Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Ferrocene Derivatives as New Generation of Antimalarial Agents: Opportunity or Illusion?

Author(s): Shrawan Kumar Mangawa and Shailja Singh*

Volume 23, Issue 16, 2023

Published on: 19 May, 2023

Page: [1503 - 1521] Pages: 19

DOI: 10.2174/1568026623666230228153114

Price: $65

Abstract

Despite significant scientific progress over the last two decades, malaria remains a global burden that causes thousands of deaths every year. In the absence of effective and practical preventive measures, the only current option for reducing the mortality and morbidity of malaria is chemotherapy. However, due to the minimal stock of active antiparasitic analogs, issues of toxicity, and the repeated appearance of drug resistance, scientists must broaden the arsenal of existing therapies beyond conventional medicinal chemistry. To curb this menace, a series of potential metal-based hybrids have been synthesized and screened. Ferrocene is one of the potent organometallic candidates and the hybridization of ferrocene with other pharmacophores results in compounds with enhanced biological activities. Many researchers have reported the ferrocene compounds as potent pharmacophores and useful as anticancer and antimalarial agents when hybridized with other pharmaceutical hybrids. Drug, such as Ferroquine (FQ, SSR97193), is currently the most advanced organometallic compound developed from the hybridization of ferrocene and chloroquine and has demonstrated great potency in clinical trials against both drug-sensitive and drug-resistant malaria. Not only ferroquine but its derivatives have shown significant activity as antimalarial agents. The present review focuses on the discovery of FQ, the hypothesis of its mode of action, and recent clinical trials of ferrocene compounds as a new class of antimalarial agents. The structure-activity relationship (SAR) of ferrocene derivatives is also discussed to provide insight into the rational design of more effective antimalarial candidates. Finally, efforts have been made to discuss the future expectations for ferrocene-based antimalarial drugs.

Keywords: Malaria, Organometallic compounds, Drug-sensitive, Drug-resistance, Ferrocene, Ferroquine, Structure-activity relationship.

Graphical Abstract
[1]
Berman, J.J. Taxonomic Guide to Infectious Diseases: Understanding the Biologic Classes of Pathogenic Organisms, First edition , 2012; p. 103-109.
[2]
Menkin-Smith, L.; Winders, W.T. Plasmodium Vivax Malaria. 2019.
[3]
Adams, J.H.; Mueller, I. The biology of Plasmodium vivax. Cold Spring Harb. Perspect. Med., 2017, 7(9), a025585.
[http://dx.doi.org/10.1101/cshperspect.a025585] [PMID: 28490540]
[4]
World Health Organization (WHO). World Malaria Report. 2021. Available from: https://www.who.int/publications/i/item/9789240040496
[5]
Global Malaria Control and Elimination: Report of a technical review. January 17-18, 2008. Geneva, Switzerland.
[6]
World Health Organization (WHO). The Global Malaria Action Plan For a malaria free world. 2008. Available from: https://www.afro.who.int/publications/global-malaria-action-plan-malaria-free-world
[7]
Centers for disease Control and Prevention (CDC). Elimination of Malaria in the United States, 1947-1951. Available from: www.cdc.gov/malaria/about/history/elimination_us.html
[8]
David, B.; Jacoby, M.D.; Youngson, R.M. Encyclopedia Of. Fam. Health, 2005.
[9]
Gelb, M.H. Drug discovery for malaria: A very challenging and timely endeavor. Curr. Opin. Chem. Biol., 2007, 11(4), 440-445.
[http://dx.doi.org/10.1016/j.cbpa.2007.05.038] [PMID: 17761335]
[10]
Rosenthal, P.J. Antimalarial drug discovery: Old and new approaches. J. Exp. Biol., 2003, 206(21), 3735-3744.
[http://dx.doi.org/10.1242/jeb.00589] [PMID: 14506208]
[11]
Ridley, R.G. Medical need, scientific opportunity and the drive for antimalarial drugs. Nature, 2002, 415(6872), 686-693.
[http://dx.doi.org/10.1038/415686a] [PMID: 11832957]
[12]
Wellems, T.E.; Plowe, C.V. Chloroquine‐resistant malaria. J. Infect. Dis., 2001, 184(6), 770-776.
[http://dx.doi.org/10.1086/322858] [PMID: 11517439]
[13]
Nosten, F.; White, N.J. Artemisinin-based combination treatment of falciparum malaria. Am. J. Trop. Med. Hyg., 2007, 77(S6), 181-192.
[http://dx.doi.org/10.4269/ajtmh.2007.77.181] [PMID: 18165491]
[14]
World Health Organization (WHO). Global Malaria Programme. Available from: https://www.who.int/teams/global-malaria-programme/guidelines-for-malaria
[15]
Dondorp, A.M.; Fairhurst, R.M.; Slutsker, L.; Macarthur, J.R.; Breman, J.G.; Guerin, P.J.; Wellems, T.E.; Ringwald, P.; Newman, R.D.; Plowe, C.V. The threat of artemisinin-resistant malaria. N. Engl. J. Med., 2011, 365(12), 1073-1075.
[http://dx.doi.org/10.1056/NEJMp1108322] [PMID: 21992120]
[16]
Ashley, E.A.; Dhorda, M.; Fairhurst, R.M.; Amaratunga, C.; Lim, P.; Suon, S.; Sreng, S.; Anderson, J.M.; Mao, S.; Sam, B.; Sopha, C.; Chuor, C.M.; Nguon, C.; Sovannaroth, S.; Pukrittayakamee, S.; Jittamala, P.; Chotivanich, K.; Chutasmit, K.; Suchatsoonthorn, C.; Runcharoen, R.; Hien, T.T.; Thuy-Nhien, N.T.; Thanh, N.V.; Phu, N.H.; Htut, Y.; Han, K.T.; Aye, K.H.; Mokuolu, O.A.; Olaosebikan, R.R.; Folaranmi, O.O.; Mayxay, M.; Khanthavong, M.; Hongvanthong, B.; Newton, P.N.; Onyamboko, M.A.; Fanello, C.I.; Tshefu, A.K.; Mishra, N.; Valecha, N.; Phyo, A.P.; Nosten, F.; Yi, P.; Tripura, R.; Borrmann, S.; Bashraheil, M.; Peshu, J.; Faiz, M.A.; Ghose, A.; Hossain, M.A.; Samad, R.; Rahman, M.R.; Hasan, M.M.; Islam, A.; Miotto, O.; Amato, R.; MacInnis, B.; Stalker, J.; Kwiatkowski, D.P.; Bozdech, Z.; Jeeyapant, A.; Cheah, P.Y.; Sakulthaew, T.; Chalk, J.; Intharabut, B.; Silamut, K.; Lee, S.J.; Vihokhern, B.; Kunasol, C.; Imwong, M.; Tarning, J.; Taylor, W.J.; Yeung, S.; Woodrow, C.J.; Flegg, J.A.; Das, D.; Smith, J.; Venkatesan, M.; Plowe, C.V.; Stepniewska, K.; Guerin, P.J.; Dondorp, A.M.; Day, N.P.; White, N.J. Spread of artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med., 2014, 371(5), 411-423.
[http://dx.doi.org/10.1056/NEJMoa1314981] [PMID: 25075834]
[17]
Phyo, A.P.; Ashley, E.A.; Anderson, T.J.C.; Bozdech, Z.; Carrara, V.I.; Sriprawat, K.; Nair, S.; White, M.M.; Dziekan, J.; Ling, C.; Proux, S.; Konghahong, K.; Jeeyapant, A.; Woodrow, C.J.; Imwong, M.; McGready, R.; Lwin, K.M.; Day, N.P.J.; White, N.J.; Nosten, F. Declining efficacy of artemisinin combination therapy Against P. falciparum malaria on the Thai-Myanmar Border (2003-2013): The role of parasite genetic factors. Clin. Infect. Dis., 2016, 63(6), 784-791.
[http://dx.doi.org/10.1093/cid/ciw388] [PMID: 27313266]
[18]
Navarro, M.; Gabbiani, C.; Messori, L.; Gambino, D. Metal-based drugs for malaria, trypanosomiasis and leishmaniasis: Recent achievements and perspectives. Drug Discov. Today, 2010, 15(23-24), 1070-1078.
[http://dx.doi.org/10.1016/j.drudis.2010.10.005] [PMID: 20974285]
[19]
Jaouen, G.; Metzler-Nolte, N. Medicinal organometallic chemistry. In: Topics in Organometallic Chemistry; Springer Publishing: Berlin, Germany, 2010; 32, p. 32.
[20]
Abid, M.; Singh, S.; Egan, T.J.; Joshi, M.C. Structural-activity relationship of metallo-aminoquines as next generation antimalarials. Curr. Top. Med. Chem., 2022, 22(6), 436-472.
[http://dx.doi.org/10.2174/1568026622666220105103751] [PMID: 34986771]
[21]
Navarro, M. Gold complexes as potential anti-parasitic agents. Coord. Chem. Rev., 2009, 253(11-12), 1619-1626.
[http://dx.doi.org/10.1016/j.ccr.2008.12.003]
[22]
Sharma, B.; Kumar, V. Has ferrocene really delivered its role in accentuating the bioactivity of organic scaffolds? J. Med. Chem., 2021, 64(23), 16865-16921.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00390] [PMID: 34792350]
[23]
Fayolle, M.; Ionita, M.; Krishna, S.; Morin, C.; Patel, A.P. Probing structure/affinity relationships for the Plasmodium falciparum hexose transporter with glucose derivatives. Bioorg. Med. Chem. Lett., 2006, 16(5), 1267-1271.
[http://dx.doi.org/10.1016/j.bmcl.2005.11.068] [PMID: 16361099]
[24]
Ferreira, C.L.; Ewart, C.B.; Barta, C.A.; Little, S.; Yardley, V.; Martins, C.; Polishchuk, E.; Smith, P.J.; Moss, J.R.; Merkel, M.; Adam, M.J.; Orvig, C. Synthesis, structure, and biological activity of ferrocenyl carbohydrate conjugates. Inorg. Chem., 2006, 45(20), 8414-8422.
[http://dx.doi.org/10.1021/ic061166p] [PMID: 16999442]
[25]
Rathod, G.K.; Jain, M.; Sharma, K.K.; Das, S.; Basak, A.; Jain, R. New structural classes of antimalarials. Eur. J. Med. Chem., 2022, 242, 114653-114676.
[http://dx.doi.org/10.1016/j.ejmech.2022.114653] [PMID: 35985254]
[26]
Ornelas, C. Application of ferrocene and its derivatives in cancer research. New J. Chem., 2011, 35(10), 1973-1985.
[http://dx.doi.org/10.1039/c1nj20172g]
[27]
Ludwig, B.S.; Correia, J.D.G.; Kühn, F.E. Ferrocene derivatives as anti-infective agents. Coord. Chem. Rev., 2019, 396, 22-48.
[http://dx.doi.org/10.1016/j.ccr.2019.06.004]
[28]
Liu, Y.; Xin, H.; Yin, J.; Yin, D.; Yang, Z.; Li, J. Synthesis of novel ferrocenyl Mannich bases and their antibacterial activities. J. Mol. Struct., 2018, 1157, 482-485.
[http://dx.doi.org/10.1016/j.molstruc.2017.12.089]
[29]
Chen, P.; Liu, C.; Hu, J.; Zhang, H.; Sun, R. Design, synthesis and fungicidal activity studies of 3-ferrocenyl-N-acryloylmorpholine. J. Organomet. Chem., 2018, 854, 113-121.
[http://dx.doi.org/10.1016/j.jorganchem.2017.11.015]
[30]
Roux, C.; Biot, C. Ferrocene-based antimalarials. Future Med. Chem., 2012, 4(6), 783-797.
[http://dx.doi.org/10.4155/fmc.12.26] [PMID: 22530641]
[31]
Langmuir, I. Types of valence. Science, 1921, 54(1386), 59-67.
[http://dx.doi.org/10.1126/science.54.1386.59] [PMID: 17843674]
[32]
a) Wilkinson, G.; Rosenblum, M.; Whiting, M.C.; Woodward, R.B. The structure of iron bis-cyclopentadienyL. J. Am. Chem. Soc., 1952, 74(8), 2125-2126.
[http://dx.doi.org/10.1021/ja01128a527];
b) Fischer, E.O.; Pfab, W. Cyclopentadien-metallkomplexe, ein neuer typ metallorganischer verbindungen. Z. Naturforsch. B. J. Chem. Sci., 1952, 7(7), 377-379.
[http://dx.doi.org/10.1515/znb-1952-0701]
[33]
Reshetnikov, V.; Daum, S.; Janko, C.; Karawacka, W.; Tietze, R.; Alexiou, C.; Paryzhak, S.; Dumych, T.; Bilyy, R.; Tripal, P.; Schmid, B.; Palmisano, R.; Mokhir, A. ROS-responsive n-alkylaminoferrocenes for cancer-cell-specific targeting of mitochondria. Angew. Chem. Int. Ed., 2018, 57(37), 11943-11946.
[http://dx.doi.org/10.1002/anie.201805955] [PMID: 30035345]
[34]
Leonidova, A.; Anstaett, P.; Pierroz, V.; Mari, C.; Spingler, B.; Ferrari, S.; Gasser, G. Induction of cytotoxicity through photorelease of aminoferrocene. Inorg. Chem., 2015, 54(20), 9740-9748.
[http://dx.doi.org/10.1021/acs.inorgchem.5b01332] [PMID: 26440628]
[35]
Osella, D.; Ferrali, M.; Zanello, P.; Laschi, F.; Fontani, M.; Nervi, C.; Cavigiolio, G. On the mechanism of the antitumor activity of ferrocenium derivatives. Inorg. Chim. Acta, 2000, 306(1), 42-48.
[http://dx.doi.org/10.1016/S0020-1693(00)00147-X]
[36]
Loev, B.; Flores, M. Ferrocene derivatives. J. Org. Chem., 1961, 26(9), 3595.
[http://dx.doi.org/10.1021/jo01067a657]
[37]
Biot, C.; Glorian, G.; Maciejewski, L.A.; Brocard, J.S.; Domarle, O.; Blampain, G.; Millet, P.; Georges, A.J.; Abessolo, H.; Dive, D.; Lebibi, J. Synthesis and antimalarial activity in vitro and in vivo of a new ferrocene-chloroquine analogue. J. Med. Chem., 1997, 40(23), 3715-3718.
[http://dx.doi.org/10.1021/jm970401y] [PMID: 9371235]
[38]
Dubar, F.; Egan, T.J.; Pradines, B.; Kuter, D.; Ncokazi, K.K.; Forge, D.; Paul, J.F.; Pierrot, C.; Kalamou, H.; Khalife, J.; Buisine, E.; Rogier, C.; Vezin, H.; Forfar, I.; Slomianny, C.; Trivelli, X.; Kapishnikov, S.; Leiserowitz, L.; Dive, D.; Biot, C. The antimalarial ferroquine: Role of the metal and intramolecular hydrogen bond in activity and resistance. ACS Chem. Biol., 2011, 6(3), 275-287.
[http://dx.doi.org/10.1021/cb100322v] [PMID: 21162558]
[39]
Clinicaltrials.gov. Comparative safety and activity with ferroquine associated with artesunate versus amodiaquine associated with artesunate in African patients with uncomplicated malaria. Available from: http://clinicaltrials.gov/ct2/show/
[40]
Held, J.; Supan, C.; Salazar, C.L.O.; Tinto, H.; Bonkian, L.N.; Nahum, A.; Moulero, B.; Sié, A.; Coulibaly, B.; Sirima, S.B.; Siribie, M.; Otsyula, N.; Otieno, L.; Abdallah, A.M.; Kimutai, R.; Bouyou-Akotet, M.; Kombila, M.; Koiwai, K.; Cantalloube, C.; Din-Bell, C.; Djeriou, E.; Waitumbi, J.; Mordmüller, B.; Ter-Minassian, D.; Lell, B.; Kremsner, P.G. Ferroquine and artesunate in African adults and children with Plasmodium falciparum malaria: a phase 2, multicentre, randomised, double-blind, dose-ranging, non-inferiority study. Lancet Infect. Dis., 2015, 15(12), 1409-1419.
[http://dx.doi.org/10.1016/S1473-3099(15)00079-1] [PMID: 26342427]
[42]
Biot, C.; Taramelli, D.; Forfar-Bares, I.; Maciejewski, L.A.; Boyce, M.; Nowogrocki, G.; Brocard, J.S.; Basilico, N.; Olliaro, P.; Egan, T.J. Insights into the mechanism of action of ferroquine. Relationship between physicochemical properties and antiplasmodial activity. Mol. Pharm., 2005, 2(3), 185-193.
[http://dx.doi.org/10.1021/mp0500061] [PMID: 15934779]
[43]
Chavain, N.; Vezin, H.; Dive, D.; Touati, N.; Paul, J.F.; Buisine, E.; Biot, C. Investigation of the redox behavior of the new antimalarial, ferroquine. Mol. Pharm., 2008, 5, 710-716.
[http://dx.doi.org/10.1021/mp800007x] [PMID: 18563912]
[44]
Biot, C.; Chavain, N.; Dubar, F.; Pradines, B.; Trivelli, X.; Brocard, J.; Forfar, I.; Dive, D. Structure-activity relationships of 4-N-substituted ferroquine analogues: Time to re-evaluate the mechanism of action of ferroquine. J. Organomet. Chem., 2009, 694(6), 845-854.
[http://dx.doi.org/10.1016/j.jorganchem.2008.09.033]
[45]
Christensen, S.B. Textbook of Drug Design and Discovery; CRC Press: FL, USA, 2010.
[46]
Wells, T.N.C.; van Huijsduijnen, R.H. Ferroquine: Welcome to the next generation of antimalarials. Lancet Infect. Dis., 2015, 15(12), 1365-1366.
[http://dx.doi.org/10.1016/S1473-3099(15)00148-6] [PMID: 26342426]
[47]
Dubar, F.; Slomianny, C.; Khalife, J.; Dive, D.; Kalamou, H.; Guérardel, Y.; Grellier, P.; Biot, C. The ferroquine antimalarial conundrum: redox activation and reinvasion inhibition. Angew. Chem. Int. Ed., 2013, 52(30), 7690-7693.
[http://dx.doi.org/10.1002/anie.201303690] [PMID: 23765846]
[48]
Kaiser, M.; Wittlin, S.; Nehrbass-Stuedli, A.; Dong, Y.; Wang, X.; Hemphill, A.; Matile, H.; Brun, R.; Vennerstrom, J.L. Peroxide bond-dependent antiplasmodial specificity of artemisinin and OZ277 (RBx11160). Antimicrob. Agents Chemother., 2007, 51(8), 2991-2993.
[http://dx.doi.org/10.1128/AAC.00225-07] [PMID: 17562801]
[49]
Klonis, N.; Creek, D.J.; Tilley, L. Iron and heme metabolism in Plasmodium falciparum and the mechanism of action of artemisinins. Curr. Opin. Microbiol., 2013, 16(6), 722-727.
[http://dx.doi.org/10.1016/j.mib.2013.07.005] [PMID: 23932203]
[50]
Klonis, N.; Xie, S.C.; McCaw, J.M.; Crespo-Ortiz, M.P.; Zaloumis, S.G.; Simpson, J.A.; Tilley, L. Altered temporal response of malaria parasites determines differential sensitivity to artemisinin. Proc. Natl. Acad. Sci., 2013, 110(13), 5157-5162.
[http://dx.doi.org/10.1073/pnas.1217452110] [PMID: 23431146]
[51]
Chotivanich, K.; Udomsangpetch, R.; Dondorp, A.; Williams, T.; Angus, B.; Simpson, J.A.; Pukrittayakamee, S.; Looareesuwan, S.; Newbold, C.I.; White, N.J. The mechanisms of parasite clearance after antimalarial treatment of Plasmodium falciparum malaria. J. Infect. Dis., 2000, 182(2), 629-633.
[http://dx.doi.org/10.1086/315718] [PMID: 10915102]
[52]
Buffet, P.A.; Milon, G.; Brousse, V.; Correas, J.M.; Dousset, B.; Couvelard, A.; Kianmanesh, R.; Farges, O.; Sauvanet, A.; Paye, F.; Ungeheuer, M.N.; Ottone, C.; Khun, H.; Fiette, L.; Guigon, G.; Huerre, M.; Mercereau-Puijalon, O.; David, P.H. Ex vivo perfusion of human spleens maintains clearing and processing functions. Blood, 2006, 107(9), 3745-3752.
[http://dx.doi.org/10.1182/blood-2005-10-4094] [PMID: 16384927]
[53]
Pasupureddy, R. Atul; Seshadri, S.; Pande, V.; Dixit, R.; Pandey, K.C. Current scenario and future strategies to fight artemisinin resistance. Parasitol. Res., 2019, 118(1), 29-42.
[http://dx.doi.org/10.1007/s00436-018-6126-x]
[54]
World Health Organization (WHO). Guidelines for the treatment of malaria. 2015. Available from: https://apps.who.int/iris/handle/10665/162441
[55]
Wang, X.; Dong, Y.; Wittlin, S.; Charman, S.A.; Chiu, F.C.K.; Chollet, J.; Katneni, K.; Mannila, J.; Morizzi, J.; Ryan, E.; Scheurer, C.; Steuten, J.; Santo Tomas, J.; Snyder, C.; Vennerstrom, J.L. Comparative antimalarial activities and ADME profiles of ozonides (1,2,4-trioxolanes) OZ277, OZ439, and their 1,2-dioxolane, 1,2,4-trioxane, and 1,2,4,5-tetraoxane isosteres. J. Med. Chem., 2013, 56(6), 2547-2555.
[http://dx.doi.org/10.1021/jm400004u] [PMID: 23489135]
[56]
Hu, Y.Q.; Gao, C.; Zhang, S.; Xu, L.; Xu, Z.; Feng, L.S.; Wu, X.; Zhao, F. Quinoline hybrids and their antiplasmodial and antimalarial activities. Eur. J. Med. Chem., 2017, 139, 22-47.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.061] [PMID: 28800458]
[57]
Delhaes, L.; Biot, C.; Berry, L.; Maciejewski, L.A.; Camus, D.; Brocard, J.S.; Dive, D. Novel ferrocenic artemisinin derivatives: synthesis, in vitro antimalarial activity and affinity of binding with ferroprotoporphyrin IX. Bioorg. Med. Chem., 2000, 8(12), 2739-2745.
[http://dx.doi.org/10.1016/S0968-0896(00)00206-6] [PMID: 11131165]
[58]
Reiter, C.; Fröhlich, T.; Zeino, M.; Marschall, M.; Bahsi, H.; Leidenberger, M.; Friedrich, O.; Kappes, B.; Hampel, F.; Efferth, T.; Tsogoeva, S.B. New efficient artemisinin derived agents against human leukemia cells, human cytomegalovirus and Plasmodium falciparum: 2nd generation 1,2,4-trioxane-ferrocene hybrids. Eur. J. Med. Chem., 2015, 97, 164-172.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.053] [PMID: 25965779]
[59]
de Lange, C.; Coertzen, D.; Smit, F.J.; Wentzel, J.F.; Wong, H.N.; Birkholtz, L.M.; Haynes, R.K.; N’Da, D.D. Synthesis, in vitro antimalarial activities and cytotoxicities of amino-artemisinin-ferrocene derivatives. Bioorg. Med. Chem. Lett., 2018, 28(3), 289-292.
[http://dx.doi.org/10.1016/j.bmcl.2017.12.057] [PMID: 29317166]
[60]
de Lange, C.; Coertzen, D.; Smit, F.J.; Wentzel, J.F.; Wong, H.N.; Birkholtz, L.M.; Haynes, R.K.; N’Da, D.D. Synthesis, antimalarial activities and cytotoxicities of amino-artemisinin-1,2-disubstituted ferrocene hybrids. Bioorg. Med. Chem. Lett., 2018, 28(19), 3161-3163.
[http://dx.doi.org/10.1016/j.bmcl.2018.08.037] [PMID: 30174153]
[61]
Fröhlich, T. Çapcı Karagöz, A.; Reiter, C.; Tsogoeva, S.B. Artemisinin-derived dimers: Potent antimalarial and anti-cancer agents. J. Med. Chem., 2016, 59(16), 7360-7388.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01380] [PMID: 27010926]
[62]
Reiter, C. Çapcı Karagöz, A.; Fröhlich, T.; Klein, V.; Zeino, M.; Viertel, K.; Held, J.; Mordmüller, B.; Emirdağ Öztürk, S.; Anıl, H.; Efferth, T.; Tsogoeva, S.B. Synthesis and study of cytotoxic activity of 1,2,4-trioxane- and egonol-derived hybrid molecules against Plasmodium falciparum and multidrug-resistant human leukemia cells. Eur. J. Med. Chem., 2014, 75, 403-412.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.043] [PMID: 24561670]
[63]
Kumar, S.; Bawa, S.; Gupta, H. Biological activities of quinoline derivatives. Mini Rev. Med. Chem., 2009, 9(14), 1648-1654.
[http://dx.doi.org/10.2174/138955709791012247] [PMID: 20088783]
[64]
Foley, M.; Tilley, L. Quinoline antimalarials: Mechanisms of action and resistance and prospects for new agents. Pharmacol. Ther., 1998, 79(1), 55-87.
[http://dx.doi.org/10.1016/S0163-7258(98)00012-6] [PMID: 9719345]
[65]
Wani, W.A.; Jameel, E.; Baig, U.; Mumtazuddin, S.; Hun, L.T. Ferroquine and its derivatives: New generation of antimalarial agents. Eur. J. Med. Chem., 2015, 101, 534-551.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.009] [PMID: 26188909]
[66]
Loeb, F. ACTIVITY of a new antimalarial agent, chloroquine (SN 7618). J. Am. Med. Assoc., 1946, 130(16), 1069-1070.
[http://dx.doi.org/10.1001/jama.1946.02870160015006] [PMID: 21019115]
[67]
Biot, C.; Delhaes, L.; N’Diaye, C.M.; Maciejewski, L.A.; Camus, D.; Dive, D.; Brocard, J.S. Synthesis and antimalarial activity in vitro of potential metabolites of ferrochloroquine and related compounds. Bioorg. Med. Chem., 1999, 7(12), 2843-2847.
[http://dx.doi.org/10.1016/S0968-0896(99)00224-2] [PMID: 10658588]
[68]
Wenzel, N.I.; Chavain, N.; Wang, Y.; Friebolin, W.; Maes, L.; Pradines, B.; Lanzer, M.; Yardley, V.; Brun, R.; Herold-Mende, C.; Biot, C.; Tóth, K.; Davioud-Charvet, E. Antimalarial versus cytotoxic properties of dual drugs derived from 4-aminoquinolines and Mannich bases: interaction with DNA. J. Med. Chem., 2010, 53(8), 3214-3226.
[http://dx.doi.org/10.1021/jm9018383] [PMID: 20329733]
[69]
Biot, C.; Daher, W.; Ndiaye, C.M.; Melnyk, P.; Pradines, B.; Chavain, N.; Pellet, A.; Fraisse, L.; Pelinski, L.; Jarry, C.; Brocard, J.; Khalife, J.; Forfar-Bares, I.; Dive, D. Probing the role of the covalent linkage of ferrocene into a chloroquine template. J. Med. Chem., 2006, 49(15), 4707-4714.
[http://dx.doi.org/10.1021/jm060259d] [PMID: 16854077]
[70]
Inam, A.; Siddiqui, S.M.; Macedo, T.S.; Moreira, D.R.M.; Leite, A.C.L.; Soares, M.B.P.; Azam, A. Design, synthesis and biological evaluation of 3-[4-(7-chloro-quinolin-4-yl)-piperazin-1-yl]-propionic acid hydrazones as antiprotozoal agents. Eur. J. Med. Chem., 2014, 75, 67-76.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.023] [PMID: 24530492]
[71]
Mwande Maguene, G.; Lekana-Douki, J.B.; Mouray, E.; Bousquet, T.; Grellier, P.; Pellegrini, S.; Toure Ndouo, F.S.; Lebibi, J.; Pélinski, L. Synthesis and in vitro antiplasmodial activity of ferrocenyl aminoquinoline derivatives. Eur. J. Med. Chem., 2015, 90, 519-525.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.065] [PMID: 25486423]
[72]
N’Da, D.D.; Breytenbach, J.C.; Smith, P.J.; Lategan, C. Synthesis, cytotoxicity and antimalarial activity of ferrocenyl amides of 4-aminoquinolines. Arzneimittelforschung, 2010, 60(10), 627-635.
[PMID: 21125814]
[73]
N-Da. D.; Breytenbach, J.; Smith, P.; Lategan, C. Synthesis and in vitro antiplasmodial activity of quinoline-ferrocene esters. Arzneimittelforschung, 2011, 61(6), 358-365.
[http://dx.doi.org/10.1055/s-0031-1296211] [PMID: 21827047]
[74]
Patti, A.; Pedotti, S.; Grassi, T.; Idolo, A.; Guido, M.; De Donno, A. Synthesis of 2-ferrocenylquinoline derivatives and evaluation of their antimalarial activity. J. Organomet. Chem., 2012, 716, 216-221.
[http://dx.doi.org/10.1016/j.jorganchem.2012.06.025]
[75]
Baartzes, N.; Stringer, T.; Seldon, R.; Warner, D.F.; Taylor, D.; Wittlin, S.; Chibale, K.; Smith, G.S. Bioisosteric ferrocenyl aminoquinoline-benzimidazole hybrids: Antimicrobial evaluation and mechanistic insights. Eur. J. Med. Chem., 2019, 180, 121-133.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.069] [PMID: 31301563]
[76]
Raj, R.; Saini, A.; Gut, J.; Rosenthal, P.J.; Kumar, V. Synthesis and in vitro antiplasmodial evaluation of 7-chloroquinoline-chalcone and 7-chloroquinoline-ferrocenylchalcone conjugates. Eur. J. Med. Chem., 2015, 95, 230-239.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.045] [PMID: 25817773]
[77]
Herrmann, C.; Salas, P.F.; Patrick, B.O.; de Kock, C.; Smith, P.J.; Adam, M.J.; Orvig, C. 1,2-Disubstituted ferrocenyl carbohydrate chloroquine conjugates as potential antimalarial agents. Dalton Trans., 2012, 41(21), 6431-6442.
[http://dx.doi.org/10.1039/c2dt12050j] [PMID: 22378031]
[78]
Herrmann, C.; Salas, P.F.; Cawthray, J.F.; de Kock, C.; Patrick, B.O.; Smith, P.J.; Adam, M.J.; Orvig, C. 1,10-Disubstituted ferrocenyl carbohydrate chloroquine conjugates as potential antimalarials. Organometallics, 2012, 31(16), 5736-5747.
[http://dx.doi.org/10.1021/om300354x]
[79]
Chavain, N.; Davioud-Charvet, E.; Trivelli, X.; Mbeki, L.; Rottmann, M.; Brun, R.; Biot, C. Antimalarial activities of ferroquine conjugates with either glutathione reductase inhibitors or glutathione depletors via a hydrolyzable amide linker. Bioorg. Med. Chem., 2009, 17(23), 8048-8059.
[http://dx.doi.org/10.1016/j.bmc.2009.10.008] [PMID: 19864147]
[80]
Dondorp, A.M.; Nosten, F.; Yi, P.; Das, D.; Phyo, A.P.; Tarning, J.; Lwin, K.M.; Ariey, F.; Hanpithakpong, W.; Lee, S.J.; Ringwald, P.; Silamut, K.; Imwong, M.; Chotivanich, K.; Lim, P.; Herdman, T.; An, S.S.; Yeung, S.; Singhasivanon, P.; Day, N.P.J.; Lindegardh, N.; Socheat, D.; White, N.J. Artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med., 2009, 361(5), 455-467.
[http://dx.doi.org/10.1056/NEJMoa0808859] [PMID: 19641202]
[81]
Bellot, F.; Coslédan, F.; Vendier, L.; Brocard, J.; Meunier, B.; Robert, A. Trioxaferroquines as new hybrid antimalarial drugs. J. Med. Chem., 2010, 53(10), 4103-4109.
[http://dx.doi.org/10.1021/jm100117e] [PMID: 20443628]
[82]
Biot, C.; Daher, W.; Chavain, N.; Fandeur, T.; Khalife, J.; Dive, D.; De Clercq, E. Design and synthesis of hydroxyferroquine derivatives with antimalarial and antiviral activities. J. Med. Chem., 2006, 49(9), 2845-2849.
[http://dx.doi.org/10.1021/jm0601856] [PMID: 16640347]
[83]
Scovill, J.P.; Klayman, D.L.; Lambros, C.; Childs, G.E.; Notsch, J.D. 2-Acetylpyridine thiosemicarbazones. 9. Derivatives of 2-acetylpyridine 1-oxide as potential antimalarial agents. J. Med. Chem., 1984, 27(1), 87-91.
[http://dx.doi.org/10.1021/jm00367a019] [PMID: 6361258]
[84]
Ames, J.R.; Ryan, M.D.; Klyman, D.L.; Kovacic, P. Charge transfer and oxy radicals in antimalarial action. Quinones, dapsone metabolites, metal complexes, imunium ions, and peroxides. J. Free Radic. Biol. Med., 1985, 1(5-6), 353-361.
[http://dx.doi.org/10.1016/0748-5514(85)90147-3] [PMID: 3837802]
[85]
Biot, C.; Pradines, B.; Sergeant, M.H.; Gut, J.; Rosenthal, P.J.; Chibale, K. Design, synthesis, and antimalarial activity of structural chimeras of thiosemicarbazone and ferroquine analogues. Bioorg. Med. Chem. Lett., 2007, 17(23), 6434-6438.
[http://dx.doi.org/10.1016/j.bmcl.2007.10.003] [PMID: 17949976]
[86]
Howarth, J.; Hanlon, K. Novel N-ferrocenylmethyl, N′-methyl-2-substituted benzimidazolium iodide salts with in vitro activity against the P. falciparum malarial parasite strain NF54. Tetrahedron Lett., 2001, 42(4), 751-754.
[http://dx.doi.org/10.1016/S0040-4039(00)02106-7]
[87]
dos Santos Filho, J.M. de Queiroz e Silva, D.M.A.; Macedo, T.S.; Teixeira, H.M.P.; Moreira, D.R.M.; Challal, S.; Wolfender, J.L.; Queiroz, E.F.; Soares, M.B.P. Conjugation of N-acylhydrazone and 1,2,4-oxadiazole leads to the identification of active antimalarial agents. Bioorg. Med. Chem., 2016, 24(22), 5693-5701.
[http://dx.doi.org/10.1016/j.bmc.2016.09.013] [PMID: 27667552]
[88]
Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev., 2017, 117(12), 7762-7810.
[http://dx.doi.org/10.1021/acs.chemrev.7b00020] [PMID: 28488435]
[89]
Sahu, N.K.; Balbhadra, S.S.; Choudhary, J.; Kohli, D.V. Exploring pharmacological significance of chalcone scaffold: A review. Curr. Med. Chem., 2012, 19(2), 209-225.
[http://dx.doi.org/10.2174/092986712803414132] [PMID: 22320299]
[90]
Rammohan, A.; Reddy, J.S.; Sravya, G.; Rao, C.N.; Zyryanov, G.V. Chalcone synthesis, properties and medicinal applications: a review. Environ. Chem. Lett., 2020, 18, 433-458.
[http://dx.doi.org/10.1007/s10311-019-00959-w]
[91]
Qin, H.L.; Zhang, Z.W.; Lekkala, R.; Alsulami, H.; Rakesh, K.P. Chalcone hybrids as privileged scaffolds in antimalarial drug discovery: A key review. Eur. J. Med. Chem., 2020, 193, 112215.
[http://dx.doi.org/10.1016/j.ejmech.2020.112215] [PMID: 32179331]
[92]
Mahapatra, D.K.; Bharti, S.K.; Asati, V.; Singh, S.K. Perspectives of medicinally privileged chalcone based metal coordination compounds for biomedical applications. Eur. J. Med. Chem., 2019, 174, 142-158.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.032] [PMID: 31035237]
[93]
Xiao, J.; Sun, Z.; Kong, F.; Gao, F. Current scenario of ferrocene-containing hybrids for antimalarial activity. Eur. J. Med. Chem., 2020, 185, 111791.
[http://dx.doi.org/10.1016/j.ejmech.2019.111791] [PMID: 31669852]
[94]
Dive, D.; Biot, C. Ferrocene conjugates of chloroquine and other antimalarials: the development of ferroquine, a new antimalarial. ChemMedChem, 2008, 3(3), 383-391.
[http://dx.doi.org/10.1002/cmdc.200700127] [PMID: 17806092]
[95]
Wu, X.; Wilairat, P.; Go, M.L. Antimalarial activity of ferrocenyl chalcones. Bioorg. Med. Chem. Lett., 2002, 12(17), 2299-2302.
[http://dx.doi.org/10.1016/S0960-894X(02)00430-4] [PMID: 12161120]
[96]
Dubar, F.; Anquetin, G.; Pradines, B.; Dive, D.; Khalife, J.; Biot, C. Enhancement of the antimalarial activity of ciprofloxacin using a double prodrug/bioorganometallic approach. J. Med. Chem., 2009, 52(24), 7954-7957.
[http://dx.doi.org/10.1021/jm901357n] [PMID: 19908867]
[97]
Guillon, J.; Moreau, S.; Mouray, E.; Sinou, V.; Forfar, I.; Fabre, S.B.; Desplat, V.; Millet, P.; Parzy, D.; Jarry, C.; Grellier, P. New ferrocenic pyrrolo[1,2-a]quinoxaline derivatives: Synthesis, and in vitro antimalarial activity. Bioorg. Med. Chem., 2008, 16(20), 9133-9144.
[http://dx.doi.org/10.1016/j.bmc.2008.09.038] [PMID: 18819813]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy