Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Mini-Review Article

Current Advances in Wound Healing and Regenerative Medicine

Author(s): Nesa Fani, Maryam Moradi, Roxana Zavari, Farzad Parvizpour, Adele Soltani, Zohreh Arabpour* and Arefeh Jafarian*

Volume 19, Issue 3, 2024

Published on: 11 May, 2023

Page: [277 - 291] Pages: 15

DOI: 10.2174/1574888X18666230301140659

Price: $65

Open Access Journals Promotions 2
Abstract

Treating chronic wounds is a common and costly challenge worldwide. More advanced treatments are needed to improve wound healing and prevent severe complications such as infection and amputation. Like other medical fields, there have been advances in new technologies promoting wound healing potential.

Regenerative medicine as a new method has aroused hope in treating chronic wounds. The technology improving wound healing includes using customizable matrices based on synthetic and natural polymers, different types of autologous and allogeneic cells at different differentiation phases, small molecules, peptides, and proteins as a growth factor, RNA interference, and gene therapy. In the last decade, various types of wound dressings have been designed. Emerging dressings include a variety of interactive/ bioactive dressings and tissue-engineering skin options. However, there is still no suitable and effective dressing to treat all chronic wounds.

This article reviews different wounds and common treatments, advanced technologies and wound dressings, the advanced wound care market, and some interactive/bioactive wound dressings in the market.

Keywords: Chronic wounds, natural polymers, peptides, cytokines, RNA interference, gene therapy.

Next »
Graphical Abstract
[1]
Bhardwaj N, Chouhan D, Mandal BB. Tissue engineered skin and wound healing: Current strategies and future directions. Curr Pharm Des 2017; 23(24): 3455-82.
[PMID: 28552069]
[2]
Dhivya S, Padma VV, Santhini E. Wound dressings – a review. Biomedicine (Taipei) 2015; 5(4): 22.
[http://dx.doi.org/10.7603/s40681-015-0022-9] [PMID: 26615539]
[3]
Rajendran S, Anand S. Hi-tech textiles for interactive wound therapies Handbook of medical textiles. Elsevier 2011; pp. 38-79.
[4]
Huang YZ, Gou M, Da LC, Zhang WQ, Xie HQ. Mesenchymal stem cells for chronic wound healing: Current status of preclinical and clinical studies. Tissue Eng Part B Rev 2020; 26(6): 555-70.
[http://dx.doi.org/10.1089/ten.teb.2019.0351] [PMID: 32242479]
[5]
Ko SH, Nauta A, Wong V, Glotzbach J, Gurtner GC, Longaker MT. The role of stem cells in cutaneous wound healing: what do we really know. Plast Reconstr Surg 2011; 127 (Suppl. 1): 10S-20S.
[http://dx.doi.org/10.1097/PRS.0b013e3181fbe2d8] [PMID: 21200267]
[6]
Dabiri G, Damstetter E, Phillips T. Choosing a wound dressing based on common wound characteristics Advances in wound care (New Rochelle). 2016; 5(1): 32-41.
[http://dx.doi.org/10.1089/wound.2014.0586] [PMID: 26858913]
[7]
Kathawala MH, Ng WL, Liu D, et al. Healing of chronic wounds: An update of recent developments and future possibilities. Tissue Eng Part B Rev 2019; 25(5): 429-44.
[http://dx.doi.org/10.1089/ten.teb.2019.0019] [PMID: 31068101]
[8]
Yoshikawa T, Mitsuno H, Nonaka I, et al. Wound therapy by marrow mesenchymal cell transplantation. Plast Reconstr Surg 2008; 121(3): 860-77.
[http://dx.doi.org/10.1097/01.prs.0000299922.96006.24] [PMID: 18317135]
[9]
Shenoy VN, Foster E, Aalami L, Majeed B, Aalami O, Eds. Deepwound: Automated postoperative wound assessment and surgical site surveillance through convolutional neural networks. 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). 2018 Dec 03-06; Madrid, Spain IEEE 2019..
[http://dx.doi.org/10.1109/BIBM.2018.8621130]
[10]
Wackenfors A, Sjögren J, Gustafsson R, Algotsson L, Ingemansson R, Malmsjö M. Effects of vacuum-assisted closure therapy on inguinal wound edge microvascular blood flow. Wound Repair Regen 2004; 12(6): 600-6.
[http://dx.doi.org/10.1111/j.1067-1927.2004.12602.x] [PMID: 15555050]
[11]
Gupta A. Classification of Wounds and the Physiology of Wound Healing Wound Healing Research. Springer 2021; pp. 3-53.
[12]
Abazari M, Ghaffari A, Rashidzadeh H, Badeleh SM, Maleki Y. A Systematic Review on Classification, Identification, and Healing Process of Burn Wound Healing. The International Journal of Low Extremity Wounds 2022; 21(1): 18-30.
[13]
Onyekwelu I, Yakkanti R, Protzer L, Pinkston CM, Tucker C, Seligson D. Surgical wound classification and surgical site infections in the orthopaedic patient. J Am Acad Orthop Surg Glob Res Rev 2017; 1(3): e022.
[http://dx.doi.org/10.5435/JAAOSGlobal-D-17-00022] [PMID: 30211353]
[14]
Childs DR, Murthy AS. Overview of wound healing and management. Surg Clin North Am 2017; 97(1): 189-207.
[http://dx.doi.org/10.1016/j.suc.2016.08.013] [PMID: 27894427]
[15]
Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound healing: A cellular perspective. Physiol Rev 2019; 99(1): 665-706.
[http://dx.doi.org/10.1152/physrev.00067.2017] [PMID: 30475656]
[16]
Cooke JP. Inflammation and its role in regeneration and repair: A caution for novel anti-inflammatory therapies. Circ Res 2019; 124(8): 1166-8.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.314669] [PMID: 30973815]
[17]
Gantwerker EA, Hom DB. Skin: Histology and physiology of wound healing. Clin Plast Surg 2012; 39(1): 85-97.
[http://dx.doi.org/10.1016/j.cps.2011.09.005] [PMID: 22099852]
[18]
Kangal MKO, Regan J-P. Wound Healing. Treasure Island StatPearls Publishing 2022.
[19]
Han G, Ceilley R. Chronic wound healing: A review of current management and treatments. Adv Ther 2017; 34(3): 599-610.
[http://dx.doi.org/10.1007/s12325-017-0478-y] [PMID: 28108895]
[20]
Darwin E, Tomic-Canic M. Healing chronic wounds: Current challenges and potential solutions. Curr Dermatol Rep 2018; 7(4): 296-302.
[http://dx.doi.org/10.1007/s13671-018-0239-4] [PMID: 31223516]
[21]
Annesley SH. Current thinking on caring for patients with a wound: A practical approach. Br J Nurs 2019; 28(5): 290-4.
[http://dx.doi.org/10.12968/bjon.2019.28.5.290] [PMID: 30907641]
[22]
Lindholm C, Searle R. Wound management for the 21st century: Combining effectiveness and efficiency. Int Wound J 2016; 13 (Suppl. 2): 5-15.
[http://dx.doi.org/10.1111/iwj.12623] [PMID: 27460943]
[23]
Bural C, Güven M, Kayacıoğlu B, Ak G, Bayraktar G, Bilhan H. Effect of over-the-counter topical agents on denture-induced traumatic lesions: A clinical study. Int J Prosthodont 2018; 31(5): 481-4.
[http://dx.doi.org/10.11607/ijp.5803] [PMID: 30180236]
[24]
Fonder MA, Lazarus GS, Cowan DA, Aronson-Cook B, Kohli AR, Mamelak AJ. Treating the chronic wound: A practical approach to the care of nonhealing wounds and wound care dressings. J Am Acad Dermatol 2008; 58(2): 185-206.
[http://dx.doi.org/10.1016/j.jaad.2007.08.048] [PMID: 18222318]
[25]
Mori HM, Kawanami H, Kawahata H, Aoki M. Wound healing potential of lavender oil by acceleration of granulation and wound contraction through induction of TGF-β in a rat model. BMC Complement Altern Med 2016; 16(1): 144.
[http://dx.doi.org/10.1186/s12906-016-1128-7] [PMID: 27229681]
[26]
Powers JG, Higham C, Broussard K, Phillips TJ. Wound healing and treating wounds. J Am Acad Dermatol 2016; 74(4): 607-25.
[http://dx.doi.org/10.1016/j.jaad.2015.08.070] [PMID: 26979353]
[27]
Balsa IM, Culp WTN. Wound Care. Vet Clin North Am Small Anim Pract 2015; 45(5): 1049-65.
[http://dx.doi.org/10.1016/j.cvsm.2015.04.009] [PMID: 26022525]
[28]
Gabriel A, Kim PJ. Introduction to soft-tissue wound management: Current applications of negative-pressure wound therapy with instillation. Plastic and reconstructive surgery 147(1S-1): 5S-7S.2021;
[29]
Gurtner GC, Chapman MA. Regenerative medicine: Charting a new course in wound healing. Adv Wound Care 2016; 5(7): 314-28.
[http://dx.doi.org/10.1089/wound.2015.0663] [PMID: 27366592]
[30]
Bielefeld KA, Amini-Nik S, Alman BA. Cutaneous wound healing: Recruiting developmental pathways for regeneration. Cell Mol Life Sci 2013; 70(12): 2059-81.
[http://dx.doi.org/10.1007/s00018-012-1152-9] [PMID: 23052205]
[31]
Martin P. Wound healing--aiming for perfect skin regeneration. Science 1997; 276(5309): 75-81.
[http://dx.doi.org/10.1126/science.276.5309.75] [PMID: 9082989]
[32]
Mutschler W. Physiology and pathophysiology of wound healing of wound defects. Unfallchirurg 2012; 115(9): 767-73.
[http://dx.doi.org/10.1007/s00113-012-2208-x] [PMID: 22935894]
[33]
Fathi A, Khanmohammadi M, Goodarzi A, et al. Fabrication of chitosan-polyvinyl alcohol and silk electrospun fiber seeded with differentiated keratinocyte for skin tissue regeneration in animal wound model. J Biol Eng 2020; 14(1): 27.
[http://dx.doi.org/10.1186/s13036-020-00249-y] [PMID: 33292469]
[34]
Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev 2003; 83(3): 835-70.
[http://dx.doi.org/10.1152/physrev.2003.83.3.835] [PMID: 12843410]
[35]
Park J, Hwang S, Yoon IS. Advanced growth factor delivery systems in wound management and skin regeneration. Molecules 2017; 22(8): 1259.
[http://dx.doi.org/10.3390/molecules22081259] [PMID: 28749427]
[36]
Sharma P, Kumar A, Dey AD, Behl T, Chadha S. Stem cells and growth factors-based delivery approaches for chronic wound repair and regeneration: A promise to heal from within. Life Sci 2021; 268: 118932.
[http://dx.doi.org/10.1016/j.lfs.2020.118932] [PMID: 33400933]
[37]
Moulin V. Growth factors in skin wound healing. Eur J Cell Biol 1995; 68(1): 1-7.
[PMID: 8549585]
[38]
Grazul-Bilska AT, Johnson ML, Bilski JJ, et al. Wound healing: The role of growth factors. Med Actual 2003; 39(10): 787-800.
[http://dx.doi.org/10.1358/dot.2003.39.10.799472] [PMID: 14668934]
[39]
Peng Y, Wu S, Tang Q, Li S, Peng C. KGF-1 accelerates wound contraction through the TGF-β1/Smad signaling pathway in a double-paracrine manner. J Biol Chem 2019; 294(21): 8361-70.
[http://dx.doi.org/10.1074/jbc.RA118.006189] [PMID: 30894415]
[40]
Qu Y, Cao C, Wu Q, et al. The dual delivery of KGF and bFGF by collagen membrane to promote skin wound healing. J Tissue Eng Regen Med 2018; 12(6): 1508-18.
[http://dx.doi.org/10.1002/term.2691] [PMID: 29706001]
[41]
Yang HS, Shin J, Bhang SH, et al. Enhanced skin wound healing by a sustained release of growth factors contained in platelet-rich plasma. Exp Mol Med 2011; 43(11): 622-9.
[http://dx.doi.org/10.3858/emm.2011.43.11.070] [PMID: 21847007]
[42]
Whittam AJ, Maan ZN, Duscher D, et al. Challenges and opportunities in drug delivery for wound healing. Adv Wound Care (New Rochelle) 2016; 5(2): 79-88.
[http://dx.doi.org/10.1089/wound.2014.0600] [PMID: 26862465]
[43]
Kim SJ, Kim SY, Kwon CH, Kim YK. Differential effect of FGF and PDGF on cell proliferation and migration in osteoblastic cells. Growth Factors 2007; 25(2): 77-86.
[http://dx.doi.org/10.1080/08977190701398977] [PMID: 17852407]
[44]
Galeano M, Deodato B, Altavilla D, et al. Adeno-associated viral vector-mediated human vascular endothelial growth factor gene transfer stimulates angiogenesis and wound healing in the genetically diabetic mouse. Diabetologia 2003; 46(4): 546-55.
[http://dx.doi.org/10.1007/s00125-003-1064-1] [PMID: 12677400]
[45]
Stuard WL, Titone R, Robertson DM. The IGF/insulin-IGFBP axis in corneal development, wound healing, and disease. Front Endocrinol (Lausanne) 2020; 11: 24.
[http://dx.doi.org/10.3389/fendo.2020.00024] [PMID: 32194500]
[46]
Hom DB, Maisel RH. Angiogenic growth factors: Their effects and potential in soft tissue wound healing. Ann Otol Rhinol Laryngol 1992; 101(4): 349-54.
[http://dx.doi.org/10.1177/000348949210100411] [PMID: 1562141]
[47]
Lee EY, Chung CH, Khoury CC, et al. The monocyte chemoattractant protein-1/CCR2 loop, inducible by TGF-β, increases podocyte motility and albumin permeability. Am J Physiol Renal Physiol 2009; 297(1): F85-94.
[http://dx.doi.org/10.1152/ajprenal.90642.2008] [PMID: 19420107]
[48]
Erba P, Ogawa R, Ackermann M, et al. Angiogenesis in wounds treated by microdeformational wound therapy. Ann Surg 2011; 253(2): 402-9.
[http://dx.doi.org/10.1097/SLA.0b013e31820563a8] [PMID: 21217515]
[49]
Meng Z, Zhou D, Gao Y, Zeng M, Wang W. miRNA delivery for skin wound healing. Adv Drug Deliv Rev 2018; 129: 308-18.
[http://dx.doi.org/10.1016/j.addr.2017.12.011] [PMID: 29273517]
[50]
Wang SY, Kim H, Kwak G, et al. Development of microRNA-21 mimic nanocarriers for the treatment of cutaneous wounds. Theranostics 2020; 10(7): 3240-53.
[http://dx.doi.org/10.7150/thno.39870] [PMID: 32194865]
[51]
Li X, Li D, Wang A, et al. MicroRNA-132 with therapeutic potential in chronic wounds. J Invest Dermatol 2017; 137(12): 2630-8.
[http://dx.doi.org/10.1016/j.jid.2017.08.003] [PMID: 28807666]
[52]
Yu-Wai-Man C, Khaw PT. Developing novel anti-fibrotic therapeutics to modulate post-surgical wound healing in glaucoma: Big potential for small molecules. Expert Rev Ophthalmol 2015; 10(1): 65-76.
[http://dx.doi.org/10.1586/17469899.2015.983475] [PMID: 25983855]
[53]
Mulholland EJ, Dunne N, McCarthy HO. MicroRNA as therapeutic targets for chronic wound healing. Mol Ther Nucleic Acids 2017; 8: 46-55.
[http://dx.doi.org/10.1016/j.omtn.2017.06.003] [PMID: 28918046]
[54]
Zeng R, Lin C, Lin Z, et al. Approaches to cutaneous wound healing: Basics and future directions. Cell Tissue Res 2018; 374(2): 217-32.
[http://dx.doi.org/10.1007/s00441-018-2830-1] [PMID: 29637308]
[55]
Wang W, Yang C, Wang X, et al. MicroRNA-129 and-335 promote diabetic wound healing by inhibiting Sp1-mediated MMP-9 expression. Diabetes 2018; 67(8): 1627-38.
[http://dx.doi.org/10.2337/db17-1238] [PMID: 29748291]
[56]
Branski LK, Pereira CT, Herndon DN, Jeschke MG. Gene therapy in wound healing: Present status and future directions. Gene Ther 2007; 14(1): 1-10.
[http://dx.doi.org/10.1038/sj.gt.3302837] [PMID: 16929353]
[57]
Eming SA, Krieg T, Davidson JM. RETRACTED: Gene therapy and wound healing. Clin Dermatol 2007; 25(1): 79-92.
[http://dx.doi.org/10.1016/j.clindermatol.2006.09.011] [PMID: 17276205]
[58]
Chen D, Hou Q, Zhong L, Zhao Y, Li M, Fu X. Bioactive molecules for skin repair and regeneration: Progress and perspectives. Stem Cells Int 2019; •••: 6789823.
[http://dx.doi.org/10.1155/2019/6789823]
[59]
Baltazar T, Merola J, Catarino C, et al. Three dimensional bioprinting of a vascularized and perfusable skin graft using human keratinocytes, fibroblasts, pericytes, and endothelial cells. Tissue Eng Part A 2020; 26(5-6): 227-38.
[http://dx.doi.org/10.1089/ten.tea.2019.0201] [PMID: 31672103]
[60]
Morikawa S, Ezaki T. Phenotypic changes and possible angiogenic roles of pericytes during wound healing in the mouse skin. Histol Histopathol 2011; 26(8): 979-95.
[PMID: 21692031]
[61]
Yang F, Qin X, Zhang T, Lin H, Zhang C. Evaluation of small molecular polypeptides from the mantle of pinctada martensii on promoting skin wound healing in mice. Molecules 2019; 24(23): 4231.
[http://dx.doi.org/10.3390/molecules24234231] [PMID: 31766365]
[62]
Kim HS, Sun X, Lee JH, Kim HW, Fu X, Leong KW. Advanced drug delivery systems and artificial skin grafts for skin wound healing. Adv Drug Deliv Rev 2019; 146: 209-39.
[http://dx.doi.org/10.1016/j.addr.2018.12.014] [PMID: 30605737]
[63]
Flood PM, Philipps C, Taupier MA, Schreiber H. Regulation of myeloma growth in vitro by idiotype-specific T lymphocytes. J Immunol 1980; 124(1): 424-30.
[http://dx.doi.org/10.4049/jimmunol.124.1.424] [PMID: 6965296]
[64]
Wan Y. Bone marrow mesenchymal stem cells: Fat on and blast off by FGF21. Int J Biochem Cell Biol 2013; 45(3): 546-9.
[http://dx.doi.org/10.1016/j.biocel.2012.12.014] [PMID: 23270727]
[65]
Nasef A, Ashammakhi N, Fouillard L. Immunomodulatory effect of mesenchymal stromal cells: Possible mechanisms. Reg Med 2008; 3(4)
[http://dx.doi.org/10.2217/17460751.3.4.531]
[66]
Foubert P, Zafra D, Liu M, et al. Autologous adipose-derived regenerative cell therapy modulates development of hypertrophic scarring in a red Duroc porcine model. Stem Cell Res Ther 2017; 8(1): 261.
[http://dx.doi.org/10.1186/s13287-017-0704-1] [PMID: 29141687]
[67]
Jang MJ, Kim HS, Lee HG, et al. Placenta-derived mesenchymal stem cells have an immunomodulatory effect that can control acute graft-versus-host disease in mice. Acta Haematol 2013; 129(4): 197-206.
[http://dx.doi.org/10.1159/000345267] [PMID: 23257958]
[68]
Jitschin R, Mougiakakos D, Von Bahr L, et al. Alterations in the cellular immune compartment of patients treated with third-party mesenchymal stromal cells following allogeneic hematopoietic stem cell transplantation. Stem Cells 2013; 31(8): 1715-25.
[http://dx.doi.org/10.1002/stem.1386] [PMID: 23554294]
[69]
Lü MH, Hu CJ, Chen L, et al. miR-27b represses migration of mouse MSCs to burned margins and prolongs wound repair through silencing SDF-1a. PLoS One 2013; 8(7): e68972.
[http://dx.doi.org/10.1371/journal.pone.0068972] [PMID: 23894385]
[70]
Whelan D, Caplice NM, Clover AJP. Allogeneic MSC persistence may not be necessary for a beneficial effect in burn wound healing. Burns 2017; 43(1): 247-8.
[http://dx.doi.org/10.1016/j.burns.2015.08.021] [PMID: 26611503]
[71]
Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131(5): 861-72.
[72]
Liu Y, Panayi AC, Bayer LR, Orgill DP. Current available cellular and tissue-based products for treatment of skin defects. Adv Skin Wound Care 2019; 32(1): 19-25.
[http://dx.doi.org/10.1097/01.ASW.0000547412.54135.b7] [PMID: 30570555]
[73]
Banani MA, Rahmatullah M, Farhan N, et al. Adipose tissue-derived mesenchymal stem cells for breast tissue regeneration. Regen Med 2021; 16(1): 47-70.
[http://dx.doi.org/10.2217/rme-2020-0045] [PMID: 33533667]
[74]
Arabpour Z, Youseffi M, Soon CF, Sultana N, Bazgeir MR, Masoud M, et al. Designing biomaterials for regenerative medicine: State-of-the-art and future perspectives. In: Tissue Engineering Strategies for Organ Regeneration. (1st ed.). Boca Raton, Florida : CRC Press 2020; pp. 1-9.
[75]
Chen LJ, Wang M. Production and evaluation of biodegradable composites based on PHB–PHV copolymer. Biomaterials 2002; 23(13): 2631-9.
[http://dx.doi.org/10.1016/S0142-9612(01)00394-5] [PMID: 12059012]
[76]
Peltola SM, Melchels FPW, Grijpma DW, Kellomäki M. A review of rapid prototyping techniques for tissue engineering purposes. Ann Med 2008; 40(4): 268-80.
[http://dx.doi.org/10.1080/07853890701881788] [PMID: 18428020]
[77]
Arabpour Z, Baradaran-Rafii A, Bakhshaiesh NL, et al. Design and characterization of biodegradable multi layered electrospun nanofibers for corneal tissue engineering applications. J Biomed Mater Res A 2019; 107(10): 2340-9.
[http://dx.doi.org/10.1002/jbm.a.36742] [PMID: 31161710]
[78]
Chaudhari A, Vig K, Baganizi D, et al. Future prospects for scaffolding methods and biomaterials in skin tissue engineering: A review. Int J Mol Sci 2016; 17(12): 1974.
[http://dx.doi.org/10.3390/ijms17121974] [PMID: 27898014]
[79]
Zhang X, Gong C, Akakuru OU, Su Z, Wu A, Wei G. The design and biomedical applications of self-assembled two-dimensional organic biomaterials. Chem Soc Rev 2019; 48(23): 5564-95.
[http://dx.doi.org/10.1039/C8CS01003J] [PMID: 31670726]
[80]
Elamparithi A, Punnoose AM, Kuruvilla S. Electrospun type 1 collagen matrices preserving native ultrastructure using benign binary solvent for cardiac tissue engineering. Artif Cells Nanomed Biotechnol 2016; 44(5): 1318-25.
[http://dx.doi.org/10.3109/21691401.2015.1029629] [PMID: 25960178]
[81]
Gautam S, Chou CF, Dinda AK, Potdar PD, Mishra NC. Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering. Mater Sci Eng C 2014; 34: 402-9.
[http://dx.doi.org/10.1016/j.msec.2013.09.043] [PMID: 24268275]
[82]
Cieslik-Bielecka A, Dohan Ehrenfest DM, Lubkowska A, Bielecki T. Microbicidal properties of Leukocyte- and Platelet-Rich Plasma/Fibrin (L-PRP/L-PRF): New perspectives. J Biol Regul Homeost Agents 2012; 26(2) (Suppl. 1): 43S-52S.
[PMID: 23648198]
[83]
Bacakova M, Pajorova J, Broz A, et al. A two-layer skin construct consisting of a collagen hydrogel reinforced by a fibrin-coated polylactide nanofibrous membrane. Int J Nanomedicine 2019; 14: 5033-50.
[http://dx.doi.org/10.2147/IJN.S200782] [PMID: 31371945]
[84]
Ohto-Fujita E, Konno T, Shimizu M, et al. Hydrolyzed eggshell membrane immobilized on phosphorylcholine polymer supplies extracellular matrix environment for human dermal fibroblasts. Cell Tissue Res 2011; 345(1): 177-90.
[http://dx.doi.org/10.1007/s00441-011-1172-z] [PMID: 21597915]
[85]
Nhi TT, Khon HC, Hoai NTT, et al. Fabrication of electrospun polycaprolactone coated withchitosan-silver nanoparticles membranes for wound dressing applications. J Mater Sci Mater Med 2016; 27(10): 156.
[http://dx.doi.org/10.1007/s10856-016-5768-4] [PMID: 27620739]
[86]
Moniri M, Boroumand Moghaddam A, Azizi S, et al. In vitro molecular study of wound healing using biosynthesized bacteria nanocellulose/silver nanocomposite assisted by bioinformatics databases. Int J Nanomedicine 2018; 13: 5097-112.
[http://dx.doi.org/10.2147/IJN.S164573] [PMID: 30254435]
[87]
Zorlutuna P, Annabi N, Camci-Unal G, et al. Microfabricated biomaterials for engineering 3D tissues. Adv Mater 2012; 24(14): 1782-804.
[http://dx.doi.org/10.1002/adma.201104631] [PMID: 22410857]
[88]
Robu A, Mironov V, Neagu A. Using sacrificial cell spheroids for the bioprinting of perfusable 3D tissue and organ constructs: a computational study. Comput Math Methods Med 2019; 7853586.
[89]
Guillemot F, Mironov V, Nakamura M. Bioprinting is coming of age: Report from the International Conference on Bioprinting and Biofabrication in Bordeaux (3B’09). Biofabrication 2010; 2(1): 010201.
[http://dx.doi.org/10.1088/1758-5082/2/1/010201] [PMID: 20811115]
[90]
Boateng J, Catanzano O. Advanced therapeutic dressings for effective wound healing—a review. J Pharm Sci 2015; 104(11): 3653-80.
[http://dx.doi.org/10.1002/jps.24610] [PMID: 26308473]
[91]
Sabetkish S, Kajbafzadeh AM, Sabetkish N, et al. Whole-organ tissue engineering: Decellularization and recellularization of three-dimensional matrix liver scaffolds. J Biomed Mater Res A 2015; 103(4): 1498-508.
[http://dx.doi.org/10.1002/jbm.a.35291] [PMID: 25045886]
[92]
Bredenkamp N, Ulyanchenko S, O’Neill KE, Manley NR, Vaidya HJ, Blackburn CC. An organized and functional thymus generated from FOXN1-reprogrammed fibroblasts. Nat Cell Biol 2014; 16(9): 902-8.
[http://dx.doi.org/10.1038/ncb3023] [PMID: 25150981]
[93]
Al-Sarawi S, Anbar M, Abdullah R, Al Hawari AB. Internet of Things market analysis forecasts Fourth World Conference onSmart Trends in Systems, Security and Sustainability (WorldS4). : July 27-28.London UK. IEEE 2020
[94]
Jackson JC, Prassanna J, Quadir MA, Sivakumar V. Stock market analysis and prediction using time series analysis. Mater Today Proc 2021.
[95]
Koehler J, Brandl FP, Goepferich AM. Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. Eur Polym J 2018; 100: 1-11.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.12.046]
[96]
Cleetus CM, Alvarez Primo F, Fregoso G, et al. Alginate hydrogels with embedded ZnO nanoparticles for wound healing therapy. Int J Nanomedicine 2020; 15: 5097-111.
[http://dx.doi.org/10.2147/IJN.S255937] [PMID: 32764939]
[97]
Alam M. Incidence and Longitudinal Changes in the Prevalence of Diabetes among Rural Residents of Saskatchewan. Canada University of Saskatchewan 2020.
[98]
Rastogi A, Goyal G, Kesavan R, et al. Long term outcomes after incident diabetic foot ulcer: Multicenter large cohort prospective study (EDI-FOCUS investigators) epidemiology of diabetic foot complications study. Diabetes Res Clin Pract 2020; 162: 108113.
[http://dx.doi.org/10.1016/j.diabres.2020.108113] [PMID: 32165163]
[99]
Lewis J, Lipp A. Pressure‐relieving interventions for treating diabetic foot ulcers. Cochrane Database Syst Rev 2013; (1): CD002302.
[http://dx.doi.org/10.1002/14651858.CD002302.pub2]
[100]
LongakerMichael T. YangGeorge P. Review of the current management of pressure ulcers. Adv Wound Care 2018; 7(2): 57-67.
[101]
Sami DG, Abdellatif A. Histological and clinical evaluation of wound healing in pressure ulcers: A novel animal model. J Wound Care 2020; 29(11): 632-41.
[http://dx.doi.org/10.12968/jowc.2020.29.11.632] [PMID: 33175620]
[102]
Pacella RE, Tulleners R, Cheng Q, et al. Solutions to the chronic wounds problem in Australia: A call to action. J Australian Wound Manage Associat 2018; 26(2): 84-98.
[103]
Cascone S, Lamberti G. Hydrogel-based commercial products for biomedical applications: A review. Int J Pharm 2020; 573: 118803.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118803] [PMID: 31682963]
[104]
Akalin C, Kuru S, Barlas AM, et al. Beneficial effects of Ankaferd Blood Stopper on dermal wound healing: An experimental study. Int Wound J 2014; 11(1): 64-8.
[http://dx.doi.org/10.1111/j.1742-481X.2012.01063.x] [PMID: 22943603]
[105]
Madaghiele M, Demitri C, Sannino A, Ambrosio L. Polymeric hydrogels for burn wound care: Advanced skin wound dressings and regenerative templates. Burns Trauma 2014; 2(4): 2321-3868.
[106]
Amirrah N, Razip M, Wee MF. Antibacterial-integrated collagen wound dressing for diabetes-related foot ulcers: An evidence-based review of clinical studies. Polymers 2020; 12(9): 2168.
[http://dx.doi.org/10.3390/polym12092168] [PMID: 32972012]
[107]
Varela P, Marlinghaus L, Sartori S, Viebahn R, Salber J, Ciardelli G. Response of human macrophages to clinically applied wound dressings loaded with silver. Front Bioeng Biotechnol 2020; 8: 124.
[http://dx.doi.org/10.3389/fbioe.2020.00124] [PMID: 32158748]
[108]
Law AL, Krebs B, Karnik B, Griffin L. Comparison of healthcare costs associated with patients receiving traditional negative pressure wound therapies in the post-acute setting. Cureus 2020; 12(11): e11790.
[http://dx.doi.org/10.7759/cureus.11790] [PMID: 33409037]
[109]
Sen CK. Human wound and its burden: updated 2020 compendium of estimates. Adv Wound Care 2021; 10(5): 281-92.
[110]
Hart CE, Loewen-Rodriguez A, Lessem J. Dermagraft: use in the treatment of chronic wounds. Adv Wound Care (New Rochelle) 2012; 1(3): 138-41.
[http://dx.doi.org/10.1089/wound.2011.0282] [PMID: 24527294]
[111]
Garoufalis MG. The Importance of Wound Care Researchers and Manufactures Working with Medical Associations When Bringing New Products to the Marketplace. Adv Wound Care 2018; 7(11): 363-6.
[http://dx.doi.org/10.1089/wound.2018.0815]
[112]
Xiao Y, Ahadian S, Radisic M. Biochemical and biophysical cues in matrix design for chronic and diabetic wound treatment. Tissue Eng Part B Rev 2017; 23(1): 9-26.
[http://dx.doi.org/10.1089/ten.teb.2016.0200] [PMID: 27405960]
[113]
Stadelmann WK, Digenis AG, Tobin GR. Impediments to wound healing. Am J Surg 1998; 176(2): 39S-47S.
[http://dx.doi.org/10.1016/S0002-9610(98)00184-6] [PMID: 9777971]
[114]
Sen CK, Gordillo GM, Roy S, et al. Human skin wounds: A major and snowballing threat to public health and the economy. Wound Repair Regen 2009; 17(6): 763-71.
[http://dx.doi.org/10.1111/j.1524-475X.2009.00543.x] [PMID: 19903300]
[115]
Greer N, Foman NA, MacDonald R, et al. Advanced wound care therapies for nonhealing diabetic, venous, and arterial ulcers: A systematic review. Ann Intern Med 2013; 159(8): 532-42.
[http://dx.doi.org/10.7326/0003-4819-159-8-201310150-00006] [PMID: 24126647]
[116]
Queen D. Impact of COVID ‐19 on the medical device companies who serve wound care. Int Wound J 2021; 18(3): 247-8.
[http://dx.doi.org/10.1111/iwj.13609] [PMID: 33973720]
[117]
Abdo J, Ortman H. Biologic and synthetic cellular and/or tissue-based products and smart wound dressings/coverings. Surg Clin North Am 2020; 100(4): 741-56.
[http://dx.doi.org/10.1016/j.suc.2020.05.006] [PMID: 32681874]
[118]
Tursi FJ, Donnelly JV, Seiler DR. An integrative approach to healing diabetic foot wounds. Podiatry Today 2019; 32(6)
[119]
Edmonds M. Apligraf in the treatment of neuropathic diabetic foot ulcers. Int J Low Extrem Wounds 2009; 8(1): 11-8.
[http://dx.doi.org/10.1177/1534734609331597] [PMID: 19189997]
[120]
Niknejad H, Peirovi H, Jorjani M, Ahmadiani A, Ghanavi J, Seifalian AM. Properties of the amniotic membrane for potential use in tissue engineering. Eur Cell Mater 2008; 7: 88-99.
[http://dx.doi.org/10.22203/eCM.v015a07] [PMID: 18446690]
[121]
Marston WA, Hanft J, Norwood P, Pollak R, Group DDFUS. The efficacy and safety of Dermagraft in improving the healing of chronic diabetic foot ulcers: Results of a prospective randomized trial. Diabetes Care 2003; 26(6): 1701-5.
[http://dx.doi.org/10.2337/diacare.26.6.1701] [PMID: 12766097]
[122]
Joshi CJ, Hassan A, Carabano M, Galiano RD. Up-to-date role of the dehydrated human amnion/chorion membrane (AMNIOFIX) for wound healing. Expert Opin Biol Ther 2020; 20(10): 1125-31.
[http://dx.doi.org/10.1080/14712598.2020.1787979] [PMID: 32580594]
[123]
Guillamat-Prats R. The Role of MSC in Wound Healing, Scarring and Regeneration. Cells 2021 Jul 8; 10(7): 1729.
[124]
Dhall S, Coksaygan T, Hoffman T, et al. Viable cryopreserved umbilical tissue (vCUT) reduces post-operative adhesions in a rabbit abdominal adhesion model. Bioact Mater 2018; 4(1): 97-106.
[PMID: 30723842]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy