Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Neuropsychiatric Manifestations in Alzheimer’s Disease Patients: Genetics and Treatment Options

Author(s): Arun Kumar Singh, Rishabha Malviya*, Anuj Prakash and Swati Verma

Volume 23, Issue 1, 2024

Published on: 27 March, 2023

Page: [39 - 54] Pages: 16

DOI: 10.2174/1871527322666230301111216

Price: $65

Abstract

Background: Alzheimer's disease (AD) is characterized by neuropsychiatric symptoms (NPS), which cause great misery to those with dementia and those who care for them and may lead to early institutionalization.

Objective: The present systematic review aims to discuss the various aspects of Alzheimer’s, including treatment options.

Methods: The databases Embase, PubMed, and Web of Science were searched to collect data.

Results: Incipient cognitive deterioration is commonly accompanied by these early warning signals of neurocognitive diseases. The neurobiology of NPSs in Alzheimer's disease, as well as particular symptoms, including psychosis, agitation, apathy, sadness, and sleep disorders, will be examined in this review. For NPSs in Alzheimer's disease, clinical trial designs, as well as regulatory issues, were also addressed. A fresh wave of research, however, is helping to push the discipline ahead. For medication development and repurposing, we highlight the most recent results in genetics, neuroimaging, and neurobiology. Even though identifying and treating psychosis in adults with dementia is still a challenging endeavor, new options are coming up that give the field fresh focus and hope.

Conclsuion: It can be concluded from the complete literature survey that Alzheimer's-related psychosis as well as other symptoms that are not psychotic, have made significant progress in the last decade. These milestones in the development of safer, more effective treatments have been achieved as a consequence of great focus on non-pharmacological interventions like DICE or WHELD; the investigation into ways to improve existing drugs like aripiprazole, risperidone, amisulpride, and Escitalopram for safer precision-based treatment; and the development of a clinical trial program for pimavanserin.

Keywords: Alzheimer’s disease, genetic manipulation, neurological disorder, psychosis, dementia, delusions.

Graphical Abstract
[1]
Steinberg M, Shao H, Zandi P, et al. Point and 5-year period prevalence of neuropsychiatric symptoms in dementia: the Cache County Study. Int J Geriatr Psychiatry 2008; 23(2): 170-7.
[http://dx.doi.org/10.1002/gps.1858] [PMID: 17607801]
[2]
Lanctôt KL, Amatniek J, Ancoli-Israel S, et al. Neuropsychiatric signs and symptoms of Alzheimer’s disease: New treatment paradigms. Alzheimers Dement 2017; 3(3): 440-9.
[http://dx.doi.org/10.1016/j.trci.2017.07.001] [PMID: 29067350]
[3]
Lyketsos CG, Carrillo MC, Ryan JM, et al. Neuropsychiatric symptoms in Alzheimer’s disease. Alzheimers Dement 2011; 7(5): 532-9.
[http://dx.doi.org/10.1016/j.jalz.2011.05.2410] [PMID: 21889116]
[4]
Creese B, Da Silva MV, Johar I, Ballard C. The modern role of antipsychotics for the treatment of agitation and psychosis in Alzheimer’s disease. Expert Rev Neurother 2018; 18(6): 461-7.
[http://dx.doi.org/10.1080/14737175.2018.1476140] [PMID: 29764230]
[5]
Ballard CG, Gauthier S, Cummings JL, et al. Management of agitation and aggression associated with Alzheimer disease. Nat Rev Neurol 2009; 5(5): 245-55.
[http://dx.doi.org/10.1038/nrneurol.2009.39] [PMID: 19488082]
[6]
Watt JA, Goodarzi Z, Veroniki AA, et al. Safety of pharmacologic interventions for neuropsychiatric symptoms in dementia: a systematic review and network meta-analysis. BMC Geriatr 2020; 20(1): 212.
[http://dx.doi.org/10.1186/s12877-020-01607-7] [PMID: 32546202]
[7]
Kaufer DI, Cummings JL, Christine D, et al. Assessing the impact of neuropsychiatric symptoms in Alzheimer’s Disease: The neuropsychiatric inventory caregiver distress scale. J Am Geriatr Soc 1998; 46(2): 210-5.
[http://dx.doi.org/10.1111/j.1532-5415.1998.tb02542.x] [PMID: 9475452]
[8]
Wiener PK, Kiosses DN, Klimstra S, Murphy C, Alexopoulos GS. A short-term inpatient program for agitated demented nursing home residents. Int J Geriatr Psychiatry 2001; 16(9): 866-72.
[http://dx.doi.org/10.1002/gps.437] [PMID: 11571766]
[9]
Fischer CE, Ismail Z, Schweizer TA. Delusions increase functional impairment in Alzheimer’s disease. Dement Geriatr Cogn Disord 2012; 33(6): 393-9.
[http://dx.doi.org/10.1159/000339954] [PMID: 22814093]
[10]
Wilson RS, Tang Y, Aggarwal NT, et al. Hallucinations, cognitive decline, and death in Alzheimer’s disease. Neuroepidemiology 2006; 26(2): 68-75.
[http://dx.doi.org/10.1159/000090251] [PMID: 16352909]
[11]
Scarmeas N, Brandt J, Albert M, et al. Delusions and hallucinations are associated with worse outcome in Alzheimer disease. Arch Neurol 2005; 62(10): 1601-8.
[http://dx.doi.org/10.1001/archneur.62.10.1601] [PMID: 16216946]
[12]
Zahodne LB, Ornstein K, Cosentino S, Devanand DP, Stern Y. Longitudinal relationships between Alzheimer disease progression and psychosis, depressed mood, and agitation/aggression. Am J Geriatr Psychiatry 2015; 23(2): 130-40.
[http://dx.doi.org/10.1016/j.jagp.2013.03.014] [PMID: 23871118]
[13]
Ropacki SA, Jeste DV. Epidemiology of and risk factors for psychosis of Alzheimer’s disease: a review of 55 studies published from 1990 to 2003. Am J Psychiatry 2005; 162(11): 2022-30.
[http://dx.doi.org/10.1176/appi.ajp.162.11.2022] [PMID: 16263838]
[14]
Bassiony MM, Steinberg MS, Warren A, Rosenblatt A, Baker AS, Lyketsos CG. Delusions and hallucinations in Alzheimer’s disease: prevalence and clinical correlates. Int J Geriatr Psychiatry 2000; 15(2): 99-107.
[http://dx.doi.org/10.1002/(SICI)1099-1166(200002)15:2<99:AID-GPS82>3.0.CO;2-5] [PMID: 10679840]
[15]
Qian W, Fischer CE, Schweizer TA, Munoz DG. Association between psychosis phenotype and APOE genotype on the clinical profiles of Alzheimer’s disease. Curr Alzheimer Res 2018; 15(2): 187-94.
[http://dx.doi.org/10.2174/1567205014666170829114346] [PMID: 28847281]
[16]
Ismail Z, Nguyen MQ, Fischer CE, Schweizer TA, Mulsant BH, Mamo D. Neurobiology of delusions in Alzheimer’s disease. Curr Psychiatry Rep 2011; 13(3): 211-8.
[http://dx.doi.org/10.1007/s11920-011-0195-1] [PMID: 21404128]
[17]
Cummings J, Ballard C, Tariot P, et al. Pimavanserin: potential treatment for dementia-related psychosis. J Prev Alzheimers Dis 2018; 5(4): 253-8.
[PMID: 30298184]
[18]
Vik-Mo AO, Giil LM, Ballard C, Aarsland D. Course of neuropsychiatric symptoms in dementia: 5-year longitudinal study. Int J Geriatr Psychiatry 2018; 33(10): 1361-9.
[http://dx.doi.org/10.1002/gps.4933] [PMID: 29979473]
[19]
Vik-Mo AO, Giil LM, Borda MG, Ballard C, Aarsland D. The individual course of neuropsychiatric symptoms in people with Alzheimer’s and Lewy body dementia: 12-year longitudinal cohort study. Br J Psychiatry 2020; 216(1): 43-8.
[http://dx.doi.org/10.1192/bjp.2019.195] [PMID: 31506117]
[20]
Fischer CE, Qian W, Schweizer TA, et al. Determining the impact of psychosis on rates of false-positive and false-negative diagnosis in Alzheimer’s disease. Alzheimers Dement 2017; 3(3): 385-92.
[http://dx.doi.org/10.1016/j.trci.2017.06.001] [PMID: 29067344]
[21]
Fischer CE, Qian W, Schweizer TA, et al. Lewy bodies, vascular risk factors, and subcortical arteriosclerotic leukoencephalopathy, but not Alzheimer pathology, are associated with development of psychosis in Alzheimer’s disease. J Alzheimers Dis 2016; 50(1): 283-95.
[http://dx.doi.org/10.3233/JAD-150606] [PMID: 26682680]
[22]
Rubin EH, Drevets WC, Burke WJ. The nature of psychotic symptoms in senile dementia of the Alzheimer type. J Geriatr Psychiatry Neurol 1988; 1(1): 16-20.
[http://dx.doi.org/10.1177/089198878800100104] [PMID: 3266997]
[23]
Murray PS, Kumar S, DeMichele-Sweet MAA, Sweet RA. Psychosis in Alzheimer’s disease. Biol Psychiatry 2014; 75(7): 542-52.
[http://dx.doi.org/10.1016/j.biopsych.2013.08.020] [PMID: 24103379]
[24]
Nagahama Y, Fukui T, Akutagawa H, et al. Prevalence and clinical implications of the mirror and TV signs in advanced Alzheimer’s disease and dementia with Lewy bodies. Dement Geriatr Cogn Disord Extra 2020; 10(1): 56-62.
[http://dx.doi.org/10.1159/000506510] [PMID: 32308668]
[25]
Roane DM, Feinberg TE, Liberta TA. Delusional misidentification of the mirror image. Curr Neurol Neurosci Rep 2019; 19(8): 55.
[http://dx.doi.org/10.1007/s11910-019-0972-5] [PMID: 31250123]
[26]
Feinberg TE, Roane D. Self-representation in delusional misidentification and confabulated “others”. Cortex 2017; 87: 118-28.
[http://dx.doi.org/10.1016/j.cortex.2016.07.014] [PMID: 27542857]
[27]
El Haj M, Roche J, Jardri R, Kapogiannis D, Gallouj K, Antoine P. Clinical and neurocognitive aspects of hallucinations in Alzheimer’s disease. Neurosci Biobehav Rev 2017; 83: 713-20.
[http://dx.doi.org/10.1016/j.neubiorev.2017.02.021] [PMID: 28235545]
[28]
Ballard C, Oyebode F. Psychotic symptoms in patients with dementia. Int J Geriatr Psychiatry 1995; 10(9): 743-52.
[http://dx.doi.org/10.1002/gps.930100904]
[29]
Jeste DV, Finkel SI. Psychosis of Alzheimer’s disease and related dementias. Diagnostic criteria for a distinct syndrome. Am J Geriatr Psychiatry 2000; 8(1): 29-34.
[http://dx.doi.org/10.1097/00019442-200002000-00004] [PMID: 10648292]
[30]
Cohen-Mansfield J, Golander H. The measurement of psychosis in dementia: a comparison of assessment tools. Alzheimer Dis Assoc Disord 2011; 25(2): 101-8.
[http://dx.doi.org/10.1097/WAD.0b013e3181f811f4] [PMID: 20921878]
[31]
Ismail Z, Emeremni CA, Houck PR, et al. A comparison of the E-BEHAVE-AD, NBRS, and NPI in quantifying clinical improvement in the treatment of agitation and psychosis associated with dementia. Am J Geriatr Psychiatry 2013; 21(1): 78-87.
[http://dx.doi.org/10.1016/j.jagp.2012.10.013] [PMID: 23290205]
[32]
Monastero R, Mangialasche F, Camarda C, Ercolani S, Camarda R. A systematic review of neuropsychiatric symptoms in mild cognitive impairment. J Alzheimers Dis 2009; 18(1): 11-30.
[http://dx.doi.org/10.3233/JAD-2009-1120] [PMID: 19542627]
[33]
Cummings J, Pinto LC, Cruz M, et al. Criteria for psychosis in major and mild neurocognitive disorders: International Psychogeriatric Association (IPA) consensus clinical and research definition. Am J Geriatr Psychiatry 2020; 28(12): 1256-69.
[http://dx.doi.org/10.1016/j.jagp.2020.09.002] [PMID: 32958332]
[34]
Schneider LS, Katz IR, Park S, Napolitano J, Martinez RA, Azen SP. Psychosis of Alzheimer disease: validity of the construct and response to risperidone. Am J Geriatr Psychiatry 2003; 11(4): 414-25.
[http://dx.doi.org/10.1097/00019442-200307000-00004] [PMID: 12837670]
[35]
Cummings J, Mintzer J, Brodaty H, et al. Agitation in cognitive disorders: International Psychogeriatric Association provisional consensus clinical and research definition. Int Psychogeriatr 2015; 27(1): 7-17.
[http://dx.doi.org/10.1017/S1041610214001963] [PMID: 25311499]
[36]
De Mauleon A, Ismail Z, Rosenberg P, et al. Agitation in Alzheimer’s disease: Novel outcome measures reflecting the International Psychogeriatric Association (IPA) agitation criteria. Alzheimers Dement 2021; 17(10): 1687-97.
[http://dx.doi.org/10.1002/alz.12335] [PMID: 34132461]
[37]
Aalten P, Verhey FRJ, Boziki M, et al. Neuropsychiatric syndromes in dementia. Results from the European Alzheimer Disease Consortium: part I. Dement Geriatr Cogn Disord 2007; 24(6): 457-63.
[http://dx.doi.org/10.1159/000110738] [PMID: 17986816]
[38]
Siafarikas N, Selbaek G, Fladby T, Šaltytė Benth J, Auning E, Aarsland D. Frequency and subgroups of neuropsychiatric symptoms in mild cognitive impairment and different stages of dementia in Alzheimer’s disease. Int Psychogeriatr 2018; 30(1): 103-13.
[http://dx.doi.org/10.1017/S1041610217001879] [PMID: 28927477]
[39]
Liew TM. Symptom clusters of neuropsychiatric symptoms in mild cognitive impairment and their comparative risks of dementia: a cohort study of 8530 older persons. J Am Med Dir Assoc 2019; 20(8): 1054-9.
[http://dx.doi.org/10.1016/j.jamda.2019.02.012] [PMID: 30926409]
[40]
Martin E, Velayudhan L. Neuropsychiatric symptoms in mild cognitive impairment: a literature review. Dement Geriatr Cogn Disord 2020; 49(2): 146-55.
[http://dx.doi.org/10.1159/000507078] [PMID: 32289790]
[41]
Peters ME, Rosenberg PB, Steinberg M, et al. Neuropsychiatric symptoms as risk factors for progression from CIND to dementia: the Cache County Study. Am J Geriatr Psychiatry 2013; 21(11): 1116-24.
[http://dx.doi.org/10.1016/j.jagp.2013.01.049] [PMID: 23567370]
[42]
Yokoi Y, Takano H, Sakata M, Maruo K, Nakagome K, Matsuda H. Discrete effect of each mild behavioural impairment category on dementia conversion or cognitive decline in patients with mild cognitive impairment. Psychogeriatrics 2019; 19(6): 591-600.
[http://dx.doi.org/10.1111/psyg.12447] [PMID: 30891900]
[43]
Dietlin S, Soto M, Kiyasova V, et al. Neuropsychiatric symptoms and risk of progression to Alzheimer’s disease among mild cognitive impairment subjects. J Alzheimers Dis 2019; 70(1): 25-34.
[http://dx.doi.org/10.3233/JAD-190025] [PMID: 31127783]
[44]
Rosenberg PB, Mielke MM, Appleby BS, Oh ES, Geda YE, Lyketsos CG. The association of neuropsychiatric symptoms in MCI with incident dementia and Alzheimer disease. Am J Geriatr Psychiatry 2013; 21(7): 685-95.
[http://dx.doi.org/10.1016/j.jagp.2013.01.006] [PMID: 23567400]
[45]
Pink A, Stokin GB, Bartley MM, et al. Neuropsychiatric symptoms, APOE 4, and the risk of incident dementia: A population-based study. Neurology 2015; 84(9): 935-43.
[http://dx.doi.org/10.1212/WNL.0000000000001307] [PMID: 25653291]
[46]
Fischer CE, Agüera-Ortiz L. Psychosis and dementia: risk factor, prodrome, or cause? Int Psychogeriatr 2018; 30(2): 209-19.
[http://dx.doi.org/10.1017/S1041610217000874] [PMID: 28560931]
[47]
Lapid MI, Ho JB. Challenging our beliefs about delusional disorder in late life. Int Psychogeriatr 2020; 32(4): 423-5.
[http://dx.doi.org/10.1017/S1041610219001352] [PMID: 32295673]
[48]
Nagendra J, Snowdon J. An Australian study of delusional disorder in late life. Int Psychogeriatr 2020; 32(4): 453-62.
[http://dx.doi.org/10.1017/S1041610219000966] [PMID: 31354123]
[49]
Brodaty H, Sachdev P, Koschera A, Monk D, Cullen B. Long-term outcome of late-onset schizophrenia: 5-year follow-up study. Br J Psychiatry 2003; 183(3): 213-9.
[http://dx.doi.org/10.1192/bjp.183.3.213] [PMID: 12948993]
[50]
Köhler S, Allardyce J, Verhey FRJ, et al. Cognitive decline and dementia risk in older adults with psychotic symptoms: a prospective cohort study. Am J Geriatr Psychiatry 2013; 21(2): 119-28.
[http://dx.doi.org/10.1016/j.jagp.2012.10.010] [PMID: 23343485]
[51]
Soares WB, dos Santos EB, Bottino CMC, Elkis H. Psychotic symptoms in older people without dementia from a Brazilian community-based sample: A seven years’ follow-up. PLoS One 2017; 12(6): e0178471.
[http://dx.doi.org/10.1371/journal.pone.0178471] [PMID: 28622335]
[52]
Liew TM. Neuropsychiatric symptoms in cognitively normal older persons, and the association with Alzheimer’s and non-Alzheimer’s dementia. Alzheimers Res Ther 2020; 12(1): 35.
[http://dx.doi.org/10.1186/s13195-020-00604-7] [PMID: 32234066]
[53]
Kørner A, Lopez AG, Lauritzen L, Andersen PK, Kessing LV. Late and very-late first-contact schizophrenia and the risk of dementia-a nationwide register based study. Int J Geriatr Psychiatry 2009; 24(1): 61-7.
[http://dx.doi.org/10.1002/gps.2075] [PMID: 18561206]
[54]
Kørner A, Lopez AG, Lauritzen L, Andersen PK, Kessing LV. Acute and transient psychosis in old age and the subsequent risk of dementia: A nationwide register-based study. Geriatr Gerontol Int 2009; 9(1): 62-8.
[http://dx.doi.org/10.1111/j.1447-0594.2009.00505.x] [PMID: 19260981]
[55]
Almeida OP, Ford AH, Hankey GJ, Yeap BB, Golledge J, Flicker L. Risk of dementia associated with psychotic disorders in later life: the health in men study (HIMS). Psychol Med 2019; 49(2): 232-42.
[http://dx.doi.org/10.1017/S003329171800065X] [PMID: 29564993]
[56]
Stafford J, Dykxhoorn J, Sommerlad A, Dalman C, Kirkbride JB, Howard R. Association between risk of dementia and very late-onset schizophrenia-like psychosis: a Swedish population-based cohort study. Psychol Med 2021; 1-9.
[http://dx.doi.org/10.1017/S0033291721002099] [PMID: 34030750]
[57]
Nagao S, Yokota O, Ikeda C, et al. Argyrophilic grain disease as a neurodegenerative substrate in late-onset schizophrenia and delusional disorders. Eur Arch Psychiatry Clin Neurosci 2014; 264(4): 317-31.
[http://dx.doi.org/10.1007/s00406-013-0472-6] [PMID: 24272318]
[58]
Fischer CE, Ismail Z, Youakim JM, et al. Revisiting criteria for psychosis in Alzheimer’s disease and related dementias: toward better phenotypic classification and biomarker research. J Alzheimers Dis 2020; 73(3): 1143-56.
[http://dx.doi.org/10.3233/JAD-190828] [PMID: 31884469]
[59]
Bacanu SA, Devlin B, Chowdari KV, DeKosky ST, Nimgaonkar VL, Sweet RA. Heritability of psychosis in Alzheimer disease. Am J Geriatr Psychiatry 2005; 13(7): 624-7.
[http://dx.doi.org/10.1097/00019442-200507000-00011] [PMID: 16009739]
[60]
DeMichele-Sweet MAA, Klei L, Creese B, et al. Genome-wide association identifies the first risk loci for psychosis in Alzheimer disease. Mol Psychiatry 2021; 26(10): 5797-811.
[http://dx.doi.org/10.1038/s41380-021-01152-8] [PMID: 34112972]
[61]
Shah C, DeMichele-Sweet MAA, Sweet RA. Genetics of psychosis of Alzheimer disease. Am J Med Genet B Neuropsychiatr Genet 2017; 174(1): 27-35.
[http://dx.doi.org/10.1002/ajmg.b.32413] [PMID: 26756273]
[62]
Kim J, Fischer CE, Schweizer TA, Munoz DG. Gender and pathology-specific effect of Apolipoprotein E genotype on psychosis in Alzheimer’s disease. Curr Alzheimer Res 2017; 14(8): 834-40.
[PMID: 28219318]
[63]
DeMichele-Sweet M A A, Weamer EA, Klei L, et al. Genetic risk for schizophrenia and psychosis in Alzheimer disease. Mol Psychiatry 2018; 23(4): 963-72.
[http://dx.doi.org/10.1038/mp.2017.81] [PMID: 28461698]
[64]
Creese B, Vassos E, Bergh S, et al. Examining the association between genetic liability for schizophrenia and psychotic symptoms in Alzheimer’s disease. Transl Psychiatry 2019; 9(1): 273.
[http://dx.doi.org/10.1038/s41398-019-0592-5] [PMID: 31641104]
[65]
Legge SE, Jones HJ, Kendall KM, et al. Association of genetic liability to psychotic experiences with neuropsychotic disorders and traits. JAMA Psychiatry 2019; 76(12): 1256-65.
[http://dx.doi.org/10.1001/jamapsychiatry.2019.2508] [PMID: 31553412]
[66]
Ellis N, Tee A, McAllister B, et al. Genetic risk underlying psychiatric and cognitive symptoms in Huntington’s Disease. Biol Psychiatry 2020; 87(9): 857-65.
[http://dx.doi.org/10.1016/j.biopsych.2019.12.010] [PMID: 32087949]
[67]
Pain O, Dudbridge F, Cardno AG, et al. Genome-wide analysis of adolescent psychotic-like experiences shows genetic overlap with psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 2018; 177(4): 416-25.
[http://dx.doi.org/10.1002/ajmg.b.32630] [PMID: 29603866]
[68]
Bebbington P, Freeman D. Transdiagnostic extension of delusions: schizophrenia and beyond. Schizophr Bull 2017; 43(2): 273-82.
[http://dx.doi.org/10.1093/schbul/sbw191] [PMID: 28399309]
[69]
Golan D, Lander ES, Rosset S. Measuring missing heritability: Inferring the contribution of common variants. Proc Natl Acad Sci USA 2014; 111(49): E5272-81.
[http://dx.doi.org/10.1073/pnas.1419064111] [PMID: 25422463]
[70]
Lunnon K, Smith R, Hannon E, et al. Methylomic profiling implicates cortical deregulation of ANK1 in Alzheimer’s disease. Nat Neurosci 2014; 17(9): 1164-70.
[http://dx.doi.org/10.1038/nn.3782] [PMID: 25129077]
[71]
Smith RG, Hannon E, De Jager PL, et al. Elevated DNA methylation across a 48‐kb region spanning the HOXA gene cluster is associated with Alzheimer’s disease neuropathology. Alzheimers Dement 2018; 14(12): 1580-8.
[http://dx.doi.org/10.1016/j.jalz.2018.01.017] [PMID: 29550519]
[72]
Viana J, Hannon E, Dempster E, et al. Schizophrenia-associated methylomic variation: molecular signatures of disease and polygenic risk burden across multiple brain regions. Hum Mol Genet 2017; 26(1): 210-25.
[PMID: 28011714]
[73]
Pishva E, Creese B, Smith AR, et al. Psychosis-associated DNA methylomic variation in Alzheimer’s disease cortex. Neurobiol Aging 2020; 89: 83-8.
[http://dx.doi.org/10.1016/j.neurobiolaging.2020.01.001] [PMID: 32007278]
[74]
Creese B, Bell E, Johar I, Francis P, Ballard C, Aarsland D. Glucocerebrosidase mutations and neuropsychiatric phenotypes in Parkinson’s disease and Lewy body dementias: Review and meta-analyses. Am J Med Genet B Neuropsychiatr Genet 2018; 177(2): 232-41.
[http://dx.doi.org/10.1002/ajmg.b.32549] [PMID: 28548708]
[75]
Shiner T, Mirelman A, Gana Weisz M, et al. High frequency of GBA gene mutations in dementia with Lewy bodies among Ashkenazi Jews. JAMA Neurol 2016; 73(12): 1448-53.
[http://dx.doi.org/10.1001/jamaneurol.2016.1593] [PMID: 27723861]
[76]
Ismail Z, Nguyen MQ, Fischer CE, Schweizer TA, Mulsant BH. Neuroimaging of delusions in Alzheimer’s disease. Psychiatry Res Neuroimaging 2012; 202(2): 89-95.
[http://dx.doi.org/10.1016/j.pscychresns.2012.01.008] [PMID: 22703622]
[77]
Qian W, Schweizer TA, Churchill NW, et al. Gray matter changes associated with the development of delusions in Alzheimer disease. Am J Geriatr Psychiatry 2019; 27(5): 490-8.
[http://dx.doi.org/10.1016/j.jagp.2018.09.016] [PMID: 30503703]
[78]
Lee K, Lee YM, Park JM, et al. Right hippocampus atrophy is independently associated with Alzheimer’s disease with psychosis. Psychogeriatrics 2019; 19(2): 105-10.
[http://dx.doi.org/10.1111/psyg.12369] [PMID: 30430708]
[79]
McLachlan E, Bousfield J, Howard R, Reeves S. Reduced parahippocampal volume and psychosis symptoms in Alzheimer’s disease. Int J Geriatr Psychiatry 2018; 33(2): 389-95.
[http://dx.doi.org/10.1002/gps.4757] [PMID: 28741694]
[80]
Förstl H, Burns A, Levy R, Cairns N. Neuropathological correlates of psychotic phenomena in confirmed Alzheimer’s disease. Br J Psychiatry 1994; 165(1): 53-9.
[http://dx.doi.org/10.1192/bjp.165.1.53] [PMID: 7953058]
[81]
Donovan NJ, Wadsworth LP, Lorius N, et al. Regional cortical thinning predicts worsening apathy and hallucinations across the Alzheimer disease spectrum. Am J Geriatr Psychiatry 2014; 22(11): 1168-79.
[http://dx.doi.org/10.1016/j.jagp.2013.03.006] [PMID: 23890751]
[82]
Fischer CE, Ting WKC, Millikin CP, Ismail Z, Schweizer TA. Gray matter atrophy in patients with mild cognitive impairment/Alzheimer’s disease over the course of developing delusions. Int J Geriatr Psychiatry 2016; 31(1): 76-82.
[http://dx.doi.org/10.1002/gps.4291] [PMID: 25821062]
[83]
Balthazar MLF, Pereira FRS, Lopes TM, et al. Neuropsychiatric symptoms in Alzheimer’s disease are related to functional connectivity alterations in the salience network. Hum Brain Mapp 2014; 35(4): 1237-46.
[http://dx.doi.org/10.1002/hbm.22248] [PMID: 23418130]
[84]
Lee JS, Kim JH, Lee SK. The relationship between neuropsychiatric symptoms and default-mode network connectivity in Alzheimer’s disease. Psychiatry Investig 2020; 17(7): 662-6.
[http://dx.doi.org/10.30773/pi.2020.0009] [PMID: 32571002]
[85]
Qian W, Fischer CE, Churchill NW, Kumar S, Rajji T, Schweizer TA. Delusions in Alzheimer disease are associated with decreased default mode network functional connectivity. Am J Geriatr Psychiatry 2019; 27(10): 1060-8.
[http://dx.doi.org/10.1016/j.jagp.2019.03.020] [PMID: 31130416]
[86]
Tu MC, Huang WH, Hsu YH, Lo CP, Deng JF, Huang CF. Comparison of neuropsychiatric symptoms and diffusion tensor imaging correlates among patients with subcortical ischemic vascular disease and Alzheimer’s disease. BMC Neurol 2017; 17(1): 144.
[http://dx.doi.org/10.1186/s12883-017-0911-5] [PMID: 28754095]
[87]
Blanc F, Noblet V, Philippi N, et al. Right anterior insula: core region of hallucinations in cognitive neurodegenerative diseases. PLoS One 2014; 9(12): e114774.
[http://dx.doi.org/10.1371/journal.pone.0114774] [PMID: 25479196]
[88]
Sultzer DL, Leskin LP, Melrose RJ, et al. Neurobiology of delusions, memory, and insight in Alzheimer disease. Am J Geriatr Psychiatry 2014; 22(11): 1346-55.
[http://dx.doi.org/10.1016/j.jagp.2013.06.005] [PMID: 24021220]
[89]
Nakatsuka M, Meguro K, Tsuboi H, Nakamura K, Akanuma K, Yamaguchi S. Content of delusional thoughts in Alzheimer’s disease and assessment of content-specific brain dysfunctions with BEHAVE-AD-FW and SPECT. Int Psychogeriatr 2013; 25(6): 939-48.
[http://dx.doi.org/10.1017/S1041610213000094] [PMID: 23433495]
[90]
Santhosh L, Estok KM, Vogel RS, et al. Regional distribution and behavioral correlates of 5-HT2A receptors in Alzheimer’s disease with [18F]deuteroaltanserin and PET. Psychiatry Res Neuroimaging 2009; 173(3): 212-7.
[http://dx.doi.org/10.1016/j.pscychresns.2009.03.007] [PMID: 19682865]
[91]
Reeves S, Brown R, Howard R, Grasby P. Increased striatal dopamine (D2/D3) receptor availability and delusions in Alzheimer disease. Neurology 2009; 72(6): 528-34.
[http://dx.doi.org/10.1212/01.wnl.0000341932.21961.f3] [PMID: 19204262]
[92]
Koppel J, Acker C, Davies P, et al. Psychotic Alzheimer’s disease is associated with gender-specific tau phosphorylation abnormalities. Neurobiol Aging 2014; 35(9): 2021-8.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.03.003] [PMID: 24731519]
[93]
Murray PS, Kirkwood CM, Gray MC, et al. Hyperphosphorylated tau is elevated in Alzheimer’s disease with psychosis. J Alzheimers Dis 2014; 39(4): 759-73.
[http://dx.doi.org/10.3233/JAD-131166] [PMID: 24270207]
[94]
Ehrenberg AJ, Suemoto CK, França Resende EP, et al. Neuropathologic correlates of psychiatric symptoms in Alzheimer’s disease. J Alzheimers Dis 2018; 66(1): 115-26.
[http://dx.doi.org/10.3233/JAD-180688] [PMID: 30223398]
[95]
Krivinko JM, Erickson SL, Ding Y, et al. Synaptic proteome compensation and resilience to psychosis in Alzheimer’s disease. Am J Psychiatry 2018; 175(10): 999-1009.
[http://dx.doi.org/10.1176/appi.ajp.2018.17080858] [PMID: 30021459]
[96]
Whitehead D, Tunnard C, Hurt C, et al. Frontotemporal atrophy associated with paranoid delusions in women with Alzheimer’s disease. Int Psychogeriatr 2012; 24(1): 99-107.
[http://dx.doi.org/10.1017/S1041610211000974] [PMID: 21740613]
[97]
Koppel J, Sunday S, Buthorn J, Goldberg T, Davies P, Greenwald B. Elevated CSF Tau is associated with psychosis in Alzheimer’s disease. Am J Psychiatry 2013; 170(10): 1212-3.
[http://dx.doi.org/10.1176/appi.ajp.2013.13040466] [PMID: 24084821]
[98]
Takahata K, Kimura Y, Sahara N, et al. PET-detectable tau pathology correlates with long-term neuropsychiatric outcomes in patients with traumatic brain injury. Brain 2019; 142(10): 3265-79.
[http://dx.doi.org/10.1093/brain/awz238] [PMID: 31504227]
[99]
Murray PS, Kirkwood CM, Gray MC, et al. β-Amyloid 42/40 ratio and kalirin expression in Alzheimer disease with psychosis. Neurobiol Aging 2012; 33(12): 2807-16.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.02.015] [PMID: 22429885]
[100]
Whitfield DR, Francis PT, Ballard C, Williams G. Associations between ZnT3, tau pathology, agitation, and delusions in dementia. Int J Geriatr Psychiatry 2018; 33(8): 1146-52.
[http://dx.doi.org/10.1002/gps.4908] [PMID: 29856089]
[101]
Whitfield DR, Vallortigara J, Alghamdi A, et al. Assessment of ZnT3 and PSD95 protein levels in Lewy body dementias and Alzheimer’s disease: association with cognitive impairment. Neurobiol Aging 2014; 35(12): 2836-44.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.06.015] [PMID: 25104558]
[102]
Tsuang D, Simpson K, Larson EB, et al. Predicting lewy body pathology in a community-based sample with clinical diagnosis of Alzheimer’s disease. J Geriatr Psychiatry Neurol 2006; 19(4): 195-201.
[http://dx.doi.org/10.1177/0891988706292755] [PMID: 17085757]
[103]
Ting SKS, Hao Y, Chia PS, Tan EK, Hameed S. Clinicopathological correlation of psychosis and brain vascular changes in Alzheimer’s disease. Sci Rep 2016; 6(1): 20858.
[http://dx.doi.org/10.1038/srep20858] [PMID: 26868671]
[104]
Vik-Mo AO, Bencze J, Ballard C. Hortobلgyi T, Aarsland D. Advanced cerebral amyloid angiopathy and small vessel disease are associated with psychosis in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2019; 90(6): 728-30.
[http://dx.doi.org/10.1136/jnnp-2018-318445] [PMID: 30054314]
[105]
Kim J, Schweizer TA, Fischer CE, Munoz DG. The role of cerebrovascular disease on cognitive and functional status and psychosis in severe Alzheimer’s disease. J Alzheimers Dis 2016; 55(1): 381-9.
[http://dx.doi.org/10.3233/JAD-160506] [PMID: 27662301]
[106]
Steinberg M, Hess K, Corcoran C, et al. Vascular risk factors and neuropsychiatric symptoms in Alzheimer’s disease: the Cache County Study. Int J Geriatr Psychiatry 2014; 29(2): 153-9.
[http://dx.doi.org/10.1002/gps.3980] [PMID: 23681754]
[107]
Bidzan M, Bidzan L, Pachalska M. Neuropsychiatric symptoms in patients with Alzheimer’s disease with a vascular component. Ann Agric Environ Med 2014; 21(2): 412-5.
[http://dx.doi.org/10.5604/1232-1966.1108615] [PMID: 24959800]
[108]
Hwang I, Baek KH, Han JH, Ha SW, Yang Y. Hypertension and neuropsychiatric symptoms in patients with drug-naïve Alzheimer’s disease. Dement Neurocognitive Disord 2017; 16(3): 78-82.
[http://dx.doi.org/10.12779/dnd.2017.16.3.78] [PMID: 30906375]
[109]
Sweet RA, Hamilton RL, Healy MT, et al. Alterations of striatal dopamine receptor binding in Alzheimer disease are associated with Lewy body pathology and antemortem psychosis. Arch Neurol 2001; 58(3): 466-72.
[http://dx.doi.org/10.1001/archneur.58.3.466] [PMID: 11255451]
[110]
Reeves S, McLachlan E, Bertrand J, et al. Therapeutic window of dopamine D2/3 receptor occupancy to treat psychosis in Alzheimer’s disease. Brain 2017; 140(4): 1117-27.
[http://dx.doi.org/10.1093/brain/aww359] [PMID: 28334978]
[111]
Fan P, Qi X, Sweet RA, Wang L. Network systems pharmacology-based mechanism study on the beneficial effects of vitamin D against psychosis in Alzheimer’s disease. Sci Rep 2020; 10(1): 6136.
[http://dx.doi.org/10.1038/s41598-020-63021-8] [PMID: 32273551]
[112]
Ballard C, Banister C, Khan Z, et al. Evaluation of the safety, tolerability, and efficacy of pimavanserin versus placebo in patients with Alzheimer’s disease psychosis: a phase 2, randomised, placebo-controlled, double-blind study. Lancet Neurol 2018; 17(3): 213-22.
[http://dx.doi.org/10.1016/S1474-4422(18)30039-5] [PMID: 29452684]
[113]
Sinclair LI, Kumar A, Darreh-Shori T, Love S. Visual hallucinations in Alzheimer’s disease do not seem to be associated with chronic hypoperfusion of to visual processing areas V2 and V3 but may be associated with reduced cholinergic input to these areas. Alzheimers Res Ther 2019; 11(1): 80.
[http://dx.doi.org/10.1186/s13195-019-0519-7] [PMID: 31511061]
[114]
Watt JA, Goodarzi Z, Veroniki AA, et al. Comparative efficacy of interventions for aggressive and agitated behaviors in dementia: a systematic review and network meta-analysis. Ann Intern Med 2019; 171(9): 633-42.
[http://dx.doi.org/10.7326/M19-0993] [PMID: 31610547]
[115]
Ismail Z, Goodarzi Z. Neuropsychiatric aspects of Alzheimer’s disease clinically significant neuropsychiatric symptoms need evidence-based treatment. Pract Neurol 2019; 78-81. [Available from: https://practicalneurology.com/articles/2019-june/neuropsychiatricaspects-of-alzheimersdisease
[116]
Kales HC, Gitlin LN, Lyketsos CG. Detroit Expert Panel on Assessment and Management of Neuropsychiatric Symptoms of Dementia. Management of neuropsychiatric symptoms of dementia in clinical settings: recommendations from a multidisciplinary expert panel. J Am Geriatr Soc 2014; 62(4): 762-9.
[http://dx.doi.org/10.1111/jgs.12730] [PMID: 24635665]
[117]
Wolinsky D, Drake K, Bostwick J. Diagnosis and management of neuropsychiatric symptoms in Alzheimer’s disease. Curr Psychiatry Rep 2018; 20(12): 117.
[http://dx.doi.org/10.1007/s11920-018-0978-8] [PMID: 30367272]
[118]
Davies SJC, Burhan AM, Kim D, et al. Sequential drug treatment algorithm for agitation and aggression in Alzheimer’s and mixed dementia. J Psychopharmacol 2018; 32(5): 509-23.
[http://dx.doi.org/10.1177/0269881117744996] [PMID: 29338602]
[119]
Ballard C, Orrell M, Moniz-Cook E, et al. Improving mental health and reducing antipsychotic use in people with dementia in Care Homes: the WHELD research programme including two RCTs. Prog Grants App Res 2020; 8(6): 9-97.
[120]
Chen RC, Liu CL, Lin MH, et al. Non-pharmacological treatment reducing not only behavioral symptoms, but also psychotic symptoms of older adults with dementia: A prospective cohort study in Taiwan. Geriatr Gerontol Int 2014; 14(2): 440-6.
[http://dx.doi.org/10.1111/ggi.12126] [PMID: 23910097]
[121]
Gitlin LN, Kales HC, Lyketsos CG. Nonpharmacologic management of behavioral symptoms in dementia. JAMA 2012; 308(19): 2020-9.
[http://dx.doi.org/10.1001/jama.2012.36918] [PMID: 23168825]
[122]
Aarsland D. Impact of dementia-related psychosis on patients and caregivers: the treatment imperative. J Clin Psychiatry 2020; 81(6): AD19038BR2C.
[123]
Ballard C. Diagnosing dementia-related psychosis: Using tools and communicating with patients and caregivers. J Clin Psychiatry 2020; 82: AD19038BR3C.
[124]
Schneider LS, Dagerman K, Insel PS. Efficacy and adverse effects of atypical antipsychotics for dementia: meta-analysis of randomized, placebo-controlled trials. Am J Geriatr Psychiatry 2006; 14(3): 191-210.
[http://dx.doi.org/10.1097/01.JGP.0000200589.01396.6d] [PMID: 16505124]
[125]
Tampi RR, Tampi DJ, Balachandran S, Srinivasan S. Antipsychotic use in dementia: a systematic review of benefits and risks from meta-analyses. Ther Adv Chronic Dis 2016; 7(5): 229-45.
[http://dx.doi.org/10.1177/2040622316658463] [PMID: 27583123]
[126]
Ballard C, Creese B, Corbett A, Aarsland D. Atypical antipsychotics for the treatment of behavioral and psychological symptoms in dementia, with a particular focus on longer term outcomes and mortality. Expert Opin Drug Saf 2011; 10(1): 35-43.
[http://dx.doi.org/10.1517/14740338.2010.506711] [PMID: 20684745]
[127]
Maust DT, Kim HM, Seyfried LS, et al. Antipsychotics, other psychotropics, and the risk of death in patients with dementia: number needed to harm. JAMA Psychiatry 2015; 72(5): 438-45.
[http://dx.doi.org/10.1001/jamapsychiatry.2014.3018] [PMID: 25786075]
[128]
Maher AR, Maglione M, Bagley S, et al. Efficacy and comparative effectiveness of atypical antipsychotic medications for off-label uses in adults: a systematic review and meta-analysis. JAMA 2011; 306(12): 1359-69.
[http://dx.doi.org/10.1001/jama.2011.1360] [PMID: 21954480]
[129]
Ballard C, Howard R. Neuroleptic drugs in dementia: benefits and harm. Nat Rev Neurosci 2006; 7(6): 492-500.
[http://dx.doi.org/10.1038/nrn1926] [PMID: 16715057]
[130]
Yunusa I, Alsumali A, Garba AE, Regestein QR, Eguale T. Assessment of reported comparative effectiveness and safety of atypical antipsychotics in the treatment of behavioral and psychological symptoms of dementia: a network meta-analysis. JAMA Netw Open 2019; 2(3): e190828.
[http://dx.doi.org/10.1001/jamanetworkopen.2019.0828] [PMID: 30901041]
[131]
Howard R, Costafreda SG, Karcher K, Coppola D, Berlin JA, Hough D. Baseline characteristics and treatment-emergent risk factors associated with cerebrovascular event and death with risperidone in dementia patients. Br J Psychiatry 2016; 209(5): 378-84.
[http://dx.doi.org/10.1192/bjp.bp.115.177683] [PMID: 27388570]
[132]
Reeves S, Bertrand J, Uchida H, et al. Towards safer risperidone prescribing in Alzheimer’s disease. Br J Psychiatry 2021; 218(5): 268-75.
[http://dx.doi.org/10.1192/bjp.2020.225] [PMID: 33176899]
[133]
Howard R, Cort E, Bradley R, et al. Antipsychotic treatment of very late-onset schizophrenia-like psychosis (ATLAS): a randomised, controlled, double-blind trial. Lancet Psychiatry 2018; 5(7): 553-63.
[http://dx.doi.org/10.1016/S2215-0366(18)30141-X] [PMID: 29880238]
[134]
Malekizadeh Y, Williams G, Kelson M, et al. Whole transcriptome in silico screening implicates cardiovascular and infectious disease in the mechanism of action underlying atypical antipsychotic side effects. Alzheimers Dement 2020; 6(1): e12078.
[http://dx.doi.org/10.1002/trc2.12078] [PMID: 32864416]
[135]
Schneider LS, Dagerman KS, Insel P. Risk of death with atypical antipsychotic drug treatment for dementia: meta-analysis of randomized placebo-controlled trials. JAMA 2005; 294(15): 1934-43.
[http://dx.doi.org/10.1001/jama.294.15.1934] [PMID: 16234500]
[136]
Cummings J, Isaacson S, Mills R, et al. Pimavanserin for patients with Parkinson’s disease psychosis: a randomised, placebo-controlled phase 3 trial. Lancet 2014; 383(9916): 533-40.
[http://dx.doi.org/10.1016/S0140-6736(13)62106-6] [PMID: 24183563]
[137]
Hacksell U, Burstein ES, McFarland K, Mills RG, Williams H. On the discovery and development of pimavanserin: a novel drug candidate for Parkinson’s psychosis. Neurochem Res 2014; 39(10): 2008-17.
[http://dx.doi.org/10.1007/s11064-014-1293-3] [PMID: 24682754]
[138]
Ballard C, Youakim JM, Coate B, Stankovic S. Pimavanserin in Alzheimer’s disease psychosis: efficacy in patients with more pronounced psychotic symptoms. J Prev Alzheimers Dis 2019; 6(1): 27-33.
[PMID: 30569083]
[139]
ACADIA Pharmaceuticals presents positive top-line results from pivotal phase 3 HARMONY trial of pimavanserin in patients with dementia-related psychosis at 12th Clinical Trials on Alzheimer’s Disease (CTAD) Meeting. Acadia. 2020. Available from: https://ir.acadia-pharm.com/news-releases/news-release-details/acadiapharmaceuticals-presents-positive-top-line-results
[140]
Ballard CG, Kreitzman DL, Isaacson S, et al. Long-term evaluation of open-label pimavanserin safety and tolerability in Parkinson’s disease psychosis. Parkinsonism Relat Disord 2020; 77: 100-6.
[http://dx.doi.org/10.1016/j.parkreldis.2020.06.026] [PMID: 32712560]
[141]
FDA analysis finds no new or unexpected safety risks associated with Nuplazid (pimavanserin), a medication to treat the hallucinations and delusions of Parkinson’s disease psychosis. 2018. Available from: https://www.fda.gov/drugs/drug-safety-and-availability/fda-analysis-finds-no-newor-unexpected-safety-risks-associated-nuplazidpimavanserin-medication
[142]
Ballard C, Isaacson S, Mills R, et al. Impact of current antipsychotic medications on comparative mortality and adverse events in people with Parkinson disease psychosis. J Am Med Dir Assoc 2015; 16(10): 898.e1-7.
[http://dx.doi.org/10.1016/j.jamda.2015.06.021] [PMID: 26239690]
[143]
Porsteinsson AP, Drye LT, Pollock BG, et al. Effect of citalopram on agitation in Alzheimer disease: the CitAD randomized clinical trial. JAMA 2014; 311(7): 682-91.
[http://dx.doi.org/10.1001/jama.2014.93] [PMID: 24549548]
[144]
Ehrhardt S, Porsteinsson AP, Munro CA, et al. Escitalopram for agitation in Alzheimer’s disease (S-CitAD): Methods and design of an investigator-initiated, randomized, controlled, multicenter clinical trial. Alzheimers Dement 2019; 15(11): 1427-36.
[http://dx.doi.org/10.1016/j.jalz.2019.06.4946] [PMID: 31587995]
[145]
Sheline YI, Snider BJ, Beer JC, et al. Effect of escitalopram dose and treatment duration on CSF Aβ levels in healthy older adults. Neurology 2020; 95(19): e2658-65.
[http://dx.doi.org/10.1212/WNL.0000000000010725] [PMID: 32913021]
[146]
Devanand DP, Crocco E, et al. Low dose lithium treatment of behavioral complications in Alzheimer’s disease: Lit-AD randomized clinical trial. Am J Geriatr Psychiatry 2021; 30(1): 32-42.
[http://dx.doi.org/10.1016/j.jagp.2021.04.014] [PMID: 34059401]
[147]
Won E, Kim YK. An oldie but goodie: lithium in the treatment of bipolar disorder through neuroprotective and neurotrophic mechanisms. Int J Mol Sci 2017; 18(12): 2679.
[http://dx.doi.org/10.3390/ijms18122679] [PMID: 29232923]
[148]
Tan ECK, Johnell K, Bell JS, et al. Do acetylcholinesterase inhibitors prevent or delay psychotropic prescribing in people with dementia? Analyses of the Swedish Dementia Registry. Am J Geriatr Psychiatry 2020; 28(1): 108-17.
[http://dx.doi.org/10.1016/j.jagp.2019.06.008] [PMID: 31331724]
[149]
Wang L, Ying J, Fan P, et al. Effects of vitamin D use on outcomes of psychotic symptoms in Alzheimer disease patients. Am J Geriatr Psychiatry 2019; 27(9): 908-17.
[http://dx.doi.org/10.1016/j.jagp.2019.03.016] [PMID: 31126722]
[150]
Orzelska-Górka J, Mikulska J, Wiszniewska A, Biała G. New atypical antipsychotics in the treatment of schizophrenia and depression. Int J Mol Sci 2022; 23(18): 10624.
[http://dx.doi.org/10.3390/ijms231810624] [PMID: 36142523]
[151]
Calabrese F, Tarazi FI, Racagni G, Riva MA. The role of dopamine D 3 receptors in the mechanism of action of cariprazine. CNS Spectr 2020; 25(3): 343-51.
[http://dx.doi.org/10.1017/S109285291900083X] [PMID: 31010452]
[152]
Ceskova E. Pharmacological strategies for the management of comorbid depression and schizophrenia. Expert Opin Pharmacother 2020; 21(4): 459-65.
[http://dx.doi.org/10.1080/14656566.2020.1717466] [PMID: 31983254]
[153]
Gatchel JR, Rabin JS, Buckley RF, et al. Longitudinal association of depression symptoms with cognition and cortical amyloid among community-dwelling older adults. JAMA Netw Open 2019; 2(8): e198964.
[http://dx.doi.org/10.1001/jamanetworkopen.2019.8964] [PMID: 31397865]
[154]
Krell-Roesch J, Vassilaki M, Mielke MM, et al. Cortical β-amyloid burden, neuropsychiatric symptoms, and cognitive status: the Mayo Clinic Study of Aging. Transl Psychiatry 2019; 9(1): 123.
[http://dx.doi.org/10.1038/s41398-019-0456-z] [PMID: 30923322]
[155]
Ruthirakuhan M, Ismail Z, Herrmann N, Gallagher D, Lanctôt KL. Mild behavioral impairment is associated with progression to Alzheimer’s disease: A clinicopathological study. Alzheimers Dement 2022; 18(11): 2199-208.
[http://dx.doi.org/10.1002/alz.12519]
[156]
Goukasian N, Hwang KS, Romero T, et al. Association of brain amyloidosis with the incidence and frequency of neuropsychiatric symptoms in ADNI: a multisite observational cohort study. BMJ Open 2019; 9(12): e031947.
[http://dx.doi.org/10.1136/bmjopen-2019-031947] [PMID: 31857304]
[157]
Louhija UM, Saarela T, Juva K, Appelberg B. Brain atrophy is a frequent finding in elderly patients with first episode psychosis. Int Psychogeriatr 2017; 29(11): 1925-9.
[http://dx.doi.org/10.1017/S1041610217000953] [PMID: 28587701]
[158]
Ismail Z, Smith EE, Geda Y, et al. Neuropsychiatric symptoms as early manifestations of emergent dementia: Provisional diagnostic criteria for mild behavioral impairment. Alzheimers Dement 2016; 12(2): 195-202.
[http://dx.doi.org/10.1016/j.jalz.2015.05.017] [PMID: 26096665]
[159]
Taragano FE, Allegri RF, Heisecke SL, et al. Risk of conversion to dementia in a mild behavioral impairment group compared to a psychiatric group and to a mild cognitive impairment group. J Alzheimers Dis 2018; 62(1): 227-38.
[http://dx.doi.org/10.3233/JAD-170632] [PMID: 29439333]
[160]
Ismail Z, Agüera-Ortiz L, Brodaty H, et al. The Mild Behavioral Impairment Checklist (MBI-C): a rating scale for neuropsychiatric symptoms in pre-dementia populations. J Alzheimers Dis 2017; 56(3): 929-38.
[http://dx.doi.org/10.3233/JAD-160979] [PMID: 28059789]
[161]
Creese B, Brooker H, Ismail Z, et al. Mild behavioral impairment as a marker of cognitive decline in cognitively normal older adults. Am J Geriatr Psychiatry 2019; 27(8): 823-34.
[http://dx.doi.org/10.1016/j.jagp.2019.01.215] [PMID: 30902566]
[162]
Creese B, Griffiths A, Brooker H, et al. Profile of mild behavioral impairment and factor structure of the Mild Behavioral Impairment Checklist in cognitively normal older adults. Int Psychogeriatr 2020; 32(6): 705-17.
[http://dx.doi.org/10.1017/S1041610219001200] [PMID: 31526407]
[163]
Hu S, Patten SB, Fick G, Smith EE, Ismail Z. Validation of the mild behavioral impairment checklist (MBI-C) in a clinic-based sample. Alzheimers Dement 2019; 15: P365.
[http://dx.doi.org/10.1016/j.jalz.2019.06.872]
[164]
Mallo SC, Ismail Z, Pereiro AX, et al. Assessing mild behavioral impairment with the mild behavioral impairment-checklist in people with mild cognitive impairment. J Alzheimers Dis 2018; 66(1): 83-95.
[http://dx.doi.org/10.3233/JAD-180131] [PMID: 30175974]
[165]
Mallo SC, Ismail Z, Pereiro AX, et al. Assessing mild behavioral impairment with the mild behavioral impairment checklist in people with subjective cognitive decline. Int Psychogeriatr 2019; 31(2): 231-9.
[http://dx.doi.org/10.1017/S1041610218000698] [PMID: 30017017]
[166]
Matsuoka T, Ismail Z, Narumoto J. Prevalence of mild behavioral impairment and risk of dementia in a psychiatric outpatient clinic. J Alzheimers Dis 2019; 70(2): 505-13.
[http://dx.doi.org/10.3233/JAD-190278] [PMID: 31177229]
[167]
Kassam F, Chen H-Y, Nosheny RL, et al. Cognitive profile of mild behavioral impairment (MBI) in brain health registry participants. Alzheimers Dement 2020; 16(S6): e047673.
[http://dx.doi.org/10.1002/alz.047673]
[168]
Ismail Z, Elbayoumi H, Fischer CE, et al. Prevalence of depression in patients with mild cognitive impairment: a systematic review and meta-analysis. JAMA Psychiatry 2017; 74(1): 58-67.
[http://dx.doi.org/10.1001/jamapsychiatry.2016.3162] [PMID: 27893026]
[169]
Ismail Z, McGirr A, Gill S, Hu S, Forkert ND, Smith EE. Mild behavioral impairment and subjective cognitive decline predict cognitive and functional decline. J Alzheimers Dis 2021; 80(1): 459-69.
[http://dx.doi.org/10.3233/JAD-201184] [PMID: 33554909]
[170]
Nathan S, Gill S, Ismail Z. Highlights From the Alzheimer's Association International Conference 2020. Alzheimer’s Association International Conference (AAIC), Chicago, July 30, 2020.
[171]
Lussier FZ, Pascoal TA, Chamoun M, et al. Mild behavioral impairment is associated with β‐amyloid but not tau or neurodegeneration in cognitively intact elderly individuals. Alzheimers Dement 2020; 16(1): 192-9.
[http://dx.doi.org/10.1002/alz.12007] [PMID: 31914223]
[172]
Miao R, et al. Plasma β-amyloid in mild behavioural impairment-neuropsychiatric symptoms on the Alzheimer’s continuum. J Geriatr Psychiatry Neurol 2021; 35(3): 434-41.
[http://dx.doi.org/10.1177/08919887211016068] [PMID: 34036829]
[173]
Lussier F, et al. Mild behavioral impairment is associated with beta-amyloid and tau across the alzheimer’s disease spectrum. J Cereb Blood Flow Metab 2019; 39: 158-9.
[174]
Johansson M, Stomrud E, Insel PS, et al. Mild behavioral impairment and its relation to tau pathology in preclinical Alzheimer’s disease. Transl Psychiatry 2021; 11(1): 76.
[http://dx.doi.org/10.1038/s41398-021-01206-z] [PMID: 33500386]
[175]
Gill S, et al. Diffusion tensor imaging in pre-dementia risk states: white matter atrophy findings in mildbehavioral impairment (P5. 1-025). Neurology 2019; 92: P5.1-025.
[176]
Yoon EJ, Ismail Z, Hanganu A, et al. Mild behavioral impairment is linked to worse cognition and brain atrophy in Parkinson disease. Neurology 2019; 93(8): e766-77.
[http://dx.doi.org/10.1212/WNL.0000000000007968] [PMID: 31320470]
[177]
Naude JP, Gill S, Hu S, et al. Plasma neurofilament Light: a marker of cognitive decline in mild behavioural impairment. J Alzheimers Dis 2020; 76(3): 1017-27.
[http://dx.doi.org/10.3233/JAD-200011] [PMID: 32597801]
[178]
Andrews SJ, Ismail Z, Anstey KJ, Mortby M. Association of Alzheimer’s genetic loci with mild behavioral impairment. Am J Med Genet B Neuropsychiatr Genet 2018; 177(8): 727-35.
[http://dx.doi.org/10.1002/ajmg.b.32684] [PMID: 30378268]
[179]
Creese B, Arathimos R, Brooker H, et al. Genetic risk for Alzheimer’s disease, cognition, and mild behavioral impairment in healthy older adults. Alzheimers Dement 2021; 13(1): e12164.
[http://dx.doi.org/10.1002/dad2.12164] [PMID: 33748395]
[180]
Wolfova K, Creese B, Aarsland D, et al. Sex differences in the association of mild behavioral impairment with cognitive aging. medRxiv 2021.
[http://dx.doi.org/10.1101/2021.05.20.21257514]
[181]
Mortby ME, Black SE, Gauthier S, et al. Dementia clinical trial implications of mild behavioral impairment. Int Psychogeriatr 2018; 30(2): 171-5.
[http://dx.doi.org/10.1017/S1041610218000042] [PMID: 29448970]
[182]
Ismail Z, Creese B, Aarsland D, et al. Psychosis in Alzheimer disease-mechanisms, genetics and therapeutic opportunities. Nat Rev Neurol 2022; 18: 131-44.
[183]
Blackman J, Swirski M, Clynes J, et al. Pharmacological and non-pharmacological interventions to enhance sleep in mild cognitive impairment and mild Alzheimer’s disease: A systematic review. J Sleep Res 2021; 30(9): e13229.
[PMID: 33289311]
[184]
Zucchella C, Sinforiani E. tamburin S et al. The Multidisciplinary approach to Alzheimer’s Disease and Dementia. A narrative review of Non-Pharmacological Treatment. Front Neurol 2018; 9: 1058.
[PMID: 30619031]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy