Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Review Article

Synthesis and SAR of Potential Anti-Cancer Agents of Quinoline Analogues: A Review

Author(s): Sonakshi Tyagi, Salahuddin*, Avijit Mazumder, Rajnish Kumar, Vimal Datt, Km Shabana, Mohammad Shahar Yar and Mohamed Jawed Ahsan

Volume 19, Issue 8, 2023

Published on: 31 March, 2023

Page: [785 - 812] Pages: 28

DOI: 10.2174/1573406419666230228140619

Price: $65

Abstract

Quinoline has recently become an important heterocyclic molecule due to its numerous industrial and synthetic organic chemistry applications. Quinoline derivatives have been used in clinical trials for a variety of medical conditions that causes cancer. The present literature study is composed of recent progress (mainly from 2010 to the present) in the production of novel quinoline derivatives as potential anti-cancer agents, as well as their structure-activity relationship, which will provide insight into the development of more active quinoline hybrids in the future.

The present review comprises the synthetic protocols of biologically active Quinoline analogs with their structure-activity relationship studies as anti-cancer agents, which provide depth view of work done on quinoline derivatives to the medicinal chemist for future research.

Keywords: Cancer, quinoline, synthetic approach, anti-cancer activity, cancer cell lines, structure-activity relationship.

Graphical Abstract
[1]
Keum, N.; Giovannucci, E. Global burden of colorectal cancer: Emerging trends, risk factors and prevention strategies. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(12), 713-732.
[http://dx.doi.org/10.1038/s41575-019-0189-8] [PMID: 31455888]
[2]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer, 2021, 149(4), 778-789.
[http://dx.doi.org/10.1002/ijc.33588] [PMID: 33818764]
[3]
Welch, D.R.; Hurst, D.R. Defining the hallmarks of metastasis. Cancer Res., 2019, 79(12), 3011-3027.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-0458] [PMID: 31053634]
[4]
Langley, R.R.; Fidler, I.J. Tumor cell-organ microenvironment interactions in the pathogenesis of cancer metastasis. Endocr. Rev., 2007, 28(3), 297-321.
[http://dx.doi.org/10.1210/er.2006-0027] [PMID: 17409287]
[5]
Kundu, J.K.; Surh, Y.J. Emerging avenues linking inflammation and cancer. Free Radic. Biol. Med., 2012, 52(9), 2013-2037.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.02.035] [PMID: 22391222]
[6]
Williams, S.G.; Stein, J.P. Molecular pathways in bladder cancer. Urol. Res., 2004, 32(6), 373-385.
[http://dx.doi.org/10.1007/s00240-003-0345-y] [PMID: 15551095]
[7]
Jiang, WG; Sanders, AJ; Katoh, M; Ungefroren, H; Gieseler, F; Prince, M; Thompson, SK; Zollo, M; Spano, D; Dhawan, P; Sliva, D Tissue invasion and metastasis: Molecular, biological and clinical perspectives. In: Seminars in cancer biology; Academic Press, 2015; Vol. 35, pp. S244-S275.
[http://dx.doi.org/10.1016/j.semcancer.2015.03.008]
[8]
Shah, J.P.; Gil, Z. Current concepts in management of oral cancer – Surgery. Oral Oncol., 2009, 45(4-5), 394-401.
[http://dx.doi.org/10.1016/j.oraloncology.2008.05.017] [PMID: 18674952]
[9]
Amer, M.H. Gene therapy for cancer: present status and future perspective. Mol. Cell. Ther., 2014, 2(1), 27.
[http://dx.doi.org/10.1186/2052-8426-2-27] [PMID: 26056594]
[10]
Yadav, D.K.; Rai, R.; Kumar, N.; Singh, S.; Misra, S.; Sharma, P.; Shaw, P.; Pérez-Sánchez, H.; Mancera, R.L.; Choi, E.H.; Kim, M.; Pratap, R. New arylated benzo[h]quinolines induce anti-cancer activity by oxidative stress-mediated DNA damage. Sci. Rep., 2016, 6(1), 38128.
[http://dx.doi.org/10.1038/srep38128] [PMID: 27922047]
[11]
Gupta, V.; Trivedi, P. In vitro and in vivo characterization of pharmaceutical topical nanocarriers containing anticancer drugs for skin cancer treatment. Lipid nanocarriers for drug targeting; William Andrew Publishing, 2018, pp. 563-627.
[http://dx.doi.org/10.1016/B978-0-12-813687-4.00015-3]
[12]
Luqmani, Y.A. Mechanisms of drug resistance in cancer chemotherapy. Med. Princ. Pract., 2005, 14(Suppl. 1), 35-48.
[http://dx.doi.org/10.1159/000086183] [PMID: 16103712]
[13]
Ghosh, S.; Lalani, R.; Patel, V.; Bardoliwala, D.; Maiti, K.; Banerjee, S.; Bhowmick, S.; Misra, A. Combinatorial nanocarriers against drug resistance in hematological cancers: Opportunities and emerging strategies. J. Control. Release, 2019, 296, 114-139.
[http://dx.doi.org/10.1016/j.jconrel.2019.01.011] [PMID: 30664978]
[14]
Martins, P.; Jesus, J.; Santos, S.; Raposo, L.; Roma-Rodrigues, C.; Baptista, P.; Fernandes, A. Heterocyclic anticancer compounds: recent advances and the paradigm shift towards the use of nanomedicine’s tool box. Molecules, 2015, 20(9), 16852-16891.
[http://dx.doi.org/10.3390/molecules200916852] [PMID: 26389876]
[15]
Bhatnagar, I.; Kim, S.K. Marine antitumor drugs: status, shortfalls and strategies. Mar. Drugs, 2010, 8(10), 2702-2720.
[http://dx.doi.org/10.3390/md8102702] [PMID: 21116415]
[16]
Jain, S.; Chandra, V.; Kumar Jain, P.; Pathak, K.; Pathak, D.; Vaidya, A. Comprehensive review on current developments of quinoline-based anticancer agents. Arab. J. Chem., 2019, 12(8), 4920-4946.
[http://dx.doi.org/10.1016/j.arabjc.2016.10.009]
[17]
Weyesa, A.; Mulugeta, E. Recent advances in the synthesis of biologically and pharmaceutically active quinoline and its analogues: a review. RSC Advances, 2020, 10(35), 20784-20793.
[http://dx.doi.org/10.1039/D0RA03763J] [PMID: 35517753]
[18]
Batista, V.F.; Pinto, D.C.G.A.; Silva, A.M.S. Synthesis of quinolines: A green perspective. ACS Sustain. Chem.& Eng., 2016, 4(8), 4064-4078.
[http://dx.doi.org/10.1021/acssuschemeng.6b01010]
[19]
Marella, A.; Tanwar, O.P.; Saha, R.; Ali, M.R.; Srivastava, S.; Akhter, M.; Shaquiquzzaman, M.; Alam, M.M. Quinoline: A versatile heterocyclic. Saudi Pharm. J., 2013, 21(1), 1-12.
[http://dx.doi.org/10.1016/j.jsps.2012.03.002] [PMID: 23960814]
[20]
Aboelnaga, A. EL-Sayed, T.H. Click synthesis of new 7-chloroquinoline derivatives by using ultrasound irradiation and evaluation of their biological activity. Green Chem. Lett. Rev., 2018, 11(3), 254-263.
[http://dx.doi.org/10.1080/17518253.2018.1473505]
[21]
Teng, P.; Li, C.; Peng, Z.; Anne Marie, V.; Nimmagadda, A.; Su, M.; Li, Y.; Sun, X.; Cai, J. Facilely accessible quinoline derivatives as potent antibacterial agents. Bioorg. Med. Chem., 2018, 26(12), 3573-3579.
[http://dx.doi.org/10.1016/j.bmc.2018.05.031] [PMID: 29858158]
[22]
Behera, S.; Mohanty, P.; Behura, R.; Nath, B.; Barick, A.K.; Jali, B.R. Antibacterial Properties of Quinoline Derivatives: A Mini-Review. Biointerface Res. Appl. Chem., 2021, 12(5), 6078-6092.
[http://dx.doi.org/10.33263/BRIAC125.60786092]
[23]
Fekadu, M.; Zeleke, D.; Abdi, B.; Guttula, A.; Eswaramoorthy, R.; Melaku, Y. Synthesis, in silico molecular docking analysis, pharmacokinetic properties and evaluation of antibacterial and antioxidant activities of fluoroquinolines. BMC Chem., 2022, 16(1), 1-8.
[http://dx.doi.org/10.1186/s13065-022-00795-0] [PMID: 35027086]
[24]
Nagargoje, A.A.; Akolkar, S.V.; Siddiqui, M.M.; Subhedar, D.D.; Sangshetti, J.N.; Khedkar, V.M.; Shingate, B.B. Quinoline based monocarbonyl curcumin analogs as potential antifungal and antioxidant agents: Synthesis, bioevaluation and molecular docking study. Chem. Biodivers., 2020, 17(2), e1900624.
[http://dx.doi.org/10.1002/cbdv.201900624] [PMID: 31863703]
[25]
Wilhelm, E.A.; Ferreira, A.T.; Pinz, M.P.; Reis, A.S.D.; Vogt, A.G.; Stein, A.L.; Zeni, G.; Luchese, C. Antioxidant effect of quinoline derivatives containing or not selenium: Relationship with antinociceptive action quinolines are antioxidant and antinociceptive. An. Acad. Bras. Cienc., 2017, 89(1)(Suppl.), 457-467.
[http://dx.doi.org/10.1590/0001-3765201720160668] [PMID: 28538816]
[26]
George, R.F.; Samir, E.M.; Abdelhamed, M.N.; Abdel-Aziz, H.A.; Abbas, S.E.S. Synthesis and anti-proliferative activity of some new quinoline based 4,5-dihydropyrazoles and their thiazole hybrids as EGFR inhibitors. Bioorg. Chem., 2019, 83, 186-197.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.038] [PMID: 30380447]
[27]
Narasimhamurthy, K.H.; Guruswamy, D.K.M. Chandra; Kallesha, N.; Basappa; Rangappa, K.S. Synthesis of bioactive quinoline acting as anticancer agents and their mode of action using in silico analysis towards Aurora kinase A inhibitors. Chemical Data Collections, 2021, 35, 100768.
[http://dx.doi.org/10.1016/j.cdc.2021.100768]
[28]
Kumar Gupta, S.; Mishra, A. Synthesis, characterization & screening for anti-inflammatory & analgesic activity of quinoline derivatives bearing azetidinones scaffolds. Anti-Inflamm. Anti-Allergy Agent. Med. Chem., 2016, 15(1), 31-43.
[http://dx.doi.org/10.2174/1871523015666160210124545]
[29]
Sureshkumar, B.; Mary, Y.S.; Panicker, C.Y.; Suma, S.; Armaković, S.; Armaković, S.J.; Van Alsenoy, C.; Narayana, B. Quinoline derivatives as possible lead compounds for anti-malarial drugs: Spectroscopic, DFT and MD study. Arab. J. Chem., 2020, 13(1), 632-648.
[http://dx.doi.org/10.1016/j.arabjc.2017.07.006]
[30]
Baragaña, B.; Norcross, N.R.; Wilson, C.; Porzelle, A.; Hallyburton, I.; Grimaldi, R.; Osuna-Cabello, M.; Norval, S.; Riley, J.; Stojanovski, L.; Simeons, F.R.C.; Wyatt, P.G.; Delves, M.J.; Meister, S.; Duffy, S.; Avery, V.M.; Winzeler, E.A.; Sinden, R.E.; Wittlin, S.; Frearson, J.A.; Gray, D.W.; Fairlamb, A.H.; Waterson, D.; Campbell, S.F.; Willis, P.; Read, K.D.; Gilbert, I.H. Discovery of a quinoline-4-carboxamide derivative with a novel mechanism of action, multistage antimalarial activity, and potent in vivo efficacy. J. Med. Chem., 2016, 59(21), 9672-9685.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00723] [PMID: 27631715]
[31]
Nqoro, X.; Tobeka, N.; Aderibigbe, B. Quinoline-based hybrid compounds with antimalarial activity. Molecules, 2017, 22(12), 2268.
[http://dx.doi.org/10.3390/molecules22122268] [PMID: 29257067]
[32]
da Rosa Monte Machado, G.; Diedrich, D.; Ruaro, T.C.; Zimmer, A.R.; Lettieri Teixeira, M.; de Oliveira, L.F.; Jean, M.; Van de Weghe, P.; de Andrade, S.F.; Baggio Gnoatto, S.C.; Fuentefria, A.M. Quinolines derivatives as promising new antifungal candidates for the treatment of candidiasis and dermatophytosis. Braz. J. Microbiol., 2020, 51(4), 1691-1701.
[http://dx.doi.org/10.1007/s42770-020-00348-4] [PMID: 32737869]
[33]
Antoci, V.; Oniciuc, L.; Amariucai-Mantu, D.; Moldoveanu, C.; Mangalagiu, V.; Amarandei, A.M.; Lungu, C.N.; Dunca, S.; Mangalagiu, I.I.; Zbancioc, G. Benzoquinoline derivatives: A straightforward and efficient route to antibacterial and antifungal agents. Pharmaceuticals, 2021, 14(4), 335.
[http://dx.doi.org/10.3390/ph14040335] [PMID: 33917439]
[34]
Upadhyay, A.; Kushwaha, P.; Gupta, S.; Dodda, R.P.; Ramalingam, K.; Kant, R.; Goyal, N.; Sashidhara, K.V. Synthesis and evaluation of novel triazolyl quinoline derivatives as potential antileishmanial agents. Eur. J. Med. Chem., 2018, 154, 172-181.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.014] [PMID: 29793211]
[35]
Chanquia, S.N.; Larregui, F.; Puente, V.; Labriola, C.; Lombardo, E.; García Liñares, G. Synthesis and biological evaluation of new quinoline derivatives as antileishmanial and antitrypanosomal agents. Bioorg. Chem., 2019, 83, 526-534.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.053] [PMID: 30469145]
[36]
Xie, Z.F.; Chai, K.Y.; Piao, H.R.; Kwak, K.C.; Quan, Z.S. Synthesis and anticonvulsant activity of 7-alkoxyl-4,5-dihydro-[1,2,4]triazolo[4,3-a]quinolines. Bioorg. Med. Chem. Lett., 2005, 15(21), 4803-4805.
[http://dx.doi.org/10.1016/j.bmcl.2005.07.051] [PMID: 16139502]
[37]
Prachayasittikul, V.; Chan-On, W.; Nguyen Thi Bich, H.; Songtawee, N.; Suwanjang, W.; Prachayasittikul, S. Quinoline-based clioquinol and nitroxoline exhibit anticancer activity inducing FoxM1 inhibition in cholangiocarcinoma cells. Drug Des. Devel. Ther., 2015, 9, 2033-2047.
[http://dx.doi.org/10.2147/DDDT.S79313] [PMID: 25897210]
[38]
Zhang, S.; Won, Y.K.; Ong, C.N.; Shen, H.M. Anti-cancer potential of sesquiterpene lactones: bioactivity and molecular mechanisms. Curr. Med. Chem. Anticancer Agents, 2005, 5(3), 239-249.
[http://dx.doi.org/10.2174/1568011053765976] [PMID: 15992352]
[39]
Yadav, P.; Shah, K. Quinolines, a perpetual, multipurpose scaffold in medicinal chemistry. Bioorg. Chem., 2021, 109, 104639.
[http://dx.doi.org/10.1016/j.bioorg.2021.104639] [PMID: 33618829]
[40]
Hussaini, S.M.A. Therapeutic significance of quinolines: a patent review (2013-2015). Expert Opin. Ther. Pat., 2016, 26(10), 1201-1221.
[http://dx.doi.org/10.1080/13543776.2016.1216545] [PMID: 27458877]
[41]
Shalini, K.V.; Kumar, V. Have molecular hybrids delivered effective anti-cancer treatments and what should future drug discovery focus on? Expert Opin. Drug Discov., 2021, 16(4), 335-363.
[http://dx.doi.org/10.1080/17460441.2021.1850686] [PMID: 33305635]
[42]
Martino, E.; Della Volpe, S.; Terribile, E.; Benetti, E.; Sakaj, M.; Centamore, A.; Sala, A.; Collina, S. The long story of camptothecin: From traditional medicine to drugs. Bioorg. Med. Chem. Lett., 2017, 27(4), 701-707.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.085] [PMID: 28073672]
[43]
Vandekerckhove, S.; D’hooghe, M. Quinoline-based antimalarial hybrid compounds. Bioorg. Med. Chem., 2015, 23(16), 5098-5119.
[http://dx.doi.org/10.1016/j.bmc.2014.12.018] [PMID: 25593097]
[44]
Nesaragi, A.R.; Kamble, R.R.; Bayannavar, P.K.; Shaikh, S.K.J.; Hoolageri, S.R.; Kodasi, B.; Joshi, S.D.; Kumbar, V.M. Microwave assisted regioselective synthesis of quinoline appended triazoles as potent anti-tubercular and antifungal agents via copper (I) catalyzed cycloaddition. Bioorg. Med. Chem. Lett., 2021, 41, 127984.
[http://dx.doi.org/10.1016/j.bmcl.2021.127984] [PMID: 33766768]
[45]
DeMartinis, N., III; Lopez, R.N.; Pickering, E.H.; Schmidt, C.J.; Gertsik, L.; Walling, D.P.; Ogden, A. A proof-of-concept study evaluating the phosphodiesterase 10A inhibitor PF-02545920 in the adjunctive treatment of suboptimally controlled symptoms of schizophrenia. J. Clin. Psychopharmacol., 2019, 39(4), 318-328.
[http://dx.doi.org/10.1097/JCP.0000000000001047] [PMID: 31205187]
[46]
Abdellatif, K.R.A.; Abdelall, E.K.A.; Abdelgawad, M.A.; Amin, D.M.E.; Omar, H.A. Design, synthesis and biological evaluation of new 4-(4-substituted-anilino)quinoline derivatives as anticancer agents. Med. Chem. Res., 2017, 26(5), 929-939.
[http://dx.doi.org/10.1007/s00044-017-1798-9]
[47]
Bispo, M.L.F.; de Alcantara, C.C.; de Moraes, M.O.; do Ó Pessoa, C.; Rodrigues, F.A.R.; Kaiser, C.R.; Wardell, S.M.S.V.; Wardell, J.L.; de Souza, M.V.N. A new and potent class of quinoline derivatives against cancer. Monatsh. Chem., 2015, 146(12), 2041-2052.
[http://dx.doi.org/10.1007/s00706-015-1570-0]
[48]
Karnik, K.S.; Sarkate, A.P.; Tiwari, S.V.; Azad, R.; Burra, P.V.L.S.; Wakte, P.S. Computational and Synthetic approach with Biological Evaluation of Substituted Quinoline derivatives as small molecule L858R/T790M/C797S triple mutant EGFR inhibitors targeting resistance in Non-Small Cell Lung Cancer (NSCLC). Bioorg. Chem., 2021, 107, 104612.
[http://dx.doi.org/10.1016/j.bioorg.2020.104612] [PMID: 33476869]
[49]
Marganakop, S.B.; Kamble, R.R.; Hoskeri, J.; Prasad, D.J.; Meti, G.Y. Facile synthesis of novel quinoline derivatives as anticancer agents. Med. Chem. Res., 2014, 23(6), 2727-2735.
[http://dx.doi.org/10.1007/s00044-013-0855-2]
[50]
Abbas, S.H.; Abd El-Hafeez, A.A.; Shoman, M.E.; Montano, M.M.; Hassan, H.A. New quinoline/chalcone hybrids as anti-cancer agents: Design, synthesis, and evaluations of cytotoxicity and PI3K inhibitory activity. Bioorg. Chem., 2019, 82, 360-377.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.064] [PMID: 30428415]
[51]
Ökten, S.; Çakmak, O.; Erenler, R.; Yüce, Ö.S; Teki̇n, Ş Simple and convenient preparation of novel 6,8-disubstituted quinoline derivatives and their promising anticancer activities. Turk. J. Chem., 2013, 37(6), 896-908.
[http://dx.doi.org/10.3906/kim-1301-30]
[52]
Hamdy, R.; Elseginy, S.; Ziedan, N.; Jones, A.; Westwell, A. New quinoline-based heterocycles as anticancer agents targeting bcl-2. Molecules, 2019, 24(7), 1274.
[http://dx.doi.org/10.3390/molecules24071274] [PMID: 30986908]
[53]
Kumar, AS; Kumar, RA; Satyanarayana, V; Reddy, EP; Reddy, BJ; Kumar, DN; Khurana, A; Chandraiah, G; Yadav, JS Catalyst-free synthesis of novel 6-Phenyl-6 H-chromeno [4, 3-b] quinoline derivatives at RT: Their further structure evaluation leads to potential anti-cancer agents. Nat. Prod. Commun., 2017, 12(7), 1934578X1701200732.
[http://dx.doi.org/10.1177/1934578X1701200732]
[54]
Sangani, C.B.; Makawana, J.A.; Zhang, X.; Teraiya, S.B.; Lin, L.; Zhu, H.L. Design, synthesis and molecular modeling of pyrazole–quinoline–pyridine hybrids as a new class of antimicrobial and anticancer agents. Eur. J. Med. Chem., 2014, 76, 549-557.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.018] [PMID: 24607998]
[55]
Ahsan, M.J.; Shastri, S.; Yadav, R.; Hassan, M.Z.; Bakht, M.A.; Jadav, S.S.; Yasmin, S. Synthesis and antiproliferative activity of some quinoline and oxadiazole derivatives. Org. Chem. Int., 2016, 2016, 1-10.
[http://dx.doi.org/10.1155/2016/9589517]
[56]
Ghorab, M.M.; Bashandy, M.S.; Alsaid, M.S. Novel thiophene derivatives with sulfonamide, isoxazole, benzothiazole, quinoline and anthracene moieties as potential anticancer agents. Acta Pharm., 2014, 64(4), 419-431.
[http://dx.doi.org/10.2478/acph-2014-0035] [PMID: 25531783]
[57]
Bingul, M.; Tan, O.; Gardner, C.; Sutton, S.; Arndt, G.; Marshall, G.; Cheung, B.; Kumar, N.; Black, D. Synthesis, characterization and anti-cancer activity of hydrazide derivatives incorporating a quinoline moiety. Molecules, 2016, 21(7), 916.
[http://dx.doi.org/10.3390/molecules21070916] [PMID: 27428941]
[58]
Mulakayala, N.; Rambabu, D.; Raja, M.R. M, C.; Kumar, C.S.; Kalle, A.M.; Rama Krishna, G.; Malla Reddy, C.; Basaveswara Rao, M.V.; Pal, M. Ultrasound mediated catalyst free synthesis of 6H-1-benzopyrano[4,3-b]quinolin-6-ones leading to novel quinoline derivatives: Their evaluation as potential anti-cancer agents. Bioorg. Med. Chem., 2012, 20(2), 759-768.
[http://dx.doi.org/10.1016/j.bmc.2011.12.001] [PMID: 22202437]
[59]
Shobeiri, N.; Rashedi, M.; Mosaffa, F.; Zarghi, A.; Ghandadi, M.; Ghasemi, A.; Ghodsi, R. Synthesis and biological evaluation of quinoline analogues of flavones as potential anticancer agents and tubulin polymerization inhibitors. Eur. J. Med. Chem., 2016, 114, 14-23.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.069] [PMID: 26974371]
[60]
Sri Ramya, P.V.; Guntuku, L.; Angapelly, S.; Karri, S.; Digwal, C.S.; Babu, B.N.; Naidu, V.G.M.; Kamal, A. Curcumin inspired 2-chloro/phenoxy quinoline analogues: Synthesis and biological evaluation as potential anticancer agents. Bioorg. Med. Chem. Lett., 2018, 28(5), 892-898.
[http://dx.doi.org/10.1016/j.bmcl.2018.01.070] [PMID: 29429834]
[61]
Arafa, R.K.; Hegazy, G.H.; Piazza, G.A.; Abadi, A.H. Synthesis and in vitro antiproliferative effect of novel quinoline-based potential anticancer agents. Eur. J. Med. Chem., 2013, 63, 826-832.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.008] [PMID: 23584545]
[62]
Malayeri, S.O.; Abnous, K.; Arab, A.; Akaberi, M.; Mehri, S.; Zarghi, A.; Ghodsi, R. Design, synthesis and biological evaluation of 7-(aryl)-2,3-dihydro-[1,4]dioxino[2,3- g]quinoline derivatives as potential Hsp90 inhibitors and anticancer agents. Bioorg. Med. Chem., 2017, 25(3), 1294-1302.
[http://dx.doi.org/10.1016/j.bmc.2016.12.050] [PMID: 28073608]
[63]
venkatarao, V.; Kumar, L.; Jha, A.; Sridhar, G. Synthesis and biological evaluation of chalcone fused quinoline derivatives as anticancer agents. Chemical Data Collections, 2019, 22, 100236.
[http://dx.doi.org/10.1016/j.cdc.2019.100236]
[64]
Vyas, V.K.; Qureshi, G.; Oza, D.; Patel, H.; Parmar, K.; Patel, P.; Ghate, M.D. Synthesis of 2-,4,-6-, and/or 7-substituted quinoline derivatives as human dihydroorotate dehydrogenase (hDHODH) inhibitors and anticancer agents: 3D QSAR-assisted design. Bioorg. Med. Chem. Lett., 2019, 29(7), 917-922.
[http://dx.doi.org/10.1016/j.bmcl.2019.01.038] [PMID: 30738663]
[65]
Chen, Y.L.; Hung, H.M.; Lu, C.M.; Li, K.C.; Tzeng, C.C. Synthesis and anticancer evaluation of certain indolo[2,3-b]quinoline derivatives. Bioorg. Med. Chem., 2004, 12(24), 6539-6546.
[http://dx.doi.org/10.1016/j.bmc.2004.09.025] [PMID: 15556770]
[66]
Chen, Y.; Chen, I.; Wang, T.; Han, C.; Tzeng, C. Synthesis and anticancer evaluation of certain 4-anilinofuro[2,3-]quinoline and 4-anilinofuro[3,2-]quinoline derivatives. Eur. J. Med. Chem., 2005, 40(9), 928-934.
[http://dx.doi.org/10.1016/j.ejmech.2005.04.003] [PMID: 15913847]
[67]
Guan, Y.F.; Liu, X.J.; Yuan, X.Y.; Liu, W.B.; Li, Y.R.; Yu, G.X.; Tian, X.Y.; Zhang, Y.B.; Song, J.; Li, W.; Zhang, S.Y. Design, Synthesis, and Anticancer Activity Studies of Novel Quinoline-Chalcone Derivatives. Molecules, 2021, 26(16), 4899.
[http://dx.doi.org/10.3390/molecules26164899] [PMID: 34443487]
[68]
Ren, Y.; Ruan, Y.; Cheng, B.; Li, L.; Liu, J.; Fang, Y.; Chen, J. Design, synthesis and biological evaluation of novel acridine and quinoline derivatives as tubulin polymerization inhibitors with anticancer activities. Bioorg. Med. Chem., 2021, 46, 116376.
[http://dx.doi.org/10.1016/j.bmc.2021.116376] [PMID: 34455231]
[69]
Patil, S.K.; Vibhute, B.T. Synthesis, characterization, anticancer and DNA photocleavage study of novel quinoline Schiff base and its metal complexes. Arab. J. Chem., 2021, 14(8), 103285.
[http://dx.doi.org/10.1016/j.arabjc.2021.103285]
[70]
Abdelsalam, E.A.; Zaghary, W.A.; Amin, K.M.; Abou Taleb, N.A.; Mekawey, A.A.I.; Eldehna, W.M.; Abdel-Aziz, H.A.; Hammad, S.F. Synthesis and in vitro anticancer evaluation of some fused indazoles, quinazolines and quinolines as potential EGFR inhibitors. Bioorg. Chem., 2019, 89, 102985.
[http://dx.doi.org/10.1016/j.bioorg.2019.102985] [PMID: 31121559]
[71]
Kumbhakonam, S.; Saroj, S.; Venkatesan, N.; Devarajan, K.; Manheri, M.K. Reactive Pt(II) center as part of redox-active quinoline-based heterocyclic scaffolds toward new anticancer leads. Bioorg. Med. Chem. Lett., 2020, 30(22), 127594.
[http://dx.doi.org/10.1016/j.bmcl.2020.127594] [PMID: 33010449]
[72]
Mirzaei, S.; Hadizadeh, F.; Eisvand, F.; Mosaffa, F.; Ghodsi, R. Synthesis, structure-activity relationship and molecular docking studies of novel quinoline-chalcone hybrids as potential anticancer agents and tubulin inhibitors. J. Mol. Struct., 2020, 1202, 127310.
[http://dx.doi.org/10.1016/j.molstruc.2019.127310]
[73]
He, R.; Xu, B.; Ping, L.; Lv, X. Structural optimization towards promising β-methyl-4-acrylamido quinoline derivatives as PI3K/mTOR dual inhibitors for anti-cancer therapy: The in vitro and in vivo biological evaluation. Eur. J. Med. Chem., 2021, 214, 113249.
[http://dx.doi.org/10.1016/j.ejmech.2021.113249] [PMID: 33561608]
[74]
Singh Patel, K.; Chandra Rathi, J.; Dhiman, N. Design, synthesis and molecular modeling of new quinoline analogues as potential anti-cancer agents. Mater. Today Proc., 2020, 28, 77-84.
[http://dx.doi.org/10.1016/j.matpr.2020.01.305]
[75]
Tham, P.T.; Chinh, P.T.; Tuyen, N.V.; Bang, D.N.; Van, D.T.; Kien, V.T.; Thanh, H.T.; Quynh, D.H.; Cuong, V.D.; Thanh, N.H.; Pérez-Encabo, A. Synthesis and cytotoxic evaluation of novel simplified plinabulin-quinoline derivatives. Mendeleev Commun., 2021, 31(2), 213-215.
[http://dx.doi.org/10.1016/j.mencom.2021.03.022]
[76]
Ribeiro, A.G.; Almeida, S.M.V.; de Oliveira, J.F.; Souza, T.R.C.L.; Santos, K.L.; Albuquerque, A.P.B.; Nogueira, M.C.B.L.; Carvalho, Junior, L.B.; Moura, R.O.; da Silva, A.C.; Pereira, V.R.A.; Castro, M.C.A.B.; Lima, M.C.A. Novel 4-quinoline-thiosemicarbazone derivatives: Synthesis, antiproliferative activity, in vitro and in silico biomacromolecule interaction studies and topoisomerase inhibition. Eur. J. Med. Chem., 2019, 182, 111592.
[http://dx.doi.org/10.1016/j.ejmech.2019.111592] [PMID: 31421632]
[77]
Jafari, F.; Baghayi, H.; Lavaee, P.; Hadizadeh, F.; Soltani, F.; Moallemzadeh, H.; Mirzaei, S.; Aboutorabzadeh, S.M.; Ghodsi, R. Design, synthesis and biological evaluation of novel benzo- and tetrahydrobenzo-[h]quinoline derivatives as potential DNA-intercalating antitumor agents. Eur. J. Med. Chem., 2019, 164, 292-303.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.060] [PMID: 30599418]
[78]
Jin, G.; Li, Z.; Xiao, F.; Qi, X.; Sun, X. Optimization of activity localization of quinoline derivatives: Design, synthesis, and dual evaluation of biological activity for potential antitumor and antibacterial agents. Bioorg. Chem., 2020, 99, 103837.
[http://dx.doi.org/10.1016/j.bioorg.2020.103837] [PMID: 32299019]
[79]
Ghorab, M.; Ragab, F.; Hamed, M. Synthesis and docking studies of some novel quinoline derivatives bearing a sulfonamide moiety as possible anticancer agents. Arzneimittelforschung, 2011, 60(3), 141-148.
[http://dx.doi.org/10.1055/s-0031-1296263] [PMID: 20422946]
[80]
Kasaboina, S.; Ramineni, V.; Banu, S.; Bandi, Y.; Nagarapu, L.; Dumala, N.; Grover, P. Iodine mediated pyrazolo-quinoline derivatives as potent anti-proliferative agents. Bioorg. Med. Chem. Lett., 2018, 28(4), 664-667.
[http://dx.doi.org/10.1016/j.bmcl.2018.01.023] [PMID: 29409753]
[81]
Tseng, C.H.; Chen, Y.L.; Lu, P.J.; Yang, C.N.; Tzeng, C.C. Synthesis and antiproliferative evaluation of certain indeno[1,2-c]quinoline derivatives. Bioorg. Med. Chem., 2008, 16(6), 3153-3162.
[http://dx.doi.org/10.1016/j.bmc.2007.12.028] [PMID: 18180162]
[82]
Ammar, Y.A.; Elhagali, G.A.M.; Abusaif, M.S.; Selim, M.R.; Zahran, M.A.; Naser, T.; Mehany, A.B.M.; Fayed, E.A. Carboxamide appended quinoline moieties as potential anti-proliferative agents, apoptotic inducers and Pim-1 kinase inhibitors. Med. Chem. Res., 2021, 30(9), 1649-1668.
[http://dx.doi.org/10.1007/s00044-021-02765-y]
[83]
Abdelbaset, M.S.; Abuo-Rahma, G.E.D.A.; Abdelrahman, M.H.; Ramadan, M.; Youssif, B.G.M.; Bukhari, S.N.A.; Mohamed, M.F.A.; Abdel-Aziz, M. Novel pyrrol-2(3H)-ones and pyridazin-3(2H)-ones carrying quinoline scaffold as anti-proliferative tubulin polymerization inhibitors. Bioorg. Chem., 2018, 80, 151-163.
[http://dx.doi.org/10.1016/j.bioorg.2018.06.003] [PMID: 29920422]
[84]
Shah, S.R.; Katariya, K.D.; Reddy, D. Quinoline‐1, 3‐Oxazole hybrids: syntheses, anticancer activity and molecular docking studies. Chem. Select, 2020, 5(3), 1097-1102.
[http://dx.doi.org/10.1002/slct.201903763]
[85]
Kardile, R.A.; Sarkate, A.P.; Borude, A.S.; Mane, R.S.; Lokwani, D.K.; Tiwari, S.V.; Azad, R.; Burra, P.V.L.S.; Thopate, S.R. Design and synthesis of novel conformationally constrained 7,12-dihydrodibenzo[b,h][1,6] naphthyridine and 7H-Chromeno[3,2-c] quinoline derivatives as topoisomerase I inhibitors: In vitro screening, molecular docking and ADME predictions. Bioorg. Chem., 2021, 115, 105174.
[http://dx.doi.org/10.1016/j.bioorg.2021.105174] [PMID: 34314913]
[86]
Wang, Y.; Metcalf, C.A.; Shakespeare, W.C.; Sawyer, T.K.; Regine, B.; Sundaramoorthi, R. Quinoline and uses thereof. US Patent 7009054, 2006.
[87]
Cai, S.X.; Drewe, J.A.; Jiang, S.; Kasibhatla, S.; Kuemmerle, J.D.; Sudath, N.; Zhang, H.Z. Substituted 1-Benzoyl-3-cyanopyrrolo[1,2-A] quinolines and analogs as activators of caspases and inducers of apoptosis. US Patent 7135480, 2006.
[88]
Tzeng, C.C.; Chen, Y.L.; Tseng, C.H.; Lu, P.J. Imino-indeno[1,2-C] quinoline derivative, their preparation processes, and pharmaceutical compositions comprising the same. US Patent 7829567, 2010.
[89]
Phiasivongsa, P.; Redkar, S.G.; Gamage, S.; Brooke, D.; Denny, W.; Bearss, D.J.; Vankayalapati, H.; Xu, Y.; Swierczek, K. Quinoline derivatives for modulating DNA methylation. US Patent 7939546, 2011.
[90]
Gong, P.; Zhao, Y.; Liu, Y.; Zhai, X.; Li, S.; Zhu, W.; Qin, M. Quinoline and cinnoline derivatives and their applications. US Patent 9382232, 2016.
[91]
Gong, P.; Zhao, Y.; Liu, Y.; Zhai, X. Quinoline derivatives and their applications. US Patent 9783499, 2017.
[92]
Lee, H.; Solomon, V.R.; Pundir, S. Quinoline sulfonyl derivatives and uses thereof. US Patent 9975852, 2018.
[93]
Inukai, T.; Takeuchi, J.; Yasuhiro, T. Quinoline derivative. US Patent 10676462, 2020.
[94]
Kosak, K.M. Chloroquine combination drugs and methods for their synthesis. US Patent 0060499, 2007.
[95]
Wissner, A.; Venkatesan, A.M. Pyrimide[5,4-C] quinoline-2,4-Dlamine derivatives and methods of use thereof. US Patent 0234300, 2008.
[96]
Medlen, C.E.; Chibale, K.; Melo, S.D. Inhibition of the growth of tumour cells. International Patent 135886, 2008.
[97]
Agarwal, V.R.; Bhatia, D.; Sonawale, V.; Rathos, M. Cancer combination therapy using imidazole[4,5-C]Quinoline derivatives. International Patent 177915, 2014.
[98]
Sanjuan, L.; Rosa, C.; Meza, G. Derivatives of pyridine and quinoline. European Patent 1710236, 2010.
[99]
Liu, J.O.; Shim, J.S.; Chong, C.R.; Bhat, S.C. Quinoline compounds as inhibitors of angiogenesis, human methionine aminopeptidase and SIRT1, and methods of treating disorders. European Patent 2350012, 2017.
[100]
Saunders, J.; Salituro, F.; Yan, S. Quinoline-8-sulfonamide derivatives having an anticancer activity. European Patent 2448582, 2017.
[101]
Sonia, B.; Antoine, B.; Firas, B.; Philippe, H.; Jerome, C. Substituted 2,4-diamino-quinoline derivatives for use in the treatment of proliferative diseases. European Patent 3452465, 2020.
[102]
Sherer, B.B.; Brugger, N.B. 8-Cyano-5-piperidino-quinolines as TLR7/8 antagonist and their uses for treating immune disorders. European Patent 3889145, 2021.
[103]
Veschi, S.; Carradori, S.; De Lellis, L.; Florio, R.; Brocco, D.; Secci, D.; Guglielmi, P.; Spano, M.; Sobolev, A.P.; Cama, A. Synthesis and evaluation of a large library of nitroxoline derivatives as pancreatic cancer antiproliferative agents. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 1331-1344.
[http://dx.doi.org/10.1080/14756366.2020.1780228] [PMID: 32588672]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy