Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Chemistry of Thieno[2,3-c]quinoline Derivatives Part (VII), Reactivities, and Biological Activities

Author(s): Moustafa A. Gouda*, Rayan M. Alansari, Ameen A. Abu-Hashem*, Abdel-Rahman B.A. El-Gazzar, Ahmed A.M. Abdelgawad and Mohammed A. Salem

Volume 21, Issue 5, 2024

Published on: 05 June, 2023

Page: [527 - 541] Pages: 15

DOI: 10.2174/1570193X20666230301153215

Price: $65

Open Access Journals Promotions 2
Abstract

In this review, numerous thieno[2,3-c]quinoline derivatives (TQs2, 3-c) are presented from a variety of angles, including various preparation and processing techniques, using cutting-edge equipment. Numerous chemical processes in this review demonstrate how (TQs2, 3-c) were made from arylamines, ketones, aldehydes, carboxylic acids, and other chemical reagents. The amidation, tandem C-C and C-N bond creation accelerated by palladium, Vilsmeier reaction, and Pictet-Spengler chemical reactions were used to shed light on how (TQs2, 3-c) was made.

Keywords: Thieno[2, 3-c] quinolines, suzuki-miyaura reaction, bischler–napieralski cyclization, benzene pyridine, thiophene rings, thienoquinolines.

Graphical Abstract
[1]
Teja, C.; Nawaz Khan, F.R. Recent advances in the synthesis of thienoquinolines (Quinoline‐fused heterocycle). Asian J. Org. Chem., 2020, 9(12), 1889-1900.
[http://dx.doi.org/10.1002/ajoc.202000427]
[2]
Abu-Hashem, A. A.; El-Gazzar, A. B. A.; Abdelgawad, A. A.; Gouda, M. A. Synthesis and chemical reactions of thieno [3, 2-c] quinolines from arylamine derivatives, part (V): A review. Phosphorus Sulfur Silicon Relat. Elem., 2022, j(7), 665-88.
[3]
Mohammadi-Khanaposhtani, M.; Noori, M.; Valizadeh, Y.; Dastyafteh, N.; Ghomi, M.K.; Mojtabavi, S.; Faramarzi, M.A.; Hosseini, S.; Biglar, M.; Larijani, B.; Rastegar, H.; Hamedifar, H.; Mirzazadeh, R.; Mahdavi, M. Synthesis, α‐glucosidase Inhibition, in silico pharmacokinetic, and docking studies of thieno[2,3‐b]quinoline‐acetamide derivatives as new anti‐diabetic agents. ChemistrySelect, 2022, 7(44), e202104482.
[http://dx.doi.org/10.1002/slct.202104482]
[4]
Castrillo, A.; Pennington, D.J.; Otto, F.; Parker, P.J.; Owen, M.J.; Boscá, L. Protein kinase Cepsilon is required for macrophage activation and defense against bacterial infection. J. Exp. Med., 2001, 194(9), 1231-1242.
[http://dx.doi.org/10.1084/jem.194.9.1231] [PMID: 11696589]
[5]
Jarak, I.; Kralj, M.; Šuman, L.; Pavlović, G.; Dogan, J.; Piantanida, I.; Žinić, M.; Pavelić, K.; Karminski-Zamola, G. Novel cyano- and N-isopropylamidino-substituted derivatives of benzo[b]thiophene-2-carboxanilides and benzo[b]thieno[2,3-c]quinolones: Synthesis, photochemical synthesis, crystal structure determination, and antitumor evaluation. 2. J. Med. Chem., 2005, 48(7), 2346-2360.
[http://dx.doi.org/10.1021/jm049541f] [PMID: 15801828]
[6]
Jarak, I.; Kralj, M.; Piantanida, I.; Šuman, L.; Žinić, M.; Pavelić, K.; Karminski-Zamola, G. Novel cyano- and amidino-substituted derivatives of thieno[2,3-b]- and thieno[3,2-b]thiophene-2-carboxanilides and thieno[3′,2′:4,5]thieno- and thieno[2′,3′:4,5]thieno[2,3-c]quinolones: Synthesis, photochemical synthesis, DNA binding, and antitumor evaluation. Bioorg. Med. Chem., 2006, 14(8), 2859-2868.
[http://dx.doi.org/10.1016/j.bmc.2005.12.004] [PMID: 16412644]
[7]
Goerlitzer, K.; Gabriel, B.; Jomaa, H.; Wiesner, J. Thieno [3, 2-c] quinoline-4-yl-amines synthesis and investigation of activity against malaria. Die Pharmazie, 2006, 61, (4), 278-284.
[8]
Mahajan, P.; Nikam, M.; Asrondkar, A.; Bobade, A.; Gill, C. Synthesis, antioxidant, and anti-inflammatory evaluation of novel thiophene-fused quinoline based β-diketones and derivatives. J. Heterocycl. Chem., 2017, 54(2), 1415-1422.
[http://dx.doi.org/10.1002/jhet.2722]
[9]
Mphahlele, M.J.; Maluleka, M.M.; Makhafola, T.J.; Mabeta, P. Novel polycarbo-substituted alkyl (thieno [3, 2-c] quinoline)-2-carboxylates: Synthesis and cytotoxicity studies. Molecules, 2014, 19(11), 18527-18542.
[http://dx.doi.org/10.3390/molecules]
[10]
Rohit Kumar, H.; Kumar, C.S.; Kiran Kumar, H.N.; Advi Rao, G.M. Inhibition of protein kinases by anticancer DNA intercalator, 4-butylaminopyrimido[4′,5′:4,5]thieno(2,3- b)quinoline. Acta Pharm. Sin. B, 2017, 7(3), 303-310.
[http://dx.doi.org/10.1016/j.apsb.2017.01.001] [PMID: 28540166]
[11]
Rechfeld, F.; Gruber, P.; Kirchmair, J.; Boehler, M.; Hauser, N.; Hechenberger, G.; Garczarczyk, D.; Lapa, G.B.; Preobrazhenskaya, M.N.; Goekjian, P.; Langer, T.; Hofmann, J. Thienoquinolines as novel disruptors of the PKCε/RACK2 protein-protein interaction. J. Med. Chem., 2014, 57(8), 3235-3246.
[http://dx.doi.org/10.1021/jm401605c] [PMID: 24712764]
[12]
Zhao, Y.; Li, M.; Li, B.; Zhang, S.; Su, A.; Xing, Y.; Ge, Z.; Li, R.; Yang, B. Discovery and optimization of thienopyridine derivatives as novel urea transporter inhibitors. Eur. J. Med. Chem., 2019, 172, 131-142.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.060] [PMID: 30959323]
[13]
Ren, H.; Wang, Y.; Xing, Y.; Ran, J.; Liu, M.; Lei, T.; Zhou, H.; Li, R.; Sands, J.M.; Yang, B. Thienoquinolins exert diuresis by strongly inhibiting UT-A urea transporters. Am. J. Physiol. Renal Physiol., 2014, 307(12), F1363-F1372.
[http://dx.doi.org/10.1152/ajprenal.00421.2014] [PMID: 25298523]
[14]
Sović, I.; Viskić, M.; Bertoša, B.; Ester, K.; Kralj, M.; Hranjec, M.; Karminski-Zamola, G. Exploring antiproliferative activity of heteroaromatic amides and their fused derivatives using 3D-QSAR, synthesis, and biological tests. Monatsh. Chem., 2015, 146(9), 1503-1517.
[http://dx.doi.org/10.1007/s00706-015-1478-8]
[15]
Abass, M. Substituted quinolinones, Part 10: Synthesis of angular tetracyclic thieno and thiopyrano[3,2-c]benzo[h]quinolinones under PTC conditions as novel enzymatic enhancers. Phosphorus Sulfur Silicon Relat. Elem., 2007, 182(4), 735-748.
[http://dx.doi.org/10.1080/10426500601047511]
[16]
Gouda, M.A.; Abu-Hashem, A.A.; Abdelgawad, A.A.M. Thieno[3,2-c] quinoline heterocyclic synthesis and reactivity Part (VI). Mini Rev. Org. Chem., 2022, 19(5), 629-653.
[http://dx.doi.org/10.2174/1570193X18666211004102537]
[17]
Abu‐Hashem, A.A.; Abdelgawad, A.A.M. Synthetic and reactions routes to tetrahydro-thieno[3,2-b] quinoline derivatives (Part IV). Mini Rev. Org. Chem., 2021, 18(00)
[http://dx.doi.org/10.2174/1570193X18666210218212719]
[18]
Salem, M.A.; Abu-Hashem, A.A.; Abdelgawad, A.A.M.; Gouda, M.A. Synthesis and reactivity of thieno[2,3‐ b]quinoline derivatives (Part II). J. Heterocycl. Chem., 2021, 58(9), 1705-1740.
[http://dx.doi.org/10.1002/jhet.4269]
[19]
Gouda, M.A.; Abu-Hashem, A.A.; Abdelgawad, A.A.M. Recent progress on the chemistry of thieno[3,2‐ b]quinoline derivatives (part III). J. Heterocycl. Chem., 2021, 58(4), 908-927.
[http://dx.doi.org/10.1002/jhet.4205]
[20]
Salem, M.A.; Gouda, M.A. Chemistry of 2-(Piperazin-1-yl) quinoline-3-Carbaldehydes. Mini Rev. Org. Chem., 2021, 18(00)
[http://dx.doi.org/10.2174/1570193X18666211001124510]
[21]
Franzen, H. On acylating amines. Ber. Dtsch. Chem. Ges., 1909, 42(2), 2465-2468.
[http://dx.doi.org/10.1002/cber.190904202146]
[22]
Kawahara, K.P.; Matsuoka, W.; Ito, H.; Itami, K. Synthesis of nitrogen‐containing polyaromatics by aza‐annulative π‐extension of unfunctionalized aromatics. Angew. Chem. Int. Ed., 2020, 59(16), 6383-6388.
[http://dx.doi.org/10.1002/anie.201913394] [PMID: 32011794]
[23]
Nakamura, Y.; Matsuo, Y.; Hisada, S.; Ahmed, F.; Huntley, R.; Sajjadi-Hashemi, Z.; Jenkins, D. M.; Kargbo, R.B.; Cui, W.; Gauuan, P. J. F. Preparation of thieno[2,3-c]quinoline derivatives as PKB inhibitors for treating cancer. WO 2011123419 A1, 2011.
[24]
Pirovano, G.; Roberts, S.; Reiner, T. TOPKi-NBD: A fluorescent small molecule for tumor imaging. Eur. J. Nucl. Med. Mol. Imaging, 2020, 47(4), 1003-1010.
[http://dx.doi.org/10.1007/s00259-019-04608-w] [PMID: 31734783]
[25]
Gao, L.H.; Zhang, J.Y.; Song, S.Z.; Cao, T.T.; Ge, G.P.; Li, Q.; Wei, W.T. Base-promoted domino radical cyclization of 1,6-enynes. Org. Biomol. Chem., 2019, 17(33), 7674-7678.
[http://dx.doi.org/10.1039/C9OB01550G] [PMID: 31384880]
[26]
Zhu, D.; Wu, Z.; Luo, B.; Du, Y.; Liu, P.; Chen, Y.; Hu, Y.; Huang, P.; Wen, S. Heterocyclic iodoniums for the assembly of oxygen-bridged polycyclic heteroarenes with water as the oxygen source. Org. Lett., 2018, 20(16), 4815-4818.
[http://dx.doi.org/10.1021/acs.orglett.8b01969]
[27]
Zhu, D.; Wu, Z.; Liang, L.; Sun, Y.; Luo, B.; Huang, P.; Wen, S. Heterocyclic iodoniums as versatile synthons to approach diversified polycyclic heteroarenes. RSC Advances, 2019, 9(57), 33170-33179.
[http://dx.doi.org/10.1039/C9RA07288H] [PMID: 35529157]
[28]
Zhao, C.L.; Han, Q.Y.; Zhang, C.P. TfOH-promoted transition-metal-free cascade trifluoroethylation/cyclization of organic isothiocyanates by Phenyl(2,2,2-trifluoroethyl)iodonium triflate. Org. Lett., 2018, 20(20), 6480-6484.
[http://dx.doi.org/10.1021/acs.orglett.8b02793] [PMID: 30265547]
[29]
Movassaghi, M.; Hill, M.D. A versatile cyclodehydration reaction for the synthesis of isoquinoline and β-carboline derivatives. Org. Lett., 2008, 10(16), 3485-3488.
[http://dx.doi.org/10.1021/ol801264u] [PMID: 18642832]
[30]
Zhao, C. L.; Shi, J.; Lu, X.; Wu, X.; Zhang, C. P. Metal-and additive-free cascade trifluoroethylation/cyclization of organic isoselenocyanates by phenyl (2, 2, 2-trifluoroethyl) iodonium triflate. J. Fluor. Chem., 2019, 226, 109360.
[31]
Akula, M.; Yogeeswari, P.; Sriram, D.; Jha, M.; Bhattacharya, A. Synthesis and anti-tubercular activity of fused thieno-/furo-quinoline compounds. RSC Advances, 2016, 6(52), 46073-46080.
[http://dx.doi.org/10.1039/C6RA03187K]
[32]
Flynn, A.R.; McDaniel, K.A.; Hughes, M.E.; Vogt, D.B.; Jui, N.T. Hydroarylation of arenes via reductive radical-polar crossover. J. Am. Chem. Soc., 2020, 142(20), 9163-9168.
[http://dx.doi.org/10.1021/jacs.0c03926] [PMID: 32379445]
[33]
Yamaoka, Y.; Yoshida, T.; Shinozaki, M.; Yamada, K.; Takasu, K. Development of a Brønsted acid-promoted arene-ynamide cyclization toward the total syntheses of marinoquinolines A and C and aplidiopsamine A. J. Org. Chem., 2015, 80(2), 957-964.
[http://dx.doi.org/10.1021/jo502467m] [PMID: 25541814]
[34]
Kuwata, Y.; Sonoda, M.; Tanimori, S. Facile synthesis of phenanthridinone alkaloids via suzuki-miyaura cross-coupling. J. Heterocycl. Chem., 2017, 54(2), 1645-1651.
[http://dx.doi.org/10.1002/jhet.2725]
[35]
Kennedy, J.W.; Hall, D.G. Self-activation and 1, 8-stereoinduction in a boronate-substituted dienophile. Synlett., 2002, 2002(3), 0477-0479.
[http://dx.doi.org/10.1055/s-2002-20470]
[36]
Cho, H.; Lee, J.O.; Hwang, S.; Seo, J.H.; Kim, S. Hendrickson-reagent-mediated conversion of N -Boc carbamates to isocyanates: Applications for the synthesis of 3,4-dihydroisoquinolin-1-ones and ureas. Asian J. Org. Chem., 2016, 5(2), 287-292.
[http://dx.doi.org/10.1002/ajoc.201500462]
[37]
Borah, A.; Gogoi, P. Cascade C-C and C-N bond formation: A straightforward synthesis of phenanthridines and fused quinolines. Eur. J. Org. Chem., 2016, 2016(12), 2200-2206.
[http://dx.doi.org/10.1002/ejoc.201600220]
[38]
Elbert, S.M.; Wagner, P.; Kanagasundaram, T.; Rominger, F.; Mastalerz, M. Boroquinol complexes with fused extended aromatic backbones: Synthesis and optical properties. Chemistry, 2017, 23(4), 935-945.
[http://dx.doi.org/10.1002/chem.201604421] [PMID: 27862420]
[39]
Chen, C.; Ling, L.; Luo, M.; Zeng, X. Chromium-catalyzed ligand-free amidation of esters with anilines. Bull. Chem. Soc. Jpn., 2021, 94(3), 762-766.
[http://dx.doi.org/10.1246/bcsj.20200277]
[40]
Kanaoka, Y.; Itoh, K. Synthesis of heterocyclic-condensed quinolones by oxidative photochemical cyclization of amide systems. Synthesis, 1972, 1972(1), 36-36.
[http://dx.doi.org/10.1055/s-1972-21823]
[41]
Yang, Y.; Hörnfeldt, A.B.; Gronowitz, S. The first synthesis of thieno[ c]isoquinolines and an improved synthesis of phenanthridine and thieno[ c]quinolines through pd(0) catalyzed coupling of ortho -formylarylboronic acids with functionalized aryl halides. J. Heterocycl. Chem., 1989, 26(3), 865-868.
[http://dx.doi.org/10.1002/jhet.5570260366]
[42]
Cho, G.Y.; Rémy, P.; Jansson, J.; Moessner, C.; Bolm, C. Copper-mediated cross-coupling reactions of N-unsubstituted sulfoximines and aryl halides. Org. Lett., 2004, 6(19), 3293-3296.
[http://dx.doi.org/10.1021/ol048806h] [PMID: 15355035]
[43]
Zhan, Z.; Zhang, M.; Jiang, P.; He, J.; Luo, N.; Wang, H.; Wang, M.; Huang, G. Selective synthesis of trisubstituted imidazoles by iodine‐catalyzed [3+2] cycloadditions. Asian J. Org. Chem., 2021, 10(7), 1801-1813.
[http://dx.doi.org/10.1002/ajoc.202100287]
[44]
Chen, X.; Huang, Z.; Xu, J. Catalyst‐free electrophilic ring expansion of N ‐unprotected aziridines with α ‐oxoketenes to efficient access 2‐alkylidene‐1,3‐oxazolidines. Adv. Synth. Catal., 2021, 363(12), 3098-3108.
[http://dx.doi.org/10.1002/adsc.202100320]
[45]
Zuo, Y.; He, X.; Ning, Y.; Wu, Y.; Shang, Y. Selective synthesis of aminoisoquinolines via Rh(III)-Catalyzed C–H/N–H bond functionalization of N-aryl amidines with cyclic 2-diazo-1,3-diketones. J. Org. Chem., 2018, 83(21), 13463-13472.
[46]
Nonnenmacher, M.; Busch, T. Process for the preparation of aminoaryl- and aminoheteroaryl boronic acids and esters. EP 2801577 A1, 2014.
[47]
Thompson, W.J.; Jones, J.H.; Lyle, P.A.; Thies, J.E. An efficient synthesis of arylpyrazines and bipyridines. J. Org. Chem., 1988, 53(9), 2052-2055.
[http://dx.doi.org/10.1021/jo00244a037]
[48]
Rodrigues, A.R.O.; Carvalho, M.S.D.; Cardoso, J.A.V.; Calhelha, R.C.; Queiroz, M.J.R.P.; Coutinho, P.J.G.; Castanheira, E.M.S. Benzothienoquinolines: New one-pot synthesis and fluorescence studies of their interaction with DNA and polynucleotides. J. Photochem. Photobiol. Chem., 2014, 294(15), 20-30.
[http://dx.doi.org/10.1016/j.jphotochem.2014.08.001]
[49]
Queiroz, M.J.R.P.; Castanheira, E.M.S.; Lopes, T.C.T.; Cruz, Y.K.; Kirsch, G. Synthesis of fluorescent tetracyclic lactams by a “one pot” three steps palladium-catalyzed borylation, Suzuki coupling (BSC) and lactamization. J. Photochem. Photobiol. Chem., 2007, 190(1), 45-52.
[http://dx.doi.org/10.1016/j.jphotochem.2007.03.011]
[50]
Liu, J.; Diwu, Z.; Leung, W.Y.; Lu, Y.; Patch, B.; Haugland, R.P. Rational design and synthesis of a novel class of highly fluorescent rhodamine dyes that have strong absorption at long wavelengths. Tetrahedron Lett., 2003, 44(23), 4355-4359.
[http://dx.doi.org/10.1016/S0040-4039(03)00938-9]
[51]
Pierre, F.; Chua, P.C.; O’Brien, S.E.; Siddiqui-Jain, A.; Bourbon, P.; Haddach, M.; Michaux, J.; Nagasawa, J.; Schwaebe, M.K.; Stefan, E.; Vialettes, A.; Whitten, J.P.; Chen, T.K.; Darjania, L.; Stansfield, R.; Anderes, K.; Bliesath, J.; Drygin, D.; Ho, C.; Omori, M.; Proffitt, C.; Streiner, N.; Trent, K.; Rice, W.G.; Ryckman, D.M. Discovery and SAR of 5-(3-chlorophenylamino)-benzo[c][2,6]naphthyridine-8-carboxylic acid (CX-4945), the first clinical stage inhibitor of protein kinase CK2 for the treatment of cancer. J. Med. Chem., 2011, 54(2), 635-654.
[http://dx.doi.org/10.1021/jm101251q] [PMID: 21174434]
[52]
Jacobs, R.T.; Folmer, J.J.; Simpson, T.R.; Chaudhari, B.; Frazee, W.J.; Davenport, T.W.; Sundarababu, G.U.S. U.S. patent 6,399,603B1, 2002.
[53]
Pierre, F.; Regan, C.F.; Chevrel, M.C.; Siddiqui-Jain, A.; Macalino, D.; Streiner, N.; Drygin, D.; Haddach, M.; O’Brien, S.E.; Rice, W.G.; Ryckman, D.M. Novel potent dual inhibitors of CK2 and Pim kinases with antiproliferative activity against cancer cells. Bioorg. Med. Chem. Lett., 2012, 22(9), 3327-3331.
[http://dx.doi.org/10.1016/j.bmcl.2012.02.099] [PMID: 22460033]
[54]
Battisti, U.M.; Carrozzo, M.M.; Cannazza, G.; Braghiroli, D.; Parenti, C.; Brasili, L.; Citti, C.; Troisi, L. Efficient synthesis of 5,6-dihydro-8H-[1,2,4]thiadiazino[6,5,4-de]phenanthridine 4,4-dioxide and 5,6-dihydro-8H-[1,2,4]-thiadiazino[6,5,4-ij]thieno[2,3-c]quinoline 4,4-dioxide. Tetrahedron Lett., 2012, 53(9), 1122-1125.
[http://dx.doi.org/10.1016/j.tetlet.2011.12.091]
[55]
Murugavel, S.; Sundramoorthy, S.; Subashini, R.; Pavan, P. Synthesis, characterization, pharmacological, molecular modeling and antimicrobial activity evaluation of novel isomer quinoline derivatives. Struct. Chem., 2018, 29(6), 1677-1695.
[http://dx.doi.org/10.1007/s11224-018-1149-6]
[56]
Ismail, M. Synthesis and cyclization reactions of 2-(6-methylquinolin-4-yl)malononitriles and ethyl 2-cyano-2-(6-methylquinolin-4-yl)acetates. J. Serb. Chem. Soc., 2006, 71(7), 721-732.
[http://dx.doi.org/10.2298/JSC0607721I]
[57]
Mohamed, E.H.A. ALi H. One-step synthesis of 4-hydroxycarbostyrils. 6. J. Chem. Soc. Pak., 1991, 13(3), 166-168.
[58]
Cai, G.; Yu, W.; Song, D.; Zhang, W.; Guo, J.; Zhu, J.; Ren, Y.; Kong, L. Discovery of fluorescent coumarin-benzo[b]thiophene 1, 1-dioxide conjugates as mitochondria-targeting antitumor STAT3 inhibitors. Eur. J. Med. Chem., 2019, 174, 236-251.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.024] [PMID: 31048139]
[59]
Bhatti, H.S.; Seshadri, S. Facile one-pot synthesis of fluorescent benzothieno[2,3:c]quinoline. Org. Prep. Proced. Int., 2004, 36(2), 170-173.
[http://dx.doi.org/10.1080/00304940409355391]
[60]
Deprets, S.; Kirsch, G. Synthesis of substituted 6- methylbenzohetero[2,3-c]quinolines and 5-methylbenzohetero[2,3- c]isoquinolines by palladium-catalyzed coupling. Available from: https://www.ch.ic.ac.uk/ectoc/echet98/pub/079/index.htm.
[61]
DoganKoruznjak, J.; Slade, N.; Zamola, B.; Pavelić, K.; Karminski-Zamola, G. Synthesis, photochemical synthesis and antitumor evaluation of novel derivatives of thieno[3′,2′:4,5]thieno[2,3-c]quinolones. Chem. Pharm. Bull., 2002, 50(5), 656-660.
[http://dx.doi.org/10.1248/cpb.50.656] [PMID: 12036023]
[62]
Luo, J.K.; Cabal, M.P.; Federspiel, R.F.; Castle, R.N. The synthesis of novel polycyclic heterocyclic ring systems via photocyclization. 23. Naphtho[2′,1′:4,5]thieno-[2,3- c]naphtho[2,1- f]quinoline. J. Heterocycl. Chem., 2001, 38(1), 137-140.
[http://dx.doi.org/10.1002/jhet.5570380119]
[63]
Katritzky, A.R.; Huang, T.B.; Voronkov, M.V.; Steel, P.J. Polycyclic heteroaromatics from reactions of acylbenzotriazoles with aryl isocyanates. J. Org. Chem., 2000, 65(23), 8069-8073.
[http://dx.doi.org/10.1021/jo0009604] [PMID: 11073620]
[64]
Luo, J.K.; Cabal, M.P.; Federspiel, R.F.; Castle, R.N. The synthesis of novel polycyclic heterocyclic ring systems via photocyclization. 22 Dibenzo[ f,h]benzothieno[2,3- c]quinoline, dibenzo[ f,h]benzothieno[2,3- c][1,2,4]triazolo[4,3- a]quinoline and dibenzo[ f,h]naphtho[2′,1′:4,5]thieno[2,3- c]quinoline. J. Heterocycl. Chem., 2000, 37(4), 997-1001.
[http://dx.doi.org/10.1002/jhet.5570370451]
[65]
Deprets, S.; Kirsch, G. New synthesis of substituted 6-methylbenzo[b]furo-, -thieno-, and -seleno[2,3-c]quinolines, and heterocyclic analogues. ARKIVOC, 2002, 2002(1), 40-48.
[http://dx.doi.org/10.3998/ark.5550190.0003.107]
[66]
Li, B.; Seth, K.; Niu, B.; Pan, L.; Yang, H.; Ge, H. Transient‐ligand‐enabled ortho‐arylation of five‐membered heterocycles: Facile access to mechanochromic materials. Angewandte Chemie, 2018, 130(13), 3459-3463.
[http://dx.doi.org/10.1002/ange.201713357]
[67]
Zhao, H.B.; Liu, Z.J.; Song, J.; Xu, H.C.; Reagent‐Free, C. Reagent‐free C−H/N−H cross‐coupling: Regioselective synthesis of N‐heteroaromatics from biaryl aldehydes and NH3. Angew. Chem. Int. Ed., 2017, 56(41), 12732-12735.
[http://dx.doi.org/10.1002/anie.201707192] [PMID: 28815829]
[68]
Portela-Cubillo, F.; Scott, J.S.; Walton, J.C. Microwave-assisted syntheses of N-heterocycles using alkenone-, alkynone- and aryl-carbonyl O-phenyl oximes: Formal synthesis of neocryptolepine. J. Org. Chem., 2008, 73(14), 5558-5565.
[http://dx.doi.org/10.1021/jo800847h] [PMID: 18549288]
[69]
Wang, Y.F.; Lonca, G.H.; Le Runigo, M.; Chiba, S. Synthesis of polyfluoroalkyl aza-polycyclic aromatic hydrocarbons enabled by addition of perfluoroalkyl radicals onto vinyl azides. Org. Lett., 2014, 16(16), 4272-4275.
[http://dx.doi.org/10.1021/ol501997n] [PMID: 25068945]
[70]
Tummatorn, J.; Krajangsri, S.; Norseeda, K.; Thongsornkleeb, C.; Ruchirawat, S. A new synthetic approach to 6-unsubstituted phenanthridine and phenanthridine-like compounds under mild and metal-free conditions. Org. Biomol. Chem., 2014, 12(28), 5077-5081.
[http://dx.doi.org/10.1039/c4ob00797b] [PMID: 24914621]
[71]
McBurney, R.T.; Slawin, A.M.Z.; Smart, L.A.; Yu, Y.; Walton, J.C. UV promoted phenanthridine syntheses from oxime carbonate derived iminyl radicals. Chem. Commun. (Camb.), 2011, 47(28), 7974-7976.
[http://dx.doi.org/10.1039/c1cc12720a] [PMID: 21677988]
[72]
Pellicciari, R.; Moroni, F. Preparation of thieno[2,3-c]isoquinolines as inhibitors of PARP. WO 2002036599 A1, 2002.
[73]
Gronowitz, S.; Hoernfeldt, A.B.; Yang, Y.H. Convenient syntheses of phenanthridine N-oxide and some thieno-fused analogs. Chem. Scr., 1986, 26(2), 383-286.
[74]
Gronowitz, S.; Timari, G. Some reactions of thieno-fused quinoline N -oxides. J. Heterocycl. Chem., 1990, 27(5), 1501-1504.
[http://dx.doi.org/10.1002/jhet.5570270559]
[75]
Tolkunov, S.V.; Khizhan, A.I.; Simonova, S.I.; emenov, N.S.; Lyashchuk, S.N. Condensed pyridine bases synthesis of some benzo[b]furo[2,3-c]-, benzo[b]- thieno[2,3-c]-, and benzo[b]selenopheno[2,3-c]-quinolines. Chem. Heterocycl. Compd., 1994, 30(3), 283-288.
[http://dx.doi.org/10.1007/BF01165692]
[76]
Tolkunov, S.V.; Kal’nitskii, M.N.; Khizhan, A.I.; Suikov, S.Y.; Zubritskii, M.Y.; Dulenko, V.I. Condensed pyridine bases. Reactions of 1-oxo-3,3,6-trimethyl-1,2,3,4-tetrahydrobenzo[b]furo-, benzo[b]thieno-, and indolo[2,3-c]quinolines with electrophilic reagents. Chem. Heterocycl. Compd., 1995, 31(8), 980-986.
[http://dx.doi.org/10.1007/BF01170326]
[77]
Kryuchkov, M.A.; Zubatyuk, R.I.; Perepichka, I.F.; Shishkin, O.V.; Tolkunov, S.V. A versatile synthesis of benzothieno-annelated 1,2-dihydropyridine and 1,2,3,4-tetrahydropyridine derivatives: the effect of the structure of benzothieno-annelated pyridinium salts on their reduction by sodium borohydride. Monatsh. Chem., 2010, 141(1), 35-43.
[http://dx.doi.org/10.1007/s00706-009-0222-7]
[78]
Shvartsberg, M. S.; Kolodina, E. A. Synthesis of 4-haloquinolines and their fused polycyclic derivatives. Mendeleev Commun., 2008, 2(18), 109-111.
[79]
Kolodina, E. A.; Lebedeva, N. I.; Shvartsberg, M. S. One-pot synthesis of 4-alkynyl-1-aza-9, 10-anthraquinones from 2-acylethynyl-3-amino-1, 4-naphthoquinones. Mendeleev Commun., 2012, 6(22), 332-333.
[http://dx.doi.org/10.1016/j.mencom.2012.11.019]
[80]
Fedenok, L.G.; Fedotov, K.Y.; Pritchina, E.A.; Polyakov, N.E. In situ generated reagent from sulfur for alkynylanthraquinone cyclization. The simple synthesis of angular thienoanthraquinones. Tetrahedron Lett., 2016, 57(11), 1273-1276.
[http://dx.doi.org/10.1016/j.tetlet.2016.02.025]
[81]
Karminski-Zamola, G.; Bajic, M. Synthesis of (5-Styryl-2-thienyl)-phenylacrylic acids. Heterocycles, 1985, 23(6), 1497-1501.
[http://dx.doi.org/10.3987/R-1985-06-1497]
[82]
Bajić, M.; Karminski-Zamola, G.M.; Blažević, N. Twofold photochemical dehydrocyclization reaction of substituted 2, 5-distyrylthiophenes and 2, 5-distyrylfurans. Croat. Chem. Acta., 1992, 65(4), 835-846.
[83]
Karminski-Zamola, G.; Pavlicic, D.; Bajic, M.; Blazevic, N. The synthesis of new heteropolycyclic quinolone by twofold photocyclization: Methoxycarbonylnaphtho[2”,1”: 2′,3′-b]thieno[4′,5′: 2,3]thieno[5,4-c]quinolin-6(5H)-one. Heterocycles, 1991, 32(12), 2323.
[http://dx.doi.org/10.3987/COM-91-5731]
[84]
Hür, E.; Arslan, A.; Hür, D. Synthesis and electrochemical polymerization of a novel 2-(thiophen-2-yl)-4-(thiophen-2-ylmethylene)oxazol-5(4H)-one monomer for supercapacitor applications. React. Funct. Polym., 2016, 99, 35-41.
[85]
Li, R.; Zhou, Y.; Xu, X.; Dong, G. Direct vicinal difunctionalization of thiophenes enabled by the palladium/norbornene cooperative catalysis. J. Am. Chem. Soc., 2019, 141(48), 18958-18963.
[http://dx.doi.org/10.1021/jacs.9b10857] [PMID: 31744291]
[86]
Norseeda, K.; Chaisan, N.; Thongsornkleeb, C.; Tummatorn, J.; Ruchirawat, S. Metal-free synthesis of 4-chloroisocoumarins by TMSCl-catalyzed NCS-induced chlorinative annulation of 2-alkynylaryloate esters. J. Org. Chem., 2019, 84(24), 16222-16236.
[http://dx.doi.org/10.1021/acs.joc.9b02793] [PMID: 31742402]
[87]
Goerlitzer, K.; Gabriel, B.; Frohberg, P.; Wobst, I.; Drutkowski, G.; Wiesner, J.; Jomaa, H. Thieno[2,3-c]quinolines - synthesis and biological investigation. ChemInform, 2004, 35(39), 439-442.
[http://dx.doi.org/10.1002/chin.200439130] [PMID: 15248457]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy