[15]
Paul A, Punetha M, Kumar S, et al. Regulation of steroidogenic function of luteal cells by thrombospondin and insulin in water buffalo (Bubalus bubalis). Reprod Fertil Dev 2019; 31(4): 751-9.
[http://dx.doi.org/10.1071/RD18188] [PMID: 30509339]
[16]
Xiong X, Chen M, Lim WA, Zhao D, Qi LS. Crispr/cas9 for human genome engineering and disease research. Annu Rev Genomics Hum Genet 2016; 17(1): 131-54.
[http://dx.doi.org/10.1146/annurev-genom-083115-022258] [PMID: 27216776]
[17]
Zarei A, Razban V, Hosseini SE, Tabei SMB. Creating cell and animal models of human disease by genome editing using CRISPR/Cas9. J Gene Med 2019; 21(4): e3082.
[http://dx.doi.org/10.1002/jgm.3082] [PMID: 30786106]
[18]
Martin RM, Fowler JL, Cromer MK, et al. Improving the safety of human pluripotent stem cell therapies using genome-edited orthogonal safeguards. Nat Commun 2020; 11(1): 2713.
[http://dx.doi.org/10.1038/s41467-020-16455-7] [PMID: 32483127]
[19]
Dua S, Bajwa KK, Prashar A, et al. Empowering of reproductive health of farm animals through genome editing technology. J Reprod Health Med 2021; 2: 4.
[http://dx.doi.org/10.25259/JRHM_17_2020]
[20]
Zhang Z, Zhang Y, Gao F, et al. Crispr/cas9 genome-editing system in human stem cells: Current status and future prospects. Mol Ther Nucleic Acids 2017; 9: 230-41.
[http://dx.doi.org/10.1016/j.omtn.2017.09.009] [PMID: 29246302]
[21]
Mohamed NV, Larroquette F, Beitel LK, Fon EA, Durcan TM. One step into the future: New iPSC tools to advance research in parkinson’s disease and neurological disorders. J Parkinsons Dis 2019; 9(2): 265-81.
[http://dx.doi.org/10.3233/JPD-181515] [PMID: 30741685]
[22]
Punetha M, Chouhan VS, Sonwane A, et al. Early growth response gene mediates in VEGF and FGF signaling as dissected by CRISPR in corpus luteum of water buffalo. Sci Rep 2020; 10(1): 6849.
[http://dx.doi.org/10.1038/s41598-020-63804-z] [PMID: 32321973]
[23]
Punetha M, Kumar S, Paul A, et al. Deciphering the functional role of EGR1 in Prostaglandin F2 alpha induced luteal regression applying CRISPR in corpus luteum of buffalo. Biol Res 2021; 54(1): 9.
[http://dx.doi.org/10.1186/s40659-021-00333-7] [PMID: 33712084]
[24]
Yamanaka S. Pluripotent stem cell-based cell therapy-promise and challenges. Cell Stem Cell 2020; 27(4): 523-31.
[http://dx.doi.org/10.1016/j.stem.2020.09.014] [PMID: 33007237]
[25]
Zhou J, Wang C, Zhang K, et al. Generation of human embryonic stem cell line expressing zsGreen in cholinergic neurons using CRISPR/Cas9 system. Neurochem Res 2016; 41(8): 2065-74.
[http://dx.doi.org/10.1007/s11064-016-1918-9] [PMID: 27113041]
[26]
Li M, Zhao H, Ananiev GE, et al. Establishment of reporter lines for detecting fragile X mental retardation (FMR1) gene reactivation in human neural cells. Stem Cells 2017; 35(1): 158-69.
[http://dx.doi.org/10.1002/stem.2463] [PMID: 27422057]
[27]
Kearns NA, Genga RMJ, Enuameh MS, Garber M, Wolfe SA, Maehr R. Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells. Development 2014; 141(1): 219-23.
[http://dx.doi.org/10.1242/dev.103341] [PMID: 24346702]
[28]
Kim D, Lim K, Kim ST, et al. Genome-wide target specificities of CRISPR RNA-guided programmable deaminases. Nat Biotechnol 2017; 35(5): 475-80.
[http://dx.doi.org/10.1038/nbt.3852] [PMID: 28398345]
[29]
Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016; 533(7603): 420-4.
[http://dx.doi.org/10.1038/nature17946] [PMID: 27096365]
[30]
Rees HA, Liu DR. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet 2018; 19(12): 770-88.
[http://dx.doi.org/10.1038/s41576-018-0059-1] [PMID: 30323312]
[31]
Yeh WH, Chiang H, Rees HA, Edge ASB, Liu DR. In vivo base editing of post-mitotic sensory cells. Nat Commun 2018; 9(1): 2184.
[http://dx.doi.org/10.1038/s41467-018-04580-3] [PMID: 29872041]
[32]
Kantor A, McClements M, MacLaren R. CRISPR-Cas9 DNA Base-Editing and Prime-Editing. Int J Mol Sci 2020; 21(17): 6240.
[http://dx.doi.org/10.3390/ijms21176240] [PMID: 32872311]
[33]
Stadtmauer EA, Fraietta JA, Davis MM, et al. CRISPR-engineered T cells in patients with refractory cancer. Science 2020; 367: eaba7365.
[http://dx.doi.org/10.1126/science.aba7365]
[34]
Adli M. The CRISPR tool kit for genome editing and beyond. Nat Commun 2018; 9(1): 1911.
[http://dx.doi.org/10.1038/s41467-018-04252-2] [PMID: 29765029]
[35]
Ma N, Shan Y, Liao B, et al. Factor-induced reprogramming and zinc finger nuclease-aided gene targeting cause different genome instability in beta-thalassemia induced pluripotent stem cells (IPSCS). J Biol Chem 2015; 290(19): 12079-89.
[http://dx.doi.org/10.1074/jbc.M114.624999] [PMID: 25795783]
[36]
Supharattanasitthi W, Carlsson E, Sharif U, Paraoan L. CRISPR/Cas9-mediated one step bi-allelic change of genomic DNA in iPSCs and human RPE cells in vitro with dual antibiotic selection. Sci Rep 2019; 9(1): 174.
[http://dx.doi.org/10.1038/s41598-018-36740-2] [PMID: 30655567]
[37]
Larouche J, Aguilar CA. New technologies to enhance in vivo reprogramming for regenerative medicine. Trends Biotechnol 2019; 37(6): 604-17.
[http://dx.doi.org/10.1016/j.tibtech.2018.11.003] [PMID: 30527703]
[38]
Gaj T, Gersbach CA, Barbas CF III. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 2013; 31(7): 397-405.
[http://dx.doi.org/10.1016/j.tibtech.2013.04.004] [PMID: 23664777]
[39]
Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science 2014; 346(6213): 1258096.
[http://dx.doi.org/10.1126/science.1258096] [PMID: 25430774]
[40]
Thakore PI, D’Ippolito AM, Song L, et al. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat Methods 2015; 12(12): 1143-9.
[http://dx.doi.org/10.1038/nmeth.3630] [PMID: 26501517]
[41]
Liu XS, Wu H, Ji X, et al. Editing DNA methylation in the mammalian genome. Cell 2016; 167(1): 233-247.e17.
[http://dx.doi.org/10.1016/j.cell.2016.08.056] [PMID: 27662091]
[42]
Vojta A, Dobrinić P, Tadić V, et al. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res 2016; 44(12): 5615-28.
[http://dx.doi.org/10.1093/nar/gkw159] [PMID: 26969735]
[43]
La Russa MF, Qi LS. The new state of the art: Cas9 for gene activation and repression. Mol Cell Biol 2015; 35(22): 3800-9.
[http://dx.doi.org/10.1128/MCB.00512-15] [PMID: 26370509]
[44]
Gilbert LA, Horlbeck MA, Adamson B, et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 2014; 159(3): 647-61.
[http://dx.doi.org/10.1016/j.cell.2014.09.029] [PMID: 25307932]
[45]
Morita S, Horii T, Kimura M, Hatada I. Synergistic upregulation of target genes by TET1 and VP64 in the dCas9-SunTag platform. Int J Mol Sci 2020; 21(5): 1574.
[http://dx.doi.org/10.3390/ijms21051574] [PMID: 32106616]
[46]
Casas-Mollano JA, Zinselmeier MH, Erickson SE, Smanski MJ. CRISPR-Cas activators for engineering gene expression in higher eukaryotes. CRISPR J 2020; 3(5): 350-64.
[http://dx.doi.org/10.1089/crispr.2020.0064] [PMID: 33095045]
[47]
Mandegar MA, Huebsch N, Frolov EB, et al. Crispr interference efficiently induces specific and reversible gene silencing in human ipscs. Cell Stem Cell 2016; 18(4): 541-53.
[http://dx.doi.org/10.1016/j.stem.2016.01.022] [PMID: 26971820]
[48]
Weltner J, Balboa D, Katayama S, et al. Human pluripotent reprogramming with CRISPR activators. Nat Commun 2018; 9(1): 2643.
[http://dx.doi.org/10.1038/s41467-018-05067-x] [PMID: 29980666]
[49]
Pessôa LVF, Pires PRL, del Collado M, et al. Generation and miRNA characterization of equine induced pluripotent stem cells derived from fetal and adult multipotent tissues. Stem Cells Int 2019; 2019: 1393791.
[http://dx.doi.org/10.1155/2019/1393791] [PMID: 31191664]
[50]
Liu P, Chen M, Liu Y, Qi LS, Ding S. CRISPR-Based Chromatin Remodeling of the Endogenous Oct4 or Sox2 Locus Enables Reprogramming to Pluripotency. Cell Stem Cell 2018; 22(2): 252-261.e4.
[http://dx.doi.org/10.1016/j.stem.2017.12.001] [PMID: 29358044]
[51]
Warren A. Setup of an LCL-based system for the characterization of CRISPRa-Mediated iPSC reprogramming at the single-cell transcriptomic level Available from http://urn.fi/URN:NBN:fi:hulib-201910303809
[52]
Töhönen V, Katayama S, Vesterlund L, et al. Novel PRD-like homeodomain transcription factors and retrotransposon elements in early human development. Nat Commun 2015; 6(1): 8207.
[http://dx.doi.org/10.1038/ncomms9207] [PMID: 26360614]
[53]
Sokka J, Yoshihara M, Kvist J, et al. CRISPR activation enables high-fidelity reprogramming into human pluripotent stem cells. Stem Cell Reports 2022; 17(2): 413-26.
[http://dx.doi.org/10.1016/j.stemcr.2021.12.017] [PMID: 35063129]
[54]
Balboa D, Weltner J, Eurola S, Trokovic R, Wartiovaara K, Otonkoski T. Conditionally stabilized dcas9 activator for controlling gene expression in human cell reprogramming and differentiation. Stem Cell Reports 2015; 5(3): 448-59.
[http://dx.doi.org/10.1016/j.stemcr.2015.08.001] [PMID: 26352799]
[55]
Yoshihara M, Hayashizaki Y, Murakawa Y. Genomic instability of iPSCs: challenges towards their clinical applications. Stem Cell Rev 2017; 13(1): 7-16.
[http://dx.doi.org/10.1007/s12015-016-9680-6] [PMID: 27592701]
[56]
Lach MS, Rosochowicz MA, Richter M, Jagiełło I, Suchorska WM, Trzeciak T. The induced pluripotent stem cells in articular cartilage regeneration and disease modelling: Are we ready for their clinical use. Cells 2022; 11(3): 529.
[http://dx.doi.org/10.3390/cells11030529] [PMID: 35159338]
[57]
Jiang J, Zhang L, Zhou X, et al. Induction of site-specific chromosomal translocations in embryonic stem cells by CRISPR/Cas9. Sci Rep 2016; 6(1): 21918.
[http://dx.doi.org/10.1038/srep21918] [PMID: 26898344]
[58]
Xie F, Ye L, Chang JC, et al. Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res 2014; 24(9): 1526-33.
[http://dx.doi.org/10.1101/gr.173427.114] [PMID: 25096406]
[59]
Park CY, Kim DH, Son JS, et al. Functional Correction of large factor VIII gene chromosomal inversions in Hemophilia A patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell 2015; 17(2): 213-20.
[http://dx.doi.org/10.1016/j.stem.2015.07.001] [PMID: 26212079]
[60]
Firth AL, Menon T, Parker GS, et al. Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient iPSCs. Cell Rep 2015; 12(9): 1385-90.
[http://dx.doi.org/10.1016/j.celrep.2015.07.062] [PMID: 26299960]
[61]
Huang X, Wang Y, Yan W, et al. Production of gene-corrected adult beta globin protein in human erythrocytes differentiated from patient iPSCs after genome editing of the sickle point mutation. Stem Cells 2015; 33(5): 1470-9.
[http://dx.doi.org/10.1002/stem.1969] [PMID: 25702619]
[62]
Li HL, Fujimoto N, Sasakawa N, et al. Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Reports 2015; 4(1): 143-54.
[http://dx.doi.org/10.1016/j.stemcr.2014.10.013] [PMID: 25434822]
[63]
Chen L, Guo W, Ren L, et al. A de novo silencer causes elimination of MITF-M expression and profound hearing loss in pigs. BMC Biol 2016; 14(1): 52.
[http://dx.doi.org/10.1186/s12915-016-0273-2] [PMID: 27349893]
[64]
Xu X, Tay Y, Sim B, et al. Reversal of phenotypic abnormalities by CRISPR/Cas9-mediated gene correction in huntington disease patient-derived induced pluripotent stem cells. Stem Cell Reports 2017; 8(3): 619-33.
[http://dx.doi.org/10.1016/j.stemcr.2017.01.022] [PMID: 28238795]
[65]
Heckl D, Kowalczyk MS, Yudovich D, et al. Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing. Nat Biotechnol 2014; 32(9): 941-6.
[http://dx.doi.org/10.1038/nbt.2951] [PMID: 24952903]
[66]
Ye J, Tucker NR, Weng LC, Clauss S, Lubitz SA, Ellinor PT. A functional variant associated with atrial fibrillation regulates pitx2c expression through tfap2a. Am J Hum Genet 2016; 99(6): 1281-91.
[http://dx.doi.org/10.1016/j.ajhg.2016.10.001] [PMID: 27866707]
[67]
Zhang Y, Liang Z, Zong Y, et al. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 2016; 7(1): 12617.
[http://dx.doi.org/10.1038/ncomms12617] [PMID: 27558837]
[68]
Vethe H, Bjørlykke Y, Ghila LM, et al. Probing the missing mature β-cell proteomic landscape in differentiating patient iPSC-derived cells. Sci Rep 2017; 7(1): 4780.
[http://dx.doi.org/10.1038/s41598-017-04979-w] [PMID: 28684784]
[69]
Deng WL, Gao ML, Lei XL, et al. Gene correction reverses ciliopathy and photoreceptor loss in iPSC-derived retinal organoids from retinitis pigmentosa patients. Stem Cell Reports 2018; 10(4): 1267-81.
[http://dx.doi.org/10.1016/j.stemcr.2018.02.003] [PMID: 29526738]
[70]
Horii T, Tamura D, Morita S, Kimura M, Hatada I. Generation of an ICF syndrome model by efficient genome editing of human induced pluripotent stem cells using the CRISPR system. Int J Mol Sci 2013; 14(10): 19774-81.
[http://dx.doi.org/10.3390/ijms141019774] [PMID: 24084724]
[71]
Moroi AJ, Newman PJ. Conditional CRISPR‐mediated deletion of Lyn kinase enhances differentiation and function of iPSC‐derived megakaryocytes. J Thromb Haemost 2022; 20(1): 182-95.
[http://dx.doi.org/10.1111/jth.15546] [PMID: 34624170]
[72]
Sun Y, Fu J, Yang J, Zhao J, Rong J. Generation of a RRAGA knockout human iPSC line GIBHi002-A-5 using CRISPR/Cas9 technology. Stem Cell Res (Amst) 2022; 63: 102859.
[http://dx.doi.org/10.1016/j.scr.2022.102859] [PMID: 35870248]
[73]
Zhou XX, Zou X, Chung HK, et al. A Single-Chain photoswitchable CRISPR-Cas9 architecture for light-inducible gene editing and transcription. ACS Chem Biol 2018; 13(2): 443-8.
[http://dx.doi.org/10.1021/acschembio.7b00603] [PMID: 28938067]
[74]
Yuan J, Ma Y, Huang T, et al. Genetic Modulation of RNA Splicing with a CRISPR-Guided Cytidine Deaminase. Mol Cell 2018; 72(2): 380-394.e7.
[http://dx.doi.org/10.1016/j.molcel.2018.09.002] [PMID: 30293782]
[75]
Huang KC, Wang ML, Chen SJ, et al. Morphological and molecular defects in human three-dimensional retinal organoid model of X-Linked juvenile retinoschisis. Stem Cell Reports 2019; 13(5): 906-23.
[http://dx.doi.org/10.1016/j.stemcr.2019.09.010] [PMID: 31668851]
[76]
Chang CY, Ting HC, Su HL, Jeng JR. Combining induced pluripotent stem cells and genome editing technologies for clinical applications. Cell Transplant 2018; 27(3): 379-92.
[http://dx.doi.org/10.1177/0963689718754560] [PMID: 29806481]
[77]
Valenti MT, Serena M, Carbonare LD, Zipeto D. CRISPR/Cas system: An emerging technology in stem cell research. World J Stem Cells 2019; 11(11): 937-56.
[http://dx.doi.org/10.4252/wjsc.v11.i11.937] [PMID: 31768221]
[78]
Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther 2020; 5(1): 1-23.
[http://dx.doi.org/10.1038/s41392-019-0089-y] [PMID: 32296011]
[79]
Kues WA, Kumar D, Selokar NL, Talluri TR. Applications of genome editing tools in stem cells towards regenerative medicine: An update. Curr Stem Cell Res Ther 2022; 17(3): 267-79.
[http://dx.doi.org/10.2174/1574888X16666211124095527] [PMID: 34819011]
[80]
Kimbrel EA, Lanza R. Current status of pluripotent stem cells: moving the first therapies to the clinic. Nat Rev Drug Discov 2015; 14(10): 681-92.
[http://dx.doi.org/10.1038/nrd4738] [PMID: 26391880]
[81]
Tidball AM, Swaminathan P, Dang LT, Parent JM. Generating loss-of-function iPSC lines with combined CRISPR indel formation and reprogramming from human fibroblasts. Bio Protoc 2018; 8(7): e2794.
[http://dx.doi.org/10.21769/BioProtoc.2794]
[82]
Bai Q, Ramirez JM, Becker F, et al. Temporal analysis of genome alterations induced by single-cell passaging in human embryonic stem cells. Stem Cells Dev 2015; 24(5): 653-62.
[http://dx.doi.org/10.1089/scd.2014.0292] [PMID: 25254421]
[83]
Kuscu C, Arslan S, Singh R, Thorpe J, Adli M. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol 2014; 32(7): 677-83.
[http://dx.doi.org/10.1038/nbt.2916] [PMID: 24837660]
[84]
Fu Y, Foden JA, Khayter C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 2013; 31(9): 822-6.
[http://dx.doi.org/10.1038/nbt.2623] [PMID: 23792628]
[85]
Coelho MA, De Braekeleer E, Firth M, et al. CRISPR GUARD protects off-target sites from Cas9 nuclease activity using short guide RNAs. Nat Commun 2020; 11(1): 4132.
[http://dx.doi.org/10.1038/s41467-020-17952-5] [PMID: 32807781]
[86]
Schmidt MJ, Gupta A, Bednarski C, et al. Improved CRISPR genome editing using small highly active and specific engineered RNA-guided nucleases. Nat Commun 2021; 12(1): 4219.
[http://dx.doi.org/10.1038/s41467-021-24454-5] [PMID: 34244505]
[87]
Naeem M, Majeed S, Hoque MZ, Ahmad I. Latest developed strategies to minimize the off-target effects in CRISPR-Cas-mediated genome editing. Cells 2020; 9(7): 1608.
[http://dx.doi.org/10.3390/cells9071608] [PMID: 32630835]
[88]
Li QV, Dixon G, Verma N, et al. Genome-scale screens identify JNK–JUN signaling as a barrier for pluripotency exit and endoderm differentiation. Nat Genet 2019; 51(6): 999-1010.
[http://dx.doi.org/10.1038/s41588-019-0408-9] [PMID: 31110351]
[89]
Chang YJ, Xu CL, Cui X, et al. CRISPR base editing in induced pluripotent stem cells. Methods Mol Biol 2019; 2045: 337-46.
[http://dx.doi.org/10.1007/7651_2019_243] [PMID: 31250381]
[90]
Li L, Hu S, Chen X. Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities. Biomaterials 2018; 171: 207-18.
[http://dx.doi.org/10.1016/j.biomaterials.2018.04.031] [PMID: 29704747]
[91]
Sengupta K, Mishra MK, Loro E, Spencer MJ, Pyle AD, Khurana TS. Genome editing-mediated utrophin upregulation in duchenne muscular dystrophy stem cells. Mol Ther Nucleic Acids 2020; 22: 500-9.
[http://dx.doi.org/10.1016/j.omtn.2020.08.031] [PMID: 33230452]
[92]
Jacków J, Guo Z, Hansen C, et al. CRISPR/Cas9-based targeted genome editing for correction of recessive dystrophic epidermolysis bullosa using iPS cells. Proc Natl Acad Sci USA 2019; 116(52): 26846-52.
[http://dx.doi.org/10.1073/pnas.1907081116] [PMID: 31818947]
[93]
Oikari LE, Pandit R, Stewart R, et al. Altered brain endothelial cell phenotype from a familial Alzheimer mutation and its potential implications for amyloid clearance and drug delivery. Stem Cell Reports 2020; 14(5): 924-39.
[http://dx.doi.org/10.1016/j.stemcr.2020.03.011] [PMID: 32275861]
[94]
Guo W, Wang H, Kumar Tharkeshwar A, et al. CRISPR/Cas9 screen in human iPSC‐derived cortical neurons identifies NEK6 as a novel disease modifier of C9orf72 poly(PR) toxicity. Alzheimers Dement 2022; 2022: alz.12760.
[http://dx.doi.org/10.1002/alz.12760] [PMID: 35993441]
[95]
Nakamoto FK, Okamoto S, Mitsui J, et al. The pathogenesis linked to coenzyme Q10 insufficiency in iPSC-derived neurons from patients with multiple-system atrophy. Sci Rep 2018; 8(1): 14215.
[http://dx.doi.org/10.1038/s41598-018-32573-1] [PMID: 30242188]
[96]
Teque F, Ye L, Xie F, et al. Genetically-edited induced pluripotent stem cells derived from HIV-1-infected patients on therapy can give rise to immune cells resistant to HIV-1 infection. AIDS 2020; 34(8): 1141-9.
[http://dx.doi.org/10.1097/QAD.0000000000002539] [PMID: 32287059]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy