Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Mini-Review Article

Molecular Targeting and Novel Therapeutic Approaches against Fungal Infections

Author(s): Abhishek Kumar, Priya Bansal*, Deepti Katiyar, Surya Prakash and Nidagurthi Guggilla Raghavendra Rao

Volume 23, Issue 8, 2023

Published on: 04 April, 2023

Page: [726 - 736] Pages: 11

DOI: 10.2174/1566524023666230302123310

Price: $65

conference banner
Abstract

Background: Fungal infections have become a worldwide problem due to their involvement in numerous diseases. The risk factors for fungal infections are multiple surgeries, transplant therapies, frequent administration of antibiotics, cancer treatments, and prosthetic devices. The problem of resistance in fungi against drug therapies is widespread, becoming a severe health-related problem.

Objective: The study's objective was to identify molecular targets that may open new paths for fungal treatment.

Methods: Several research and review articles were studied to gather information regarding the novel mechanism of antifungal drugs. However, identifying novel targets is challenging due to the similarities between host and fungal cells. Although, the plasma membrane and cell wall of fungus offer various drug targets that may target to fight against microbial infections. Unfortunately, biofilm formation and over-expression of protein are a few mechanisms through which fungi develop resistance.

Results: Despite these problems, several approaches have been working to prevent and treat fungal infections. Modifying the chemical structure of antifungal drugs may also improve their activity and pharmacokinetics. In this review article, we have discussed the molecular targets and novel techniques to be used for the development of antifungal drugs. In addition, different strategies to overcome resistance in fungi have also been described.

Conclusion: This article may be helpful for the researchers working on the discovery and development of new antifungal works for resistance to fungal diseases.

Keywords: Fungus, ergosterol, drugs, infections, Candida, resistance.

[1]
Vallabhaneni S, Chiller TM. Fungal infections and new biologic therapies. Curr Rheumatol Rep 2016; 18(5): 29.
[http://dx.doi.org/10.1007/s11926-016-0572-1] [PMID: 27032792]
[2]
Maertens JA. History of the development of azole derivatives. Clin Microbiol Infect 2004; 10 (Suppl. 1): 1-10.
[http://dx.doi.org/10.1111/j.1470-9465.2004.00841.x] [PMID: 14748798]
[3]
Wall G, Lopez-Ribot JL. Current antimycotics, new prospects, and future approaches to antifungal therapy. Antibiotics 2020; 9(8): 445.
[http://dx.doi.org/10.3390/antibiotics9080445] [PMID: 32722455]
[4]
Di Mambro T, Guerriero I, Aurisicchio L, Magnani M, Marra E. The Yin and Yang of current antifungal therapeutic strategies: How can we harness our natural defenses? Front Pharmacol 2019; 10: 80.
[http://dx.doi.org/10.3389/fphar.2019.00080] [PMID: 30804788]
[5]
Garcia-Rubio R, de Oliveira HC, Rivera J, Trevijano-Contador N. The Fungal Cell Wall: Candida, Cryptococcus, and Aspergillus Species. Front Microbiol 2020; 10: 2993.
[http://dx.doi.org/10.3389/fmicb.2019.02993] [PMID: 31993032]
[6]
Badiee P, Hashemizadeh Z. Opportunistic invasive fungal infections: Diagnosis & clinical management. Indian J Med Res 2014; 139(2): 195-204.
[PMID: 24718393]
[7]
Ostrosky-Zeichner L, Casadevall A, Galgiani JN, Odds FC, Rex JH. An insight into the antifungal pipeline: Selected new molecules and beyond. Nat Rev Drug Discov 2010; 9(9): 719-27.
[http://dx.doi.org/10.1038/nrd3074] [PMID: 20725094]
[8]
Berman J, Krysan DJ. Drug resistance and tolerance in fungi. Nat Rev Microbiol 2020; 18(6): 319-31.
[http://dx.doi.org/10.1038/s41579-019-0322-2] [PMID: 32047294]
[9]
Romero M, Messina F, Marin E, et al. Antifungal resistance in clinical isolates of Aspergillus spp.: When local epidemiology breaks the norm. J Fungi 2019; 5(2): 41.
[http://dx.doi.org/10.3390/jof5020041] [PMID: 31117260]
[10]
Lamoth F, Lockhart SR, Berkow EL, Calandra T. Changes in the epidemiological landscape of invasive candidiasis. J Antimicrob Chemother 2018; 73 (Suppl. 1): i4-i13.
[http://dx.doi.org/10.1093/jac/dkx444] [PMID: 29304207]
[11]
Pfaller MA, Diekema DJ, Turnidge JD, Castanheira M, Jones RN. Twenty years of the SENTRY antifungal surveillance program: Results for Candida species from 1997–2016. Open Forum Infect Dis 2019; 6 (Suppl. 1): S79-94.
[http://dx.doi.org/10.1093/ofid/ofy358] [PMID: 30895218]
[12]
Latgé JP, Chamilos G. Aspergillus fumigatus and Aspergillosis in 2019. Clin Microbiol Rev 2019; 33(1): e00140-18.
[http://dx.doi.org/10.1128/CMR.00140-18] [PMID: 31722890]
[13]
Perlin DS, Rautemaa-Richardson R, Alastruey-Izquierdo A. The global problem of antifungal resistance: Prevalence, mechanisms, and management. Lancet Infect Dis 2017; 17(12): e383-92.
[http://dx.doi.org/10.1016/S1473-3099(17)30316-X] [PMID: 28774698]
[14]
Gupta T, Kataria R, Sardana S. A comprehensive review on current perspectives of flavonoids as antimicrobial agent. Curr Top Med Chem 2022; 22(6): 425-34.
[http://dx.doi.org/10.2174/1568026622666220117104709] [PMID: 35040402]
[15]
Nagarajan K, Ghai R, Varshney G, et al. Identification of potent bioassay guided terpenoid and glycoside root fractions of Astragalus candolleanus against clinically significant bacterial strains. Int J Microbiol 2022; 2022: 1-10.
[http://dx.doi.org/10.1155/2022/4584799] [PMID: 35528313]
[16]
Threats posed by the fungal kingdom to humans, wildlife, and agriculture. MBio 2021; 11(3): e00449-20.
[17]
Roemer T, Krysan DJ. Antifungal drug development: Challenges, unmet clinical needs, and new approaches. Cold Spring Harb Perspect Med 2014; 4(5): a019703.
[http://dx.doi.org/10.1101/cshperspect.a019703] [PMID: 24789878]
[18]
Mazu TK, Bricker BA, Flores-Rozas H, Ablordeppey SY. The mechanistic targets of antifungal agents: An overview. Mini Rev Med Chem 2016; 16(7): 555-78.
[http://dx.doi.org/10.2174/1389557516666160118112103] [PMID: 26776224]
[19]
Lima SL, Colombo AL, de Almeida Junior JN. Fungal cell wall: Emerging antifungals and drug resistance. Front Microbiol 2019; 10: 2573.
[http://dx.doi.org/10.3389/fmicb.2019.02573] [PMID: 31824443]
[20]
Pianalto K, Alspaugh J. New horizons in antifungal therapy. J Fungi 2016; 2(4): 26.
[http://dx.doi.org/10.3390/jof2040026] [PMID: 29376943]
[21]
Rauseo AM, Coler-Reilly A, Larson L, Spec A. Hope on the horizon: Novel fungal treatments in development. Open Forum Infect Dis 2020; 7(2): ofaa016.
[http://dx.doi.org/10.1093/ofid/ofaa016] [PMID: 32099843]
[22]
Iyer KR, Revie NM, Fu C, Robbins N, Cowen LE. Treatment strategies for cryptococcal infection: Challenges, advances and future outlook. Nat Rev Microbiol 2021; 19(7): 454-66.
[http://dx.doi.org/10.1038/s41579-021-00511-0] [PMID: 33558691]
[23]
McCarthy M, Walsh T. Amino acid metabolism and transport mechanisms as potential antifungal targets. Int J Mol Sci 2018; 19(3): 909.
[http://dx.doi.org/10.3390/ijms19030909] [PMID: 29562716]
[24]
Kibbler CC, Barton R, Gow NA, Howell S, MacCallum DM, Manuel RJ. Fungal cell structure and organization. In Oxford, UK: Oxford University Press 2017.
[25]
Pan J, Hu C, Yu JH. Lipid biosynthesis as an antifungal target. J Fungi 2018; 4(2): 50.
[http://dx.doi.org/10.3390/jof4020050] [PMID: 29677130]
[26]
Yoshimi A, Miyazawa K, Abe K. Function and biosynthesis of cell wall α-1,3-glucan in fungi. J Fungi (Basel) 2017; 3(4): 63.
[http://dx.doi.org/10.3390/jof3040063] [PMID: 29371579]
[27]
Ibe C, Munro CA. Fungal cell wall: An underexploited target for antifungal therapies. PLoS Pathog 2021; 17(4): e1009470.
[http://dx.doi.org/10.1371/journal.ppat.1009470] [PMID: 33886695]
[28]
Lenardon MD, Sood P, Dorfmueller HC, Brown AJP, Gow NAR. Scalar nanostructure of the Candida albicans cell wall; a molecular, cellular and ultrastructural analysis and interpretation. Cell Surf 2020; 6: 100047.
[http://dx.doi.org/10.1016/j.tcsw.2020.100047] [PMID: 33294751]
[29]
Fontaine T, Latgé JP. Galactomannan produced by Aspergillus fumigatus: An update on the structure, biosynthesis and biological functions of an emblematic fungal biomarker. J Fungi 2020; 6(4): 283.
[http://dx.doi.org/10.3390/jof6040283] [PMID: 33198419]
[30]
Henry C, Li J, Danion F, et al. Two KTR mannosyltransferases are responsible for the biosynthesis of cell wall mannans and control polarized growth in Aspergillus fumigatus. MBio 2019; 10(1): e02647-18.
[http://dx.doi.org/10.1128/mBio.02647-18] [PMID: 30755510]
[31]
Miyazawa K, Yoshimi A, Sano M, et al. Both galactosaminogalactan and α-1,3-Glucan contribute to aggregation of Aspergillus oryzae hyphae in liquid culture. Front Microbiol 2019; 10: 2090.
[http://dx.doi.org/10.3389/fmicb.2019.02090] [PMID: 31572319]
[32]
Sung PS, Hsieh SL, Chang WC. CLEC5A: A Promiscuous Pattern Recognition Receptor to Microbes and Beyond. In: Adv Exp Med Biol 2020; 240: 57-73.
[33]
Beauvais A, Fontaine T, Aimanianda V, Latgé JP. Aspergillus cell wall and biofilm. Mycopathologia 2014; 178(5-6): 371-7.
[http://dx.doi.org/10.1007/s11046-014-9766-0] [PMID: 24947169]
[34]
Gonçalves DS, Rodriguez de La Noval C, Ferreira MS, et al. Histoplasma capsulatum glycans from distinct genotypes share structural and serological similarities to cryptococcus neoformans glucuronoxylomannan. Front Cell Infect Microbiol 2021; 10: 565571.
[http://dx.doi.org/10.3389/fcimb.2020.565571] [PMID: 33585262]
[35]
Cordero RJ, Liedke SC, de S Araújo GR, et al. Enhanced virulence of Histoplasma capsulatum through transfer and surface incorporation of glycans from Cryptococcus neoformans during co-infection. Sci Rep 2016; 6(1): 21765.
[http://dx.doi.org/10.1038/srep21765] [PMID: 26908077]
[36]
Park YD, Williamson P. Masking the pathogen: Evolutionary strategies of fungi and their bacterial counterparts. J Fungi 2015; 1(3): 397-421.
[http://dx.doi.org/10.3390/jof1030397] [PMID: 29376918]
[37]
Pieterse CMJ, Van Loon LC. NPR1: the spider in the web of induced resistance signaling pathways. Curr Opin Plant Biol 2004; 7(4): 456-64.
[http://dx.doi.org/10.1016/j.pbi.2004.05.006] [PMID: 15231270]
[38]
Magliani W, Conti S, Frazzi R, Ravanetti L, Maffei D, Polonelli L. Protective antifungal yeast killer toxin-like antibodies. Curr Mol Med 2005; 5(4): 443-52.
[http://dx.doi.org/10.2174/1566524054022558] [PMID: 15978000]
[39]
Belkhadir Y, Subramaniam R, Dangl JL. Plant disease resistance protein signaling: NBS–LRR proteins and their partners. Curr Opin Plant Biol 2004; 7(4): 391-9.
[http://dx.doi.org/10.1016/j.pbi.2004.05.009] [PMID: 15231261]
[40]
Nürnberger T, Brunner F, Kemmerling B, Piater L. Innate immunity in plants and animals: Striking similarities and obvious differences. Immunol Rev 2004; 198(1): 249-66.
[http://dx.doi.org/10.1111/j.0105-2896.2004.0119.x] [PMID: 15199967]
[41]
Ausubel FM. Are innate immune signaling pathways in plants and animals conserved? Nat Immunol 2005; 6(10): 973-9.
[http://dx.doi.org/10.1038/ni1253] [PMID: 16177805]
[42]
Ivanov M, Ćirić A, Stojković D. Emerging antifungal targets and strategies. Int J Mol Sci 2022; 23(5): 2756.
[http://dx.doi.org/10.3390/ijms23052756] [PMID: 35269898]
[43]
Hammoudi Halat D, Younes S, Mourad N, Rahal M. Allylamines, Benzylamines, and fungal cell permeability: A review of mechanistic effects and usefulness against fungal pathogens. Membranes 2022; 12(12): 1171.
[http://dx.doi.org/10.3390/membranes12121171] [PMID: 36557078]
[44]
Harrison PJ, Dunn TM, Campopiano DJ. Sphingolipid biosynthesis in man and microbes. Nat Prod Rep 2018; 35(9): 921-54.
[http://dx.doi.org/10.1039/C8NP00019K] [PMID: 29863195]
[45]
Mota Fernandes C, Del Poeta M. Fungal sphingolipids: Role in the regulation of virulence and potential as targets for future antifungal therapies. Expert Rev Anti Infect Ther 2020; 18(11): 1083-92.
[http://dx.doi.org/10.1080/14787210.2020.1792288] [PMID: 32673125]
[46]
Du W, Gao Y, Liu L, Sai S, Ding C. Striking back against fungal infections: The utilization of nanosystems for antifungal strategies. Int J Mol Sci 2021; 22(18): 10104.
[http://dx.doi.org/10.3390/ijms221810104] [PMID: 34576268]
[47]
Hata M, Ishii Y, Watanabe E, et al. Inhibition of ergosterol synthesis by novel antifungal compounds targeting C-14 reductase. Med Mycol 2010; 48(4): 613-21.
[http://dx.doi.org/10.3109/13693780903390208] [PMID: 20392153]
[48]
Sonthalia S, Agrawal M, Sehgal VN. Topical ciclopirox olamine 1%: Revisiting a unique antifungal. Indian Dermatol Online J 2019; 10(4): 481-5.
[http://dx.doi.org/10.4103/idoj.IDOJ_29_19] [PMID: 31334080]
[49]
Perlin DS, Seto-Young D, Monk BC. The plasma membrane H(+)-ATPase of fungi. A candidate drug target? Ann N Y Acad Sci 1997; 834: 609-17.
[http://dx.doi.org/10.1111/j.1749-6632.1997.tb52330.x] [PMID: 9405872]
[50]
Papp C, Bohner F, Kocsis K, et al. Triazole evolution of candida parapsilosis results in cross-resistance to other antifungal drugs, influences stress responses, and alters virulence in an antifungal drug-dependent manner. MSphere 2020; 5(5): e00821-20.
[http://dx.doi.org/10.1128/mSphere.00821-20] [PMID: 33115837]
[51]
Wang D, An N, Yang Y, Yang X, Fan Y, Feng J. Candida tropicalis distribution and drug resistance is correlated with ERG11 and UPC2 expression. Antimicrob Resist Infect Control 2021; 10(1): 54.
[http://dx.doi.org/10.1186/s13756-021-00890-2] [PMID: 33722286]
[52]
Zuza-Alves DL, Silva-Rocha WP, Chaves GM. An update on Candida tropicalis based on basic and clinical approaches. Front Microbiol 2017; 8: 1927.
[http://dx.doi.org/10.3389/fmicb.2017.01927] [PMID: 29081766]
[53]
de Oliveira Santos GC, Vasconcelos CC, Lopes AJO, et al. Candida infections and therapeutic strategies: Mechanisms of action for traditional and alternative agents. Front Microbiol 2018; 9: 1351.
[http://dx.doi.org/10.3389/fmicb.2018.01351] [PMID: 30018595]
[54]
Casadevall A, Coelho C, Cordero RJB, et al. The capsule of Cryptococcus neoformans. Virulence 2019; 10(1): 822-31.
[http://dx.doi.org/10.1080/21505594.2018.1431087] [PMID: 29436899]
[55]
Chua SMH, Wizrah MSI, Luo Z, et al. Structural features of Cryptococcus neoformans bifunctional GAR/AIR synthetase may present novel antifungal drug targets. J Biol Chem 2021; 297(4): 101091.
[http://dx.doi.org/10.1016/j.jbc.2021.101091] [PMID: 34416230]
[56]
Valiante V, Macheleidt J, Föge M, Brakhage AA. The Aspergillus fumigatus cell wall integrity signaling pathway: drug target, compensatory pathways, and virulence. Front Microbiol 2015; 6: 325.
[http://dx.doi.org/10.3389/fmicb.2015.00325] [PMID: 25932027]
[57]
Fernanda dos RT, Crivelente HM, Cristina CA, Mota FC, Pereira SL, Wesley BR. Screening of chemical libraries for new antifungal drugs against Aspergillus fumigatus reveals sphingolipids are involved in the mechanism of action of miltefosine. MBio 2021; 12(4): 1458-21.
[58]
Zdzislaw W, Girish R. Crystal structure of the new investigational drug candidate VT-1598 in complex with Aspergillus fumigatus sterol 14α-Demethylase provides insights into its broad-spectrum antifungal activity. Antimicrob Agents Chemother 2021; 61(7): 570-17.
[59]
Cowen LE, Sanglard D, Howard SJ, Rogers PD, Perlin DS. Mechanisms of antifungal drug resistance. Cold Spring Harb Perspect Med 2015; 5(7): a019752.
[http://dx.doi.org/10.1101/cshperspect.a019752] [PMID: 25384768]
[60]
Shrestha SK, Fosso MY, Garneau-Tsodikova S. A combination approach to treating fungal infections. Sci Rep 2015; 5(1): 17070.
[http://dx.doi.org/10.1038/srep17070] [PMID: 26594050]
[61]
Munita JM, Arias CA. Mechanisms of antibiotic resistance. Microbiol Spectr 2016; 4(2): 4.
[http://dx.doi.org/10.1128/microbiolspec.VMBF-0016-2015] [PMID: 27227291]
[62]
C Reygaert W. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol 2018; 4(3): 482-501.
[http://dx.doi.org/10.3934/microbiol.2018.3.482] [PMID: 31294229]
[63]
Bhattacharya S, Sae-Tia S, Fries BC. Candidiasis and mechanisms of antifungal resistance. Antibiotics 2020; 9(6): 312.
[http://dx.doi.org/10.3390/antibiotics9060312] [PMID: 32526921]
[64]
Krishnasamy L, Krishnakumar S, Kumaramanickavel G, Saikumar C. molecular mechanisms of antifungal drug resistance in candida species. J Clin of Diagn Res 2018; 12(9): 01-6.
[65]
Delma FZ, Al-hatmi AM, Brüggemann RJ, Melchers WJ, Hoog SD, Verweij PE. Molecular mechanisms of 5-Fluorocytosine resistance in yeasts and filamentous fungi. J Fungi 2021; 7(11): 909.
[66]
Nagaraj S, Manivannan S, Narayan S. Potent antifungal agents and use of nanocarriers to improve delivery to the infected site: A systematic review. J Basic Microbiol 2021; 61(10): 849-73.
[http://dx.doi.org/10.1002/jobm.202100204] [PMID: 34351655]
[67]
Pristov KE, Ghannoum MA. Resistance of Candida to azoles and echinocandins worldwide. Clin Microbiol Infect 2019; 25(7): 792-8.
[http://dx.doi.org/10.1016/j.cmi.2019.03.028] [PMID: 30965100]
[68]
Beardsley J, Halliday CL, Chen SCA, Sorrell TC. Responding to the emergence of antifungal drug resistance: Perspectives from the bench and the bedside. Future Microbiol 2018; 13(10): 1175-91.
[http://dx.doi.org/10.2217/fmb-2018-0059] [PMID: 30113223]
[69]
Satish S, Perlin DS. Echinocandin resistance in Aspergillus fumigatus has broad implications for membrane lipid perturbations that influence drug-target interactions. Microbiol Insights 2019; 12.
[http://dx.doi.org/10.1177/1178636119897034] [PMID: 35185336]
[70]
Carolus H, Pierson S, Lagrou K, Van Dijck P. Amphotericin b and other polyenes—discovery, clinical use, mode of action and drug resistance. J Fungi 2020; 6(4): 321.
[http://dx.doi.org/10.3390/jof6040321] [PMID: 33261213]
[71]
Ghannoum MA, Rice LB. Antifungal agents: Mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev 1999; 12(4): 501-17.
[http://dx.doi.org/10.1128/CMR.12.4.501] [PMID: 10515900]
[72]
Shafiei M, Peyton L, Hashemzadeh M, Foroumadi A. History of the development of antifungal azoles: A review on structures, SAR, and mechanism of action. Bioorg Chem 2020; 104: 104240.
[http://dx.doi.org/10.1016/j.bioorg.2020.104240] [PMID: 32906036]
[73]
Serhan G, Stack CM, Perrone GG, Morton CO. The polyene antifungals, amphotericin B and nystatin, cause cell death in Saccharomyces cerevisiae by a distinct mechanism to amphibian-derived antimicrobial peptides. Ann Clin Microbiol Antimicrob 2014; 13(1): 18.
[http://dx.doi.org/10.1186/1476-0711-13-18] [PMID: 24884795]
[74]
Grover N. Echinocandins: A ray of hope in antifungal drug therapy. Indian J Pharmacol 2010; 42(1): 9-11.
[http://dx.doi.org/10.4103/0253-7613.62396] [PMID: 20606829]
[75]
Aguilar-Zapata D, Petraitiene R, Petraitis V. Echinocandins: The expanding antifungal armamentarium. Clin Infect Dis 2015; 61(6) (Suppl. 6): S604-11.
[http://dx.doi.org/10.1093/cid/civ814] [PMID: 26567277]
[76]
Longley DB, Harkin DP, Johnston PG. 5-Fluorouracil: Mechanisms of action and clinical strategies. Nat Rev Cancer 2003; 3(5): 330-8.
[http://dx.doi.org/10.1038/nrc1074] [PMID: 12724731]
[77]
Sobrero A, Guglielmi A, Grossi F, Puglisi F, Aschele C. Mechanism of action of fluoropyrimidines: Relevance to the new developments in colorectal cancer chemotherapy. Semin Oncol 2000; 27(5): 72-7.
[PMID: 11049035]
[78]
DeJarnette C, Meyer CJ, Jenner AR, et al. Identification of inhibitors of fungal fatty acid biosynthesis. ACS Infect Dis 2021; 7(12): 3210-23.
[http://dx.doi.org/10.1021/acsinfecdis.1c00404] [PMID: 34786940]
[79]
Gamal A, Chu S, McCormick TS, Borroto-Esoda K, Angulo D, Ghannoum MA. Ibrexafungerp, a novel oral triterpenoid antifungal in development: Overview of antifungal activity against Candida glabrata. Front Cell Infect Microbiol 2021; 11: 642358.
[http://dx.doi.org/10.3389/fcimb.2021.642358] [PMID: 33791244]
[80]
Rose DU, Piersigilli F, Goffredo BM, Danhaive O, Dotta A, Auriti C. Treatment with micafungin in a preterm neonate with an invasive Candida parapsilosis infection after a severe terlipressin-induced skin necrosis. Pathogens 2021; 4-9.
[81]
Su S, Yan H, Min L, et al. The antifungal activity of caspofungin in combination with antifungals or non-antifungals against Candida species in vitro and in clinical therapy. Expert Rev Anti Infect Ther 2021; 1-18.
[PMID: 34128761]
[82]
Aigner M, Lass-Flörl C. Encochleated Amphotericin B: Is the oral availability of Amphotericin B finally reached? J Fungi 2020; 6(2): 66.
[http://dx.doi.org/10.3390/jof6020066] [PMID: 32443486]
[83]
Sofjan AK, Mitchell A, Shah DN, et al. Rezafungin (CD101), a next-generation echinocandin: A systematic literature review and assessment of possible place in therapy. J Glob Antimicrob Resist 2018; 14: 58-64.
[http://dx.doi.org/10.1016/j.jgar.2018.02.013] [PMID: 29486356]
[84]
Ham YY, Lewis JS II, Thompson GR III. Rezafungin: A novel antifungal for the treatment of invasive candidiasis. Future Microbiol 2021; 16(1): 27-36.
[http://dx.doi.org/10.2217/fmb-2020-0217] [PMID: 33438477]
[85]
Wiederhold NP. Review of the novel investigational antifungal olorofim. J fungi 2020; 6(3): 122.
[http://dx.doi.org/10.3390/jof6030122]
[86]
Saskia du P, Nicola B, Cruz AM, Derek L. Effect of the novel antifungal drug F901318 (Olorofim) on growth and viability of Aspergillus fumigatus. Antimicrob Agents Chemother 2021; 62(8): 231-18.
[87]
Mammen MP, Armas D, Hughes FH, et al. First-in-human phase 1 study to assess safety, tolerability, and pharmacokinetics of a novel antifungal drug, VL-2397, in healthy adults. Antimicrob Agents Chemother 2019; 63(11): e00969-19.
[http://dx.doi.org/10.1128/AAC.00969-19] [PMID: 31427299]
[88]
Anna-Maria D, Matthias M, Vasyl I, David T, Joachim P. The siderophore transporter sit1 determines susceptibility to the antifungal VL-2397. Antimicrob Agents Chemother 2021; 63(10): 807-19.
[89]
Alkhazraji S, Gebremariam T, Alqarihi A, et al. Fosmanogepix (APX001) is effective in the treatment of immunocompromised mice infected with invasive pulmonary scedosporiosis or disseminated fusariosis. Antimicrob Agents Chemother 2020; 64(3): e01735-19.
[http://dx.doi.org/10.1128/AAC.01735-19] [PMID: 31818813]
[90]
Teclegiorgis G, Sondus A, Abdullah A, Yiyou G, Mili K. APX001 is effective in the treatment of murine invasive pulmonary aspergillosis. Antimicrob Agents Chemother 2021; 63(2): 1713-8.
[91]
Break TJ, Desai JV, Healey KR, et al. VT-1598 inhibits the in vitro growth of mucosal Candida strains and protects against fluconazole-susceptible and -resistant oral candidiasis in IL-17 signalling-deficient mice. J Antimicrob Chemother 2018; 73(8): 2089-94.
[http://dx.doi.org/10.1093/jac/dky170] [PMID: 29788070]
[92]
Rosie J, Marcos O. The fungal Cyp51-Specific inhibitor VT-1598 demonstrates in vitro and in vivo activity against Candida auris. Antimicrob Agents Chemother 2021; 63(3): 2233-18.
[93]
Garvey EP, Hoekstra WJ, Schotzinger RJ, Sobel JD, Lilly EA, Fidel PL Jr. Efficacy of the clinical agent VT-1161 against fluconazole-sensitive and -resistant Candida albicans in a murine model of vaginal candidiasis. Antimicrob Agents Chemother 2015; 59(9): 5567-73.
[http://dx.doi.org/10.1128/AAC.00185-15] [PMID: 26124165]
[94]
Brand SR, Sobel JD, Nyirjesy P, Ghannoum MA, Schotzinger RJ, Degenhardt TP. A randomized phase 2 study of VT-1161 for the treatment of acute Vulvovaginal Candidiasis. Clin Infect Dis 2021; 73(7): e1518-24.
[http://dx.doi.org/10.1093/cid/ciaa1204] [PMID: 32818963]
[95]
Warrilow AGS, Hull CM, Parker JE, et al. The clinical candidate VT-1161 is a highly potent inhibitor of Candida albicans CYP51 but fails to bind the human enzyme. Antimicrob Agents Chemother 2014; 58(12): 7121-7.
[http://dx.doi.org/10.1128/AAC.03707-14] [PMID: 25224009]
[96]
Maertens JA, Rahav G, Lee DG, et al. Posaconazole versus voriconazole for primary treatment of invasive aspergillosis: a phase 3, randomised, controlled, non-inferiority trial. Lancet 2021; 397(10273): 499-509.
[http://dx.doi.org/10.1016/S0140-6736(21)00219-1] [PMID: 33549194]
[97]
Greer ND. Posaconazole (Noxafil): A new triazole antifungal agent. Proc Bayl Univ Med Cent 2007; 20(2): 188-96.
[http://dx.doi.org/10.1080/08998280.2007.11928283] [PMID: 17431456]
[98]
Shubitz LF, Trinh HT, Perrill RH, et al. Modeling nikkomycin Z dosing and pharmacology in murine pulmonary coccidioidomycosis preparatory to phase 2 clinical trials. J Infect Dis 2014; 209(12): 1949-54.
[http://dx.doi.org/10.1093/infdis/jiu029] [PMID: 24421256]
[99]
Larwood DJ. Nikkomycin z—ready to meet the promise? J Fungi 2020; 6(4): 261.
[http://dx.doi.org/10.3390/jof6040261] [PMID: 33143248]
[100]
Marty FM, Ostrosky-Zeichner L, Cornely OA, et al. VITAL and FungiScope Mucormycosis Investigators. Isavuconazole treatment for mucormycosis: a single-arm open-label trial and case-control analysis. Lancet Infect Dis 2016; 16(7): 828-37.
[http://dx.doi.org/10.1016/S1473-3099(16)00071-2] [PMID: 26969258]
[101]
Shirley M, Scott LJ. Isavuconazole: A Review in invasive Aspergillosis and Mucormycosis. Drugs 2016; 76(17): 1647-57.
[http://dx.doi.org/10.1007/s40265-016-0652-6] [PMID: 27766566]
[102]
Ellsworth M, Ostrosky-Zeichner L. Isavuconazole: Mechanism of action, clinical efficacy, and resistance. J Fungi 2020; 6(4): 324.
[http://dx.doi.org/10.3390/jof6040324] [PMID: 33260353]
[103]
Chamdine O, Gaur AH, Broniscer A. Effective treatment of cerebral mucormycosis associated with brain surgery. Pediatr Infect Dis J 2015; 34(5): 542-3.
[http://dx.doi.org/10.1097/INF.0000000000000626] [PMID: 25420158]
[104]
Cass L, Murray A, Davis A, et al. Safety and nonclinical and clinical pharmacokinetics of PC945, a novel inhaled triazole antifungal agent. Pharmacol Res Perspect 2021; 9(1): e00690.
[http://dx.doi.org/10.1002/prp2.690] [PMID: 33340279]
[105]
Murray A, Cass L, Ito K, et al. PC945, a novel inhaled antifungal agent, for the treatment of respiratory fungal infections. J Fungi 2020; 6(4): 373.
[http://dx.doi.org/10.3390/jof6040373] [PMID: 33348852]
[106]
Colley T, Sehra G, Daly L, et al. Antifungal synergy of a topical triazole, PC945, with a systemic triazole against respiratory Aspergillus fumigatus infection. Sci Rep 2019; 9(1): 9482.
[http://dx.doi.org/10.1038/s41598-019-45890-w] [PMID: 31263150]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy