Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Azo Based Chromogenic Sensor: An Approach for Naked Eye Detection of Biologically Relevant Anions and Metal Cations

Author(s): Kanchan Ramsingh Damade and Dhananjay Hiraman More*

Volume 21, Issue 5, 2024

Published on: 12 June, 2023

Page: [514 - 526] Pages: 13

DOI: 10.2174/1570193X20666230228115500

Price: $65

Open Access Journals Promotions 2
Abstract

It was previously reported that azo compounds are vigorous and chemically stable compounds and well-known chromophores. Having different chromophores, the azo dyes act as probing units for capturing the charged particles either by electron transfer or deprotonation mechanisms. The probing efficiency usually exhibits in the magnitude of variations in UV absorbance, NMR peaks and visually observed color changes. The sensing application is a prerequisite for numerous analytical techniques involved in pharmaceutical as well as pathological discipline. In the last two decades, numerous azo based sensors have been developed, which render low cost and effective sensing approaches towards ionic diagnosis through instantaneous eye beaming chromogenic change. This sensing approach is simple, cost-effective, and precise and provides reliable quantitative and qualitative statistics of an analyte present in a complex environment. Our present study culminates the recent progress on the synthesis of azo compounds and their chromogenic sensing application towards various reactive analytes through reviewing spectral variations and colorimetric observations. This review article assesses the potential of azo dyes in chromogenic sensing for different analytes. We believe this review will be of interest and important for researchers working on designing azo-based chromogenic sensors.

Keywords: Chromogenic sensor, metal cations, chemosensors, supramolecular chemistry, anions, chromophores.

Graphical Abstract
[1]
Higgs, T., Ed.; Technical guide for the environmental management of cyanide in mining; Mining Association of British Columbia, 1992, p. 175.
[2]
Akcil, A.; Mudder, T. Microbial destruction of cyanide wastes in gold mining: Process review. Biotechnol. Lett., 2003, 25(6), 445-450.
[http://dx.doi.org/10.1023/A:1022608213814] [PMID: 12882268]
[3]
Botz, M.; Mudder, T. Assessing risks in mineral processing and water treatment. Mining Environmental Management; Mining Journal Books Ltd.: London, 2003, pp. 9-11.
[4]
de Silva, A.; Fox, D.B.; Huxley, A.J.; Moody, T.S. Combining luminescence, coordination and electron transfer for signalling purposes. Coord. Chem. Rev., 2000, 205(1), 41-57.
[http://dx.doi.org/10.1016/S0010-8545(00)00238-1]
[5]
Baird, C.; Cann, M. The chemistry of natural waters.Environmental Chemistry, 2nd ed; Julet, M., Ed.; WH Freeman and Company: New York, 1999, pp. 421-459.
[6]
Anthemidis, A.; Zachariadis, G.; Stratis, J. On-line preconcentration and determination of copper, lead and chromium(VI) using unloaded polyurethane foam packed column by flame atomic absorption spectrometry in natural waters and biological samples. Talanta, 2002, 58(5), 831-840.
[http://dx.doi.org/10.1016/S0039-9140(02)00373-9] [PMID: 18968813]
[7]
Bispo, M.S.; Korn, M.G.A.; Morte, E.S.B.; Teixeira, L.S.G. Determination of lead in seawater by inductively coupled plasma optical emission spectrometry after separation and pre-concentration with cocrystallized naphthalene alizarin. Spectrochim. Acta B At. Spectrosc., 2002, 57(12), 2175-2180.
[http://dx.doi.org/10.1016/S0584-8547(02)00179-9]
[8]
Pantsar-Kallio, M.; Korpela, A. Analysis of gaseous arsenic species and stability studies of arsine and trimethylarsine by gas chromatography-mass spectrometry. Anal. Chim. Acta, 2000, 410(1-2), 65-70.
[http://dx.doi.org/10.1016/S0003-2670(99)00892-2]
[9]
Fang, G.; Meng, S.; Zhang, G.; Pan, J. Spectrophotometric determination of lead in foods with dibromo-p-methyl-bromosulfonazo. Talanta, 2001, 54(4), 585-589.
[http://dx.doi.org/10.1016/S0039-9140(00)00677-9] [PMID: 18968280]
[10]
(a) Loehr, H.G.; Voegtle, F. Chromo-and fluoroionophores. A new class of dye reagents. Account. Chem. Res., 1996, 18(3), pp. 65-72.;
(b) Sauvage, J.P.; Atwood, J.L. Comprehensive supramolecular chemistry. In: Templating, self-assembly, and self-organization; Pergamon Press, 1996.
[11]
(a) Takagi, M.; Nakamura, H.; Ueno, K. A novel colorimetric reagent for potassium based on crown ether complex formation. Anal. Lett., 1977, 10(13), 1115-1122.
[http://dx.doi.org/10.1080/00032717708067847];
(b) Gunnlaugsson, T.; Nieuwenhuyzen, M.; Richard, L.; Thoss, V. A novel optically based chemosensor for the detection of blood Na+. Tetrahedron Lett., 2001, 42(28), 4725-4728.
[http://dx.doi.org/10.1016/S0040-4039(01)00823-1]
[12]
Dix, J.P.; Vögtle, F. Ion-selective crown ether dyes. Angew. Chem. Int. Ed. Engl., 1978, 17(11), 857-859.
[http://dx.doi.org/10.1002/anie.197808571]
[13]
(a) Gostkowski, M.L.; McDoniel, J.B.; Wei, J.; Curey, T.E.; Shear, J.B. Characterizing spectrally diverse biological chromophores using capillary electrophoresis with multiphoton-excited fluorescence. J. Am. Chem. Soc., 1998, 120(1), 18-22.
[http://dx.doi.org/10.1021/ja9727427];
(b) Fodor, S.P.A.; Rava, R.P.; Huang, X.C.; Pease, A.C.; Holmes, C.P.; Adams, C.L. Multiplexed biochemical assays with biological chips. Nature, 1993, 364(6437), 555-556.
[http://dx.doi.org/10.1038/364555a0] [PMID: 7687751]
[14]
Desvergne, J.P.; Czarnic, A.W. Chemosensors of ions and molecular recognition. Nato Science Series C; Springer Dordrecht, 1993, p. 492.
[http://dx.doi.org/10.1007/978-94-011-3973-1]
[15]
Martínez-Máñez, R.; Sancenón, F. Fluorogenic and chromogenic chemosensors and reagents for anions. Chem. Rev., 2003, 103(11), 4419-4476.
[http://dx.doi.org/10.1021/cr010421e] [PMID: 14611267]
[16]
Seiler, K.; Simon, W. Principles and mechanisms of ion-selective optodes. Sens. Actuators B Chem., 1992, 6(1-3), 295-298.
[http://dx.doi.org/10.1016/0925-4005(92)80073-7]
[17]
Kao, T.L.; Wang, C.C.; Pan, Y.T.; Shiao, Y.J.; Yen, J.Y.; Shu, C.M.; Lee, G.H.; Peng, S.M.; Chung, W.S. Upper rim allyl- and arylazo-coupled calix[4]arenes as highly sensitive chromogenic sensors for Hg2+ ion. J. Org. Chem., 2005, 70(8), 2912-2920.
[http://dx.doi.org/10.1021/jo047880a] [PMID: 15822949]
[18]
(a) Cha, N.R.; Kim, M.Y.; Kim, Y.H.; Choe, J.I.; Chang, S.K. New Hg2+-selective fluoroionophores derived from p-tert-butylcalix [4] arene–azacrown ethers. J. Chem. Society, Perkin Transac., 2002, 6, 1193-1196.;
(b) Kim, J.S.; Shon, O.J.; Yang, S.H.; Kim, J.Y.; Kim, M.J. Chromogenic indoaniline armed-calix [4] azacrowns. J. Org. Chem., 2002, 67(18), 6514-6518.
[PMID: 12201775]
[19]
(a) Klink, R.; Bodart, D.; Lehn, J-M.; Helfert, B.; Bitsch, R. Improvement in shields for puddling-furnaces. Patent 85320, 1983.;
(b) Chapoteau, E.; Czech, B.P.; Gebauer, C.R.; Kumar, A.; Leong, K.; Mytych, D.T.; Zazulak, W.; Desai, D.H.; Luboch, E. Phenylazophenol-quinone phenylhydrazone tautomerism in chromogenic cryptands and corands with inward-facing phenolic units and their acyclic analogs. J. Org. Chem., 1991, 56(7), 2575-2579.
[http://dx.doi.org/10.1021/jo00007a057];
(c) Zazulak, W.; Chapoteau, E.; Czech, B.P.; Kumar, A. Novel cryptand chromoionophores for determination of lithium ions. J. Org. Chem., 1992, 57(25), 6720-6727.
[http://dx.doi.org/10.1021/jo00051a010]
[20]
(a) Oueslati, F.; Dumazet-Bonnamour, I.; Lamartine, R. New chromogenic azocalix[4]arene podands incorporating 2,2′-bipyridyl subunitsElectronic supplementary information (ESI) available: mole ratio plot for mixtures of 4a and Zn(CF3SO3)2; UV-Vis spectra for 4a (5 × 10–6 mol l–1) when Zn2+ (5 × 10–5 mol l–1) is added to the CH2Cl2 host solution. See http://www.rsc.org/suppdata/nj/b2/b209528a/. New J. Chem., 2003, 27(3), 644-647.
[http://dx.doi.org/10.1039/b209528a];
(b) Gunnlaugsson, T.; Leonard, J.P.; Murray, N.S. Highly selective colorimetric naked-eye Cu(II) detection using an azobenzene chemosensor. Org. Lett., 2004, 6(10), 1557-1560.
[http://dx.doi.org/10.1021/ol0498951] [PMID: 15128235];
(c) Gunnlaugsson, T.; Lee, T.C.; Parkesh, R. Cd(II) sensing in water using novel aromatic iminodiacetate based fluorescent chemosensors. Org. Lett., 2003, 5(22), 4065-4068.
[http://dx.doi.org/10.1021/ol035484t] [PMID: 14572250]
[21]
James, T.D.; Sandanayake, K.R.A.S.; Shinkai, S. Novel photoinduced electron-transfer sensor for saccharides based on the interaction of boronic acid and amine. J. Chem. Soc. Chem. Commun., 1994, (4), 477-478.
[http://dx.doi.org/10.1039/c39940000477]
[22]
Masoud, M.S.; Ali, A.E.; Shaker, M.A.; Ghani, M.A. Solvatochromic behavior of the electronic absorption spectra of some azo derivatives of amino pyridines. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2004, 60(13), 3155-3159.
[http://dx.doi.org/10.1016/j.saa.2004.02.030] [PMID: 15477158]
[23]
(a) Khanmohammadi, H.; Darvishpour, M. New azo ligands containing azomethine groups in the pyridazine-based chain: Synthesis and characterization. Dyes Pigments, 2009, 81(3), 167-173.
[http://dx.doi.org/10.1016/j.dyepig.2008.07.019];
(b) Li, S.H.; Shi, HG; Sun, CH; Li, XT; Pang, SP; Yu, YZ; Zhao, XQ. Synthesis and crystal structure of nitrogen-rich compound: 2, 5, 2′-triazido-1, 1′-azo-1, 3, 4-triazole. J. Chem. Crystallogr., 2009, 39(1), 13-16.
[http://dx.doi.org/10.1007/s10870-008-9411-1]
[24]
Khedr, A.; Gaber, M.; Issa, R.; Erten, H. Synthesis and spectral studies of 5-[3-(1,2,4-triazolyl-azo]-2,4-dihydroxybenzaldehyde (TA) and its Schiff bases with 1,3-diaminopropane (TAAP) and 1,6-diaminohexane (TAAH). Their analytical application for spectrophotometric microdetermination of cobalt(II). Application in some radiochemical studies. Dyes Pigments, 2005, 67(2), 117-126.
[http://dx.doi.org/10.1016/j.dyepig.2004.11.004]
[25]
Cho, E.J.; Moon, J.W.; Ko, S.W.; Lee, J.Y.; Kim, S.K.; Yoon, J.; Nam, K.C. A new fluoride selective fluorescent as well as chromogenic chemosensor containing a naphthalene urea derivative. J. Am. Chem. Soc., 2003, 125(41), 12376-12377.
[http://dx.doi.org/10.1021/ja036248g] [PMID: 14531658]
[26]
Tisseh, Z.N.; Dabiri, M.; Nobahar, M.; Khavasi, H.R.; Bazgir, A. Catalyst-free, aqueous and highly diastereoselective synthesis of new 5-substituted 1H-tetrazoles via a multi-component domino Knoevenagel condensation/1,3 dipolar cycloaddition reaction. Tetrahedron, 2012, 68(6), 1769-1773.
[http://dx.doi.org/10.1016/j.tet.2011.12.044]
[27]
DiCesare, N.; Lakowicz, J.R. New color chemosensors for monosaccharides based on azo dyes. Org. Lett., 2001, 3(24), 3891-3893.
[http://dx.doi.org/10.1021/ol016813p] [PMID: 11720562]
[28]
Lee, D.H.; Lee, K.H.; Hong, J.I. An azophenol-based chromogenic anion sensor. Org. Lett., 2001, 3(1), 5-8.
[http://dx.doi.org/10.1021/ol006690t] [PMID: 11429869]
[29]
Cheng, Y.F.; Liu, Z.Q.; Shi, M.; Zhao, Q.; Li, F.Y.; Yi, T.; Huang, C.H. Novel chromogenic chemosensors for fluoride anion based on 8-hydroxyquinoline azo derivatives. Chin. J. Chem., 2007, 25(5), 616-622.
[http://dx.doi.org/10.1002/cjoc.200790115]
[30]
Mahapatra, A.K.; Manna, S.K.; Sahoo, P. Color response of tri-armed azo host colorimetric sensors and test kit for fluoride. Talanta, 2011, 85(5), 2673-2680.
[http://dx.doi.org/10.1016/j.talanta.2011.08.040] [PMID: 21962701]
[31]
Arabahmadi, R.; Amani, S. Synthesis and studies of selective chemosensors for anions and cations by azo-containing salicylaldimine-based receptors. J. Coord. Chem., 2013, 66(2), 218-226.
[http://dx.doi.org/10.1080/00958972.2012.752818]
[32]
Ghosh, T.; Maiya, B.G.; Wong, M.W. Fluoride ion receptors based on dipyrrolyl derivatives bearing electron-withdrawing groups: synthesis, optical and electrochemical sensing, and computational studies. J. Phys. Chem. A, 2004, 108(51), 11249-11259.
[http://dx.doi.org/10.1021/jp0464223]
[33]
Ghosh, K.; Masanta, G. Triphenylamine-based novel PET sensors in selective recognition of dicarboxylic acids. Tetrahedron Lett., 2006, 47(14), 2365-2369.
[http://dx.doi.org/10.1016/j.tetlet.2006.02.008]
[34]
Suganya, S.; Velmathi, S. Simple azo-based salicylaldimine as colorimetric and fluorescent probe for detecting anions in semi-aqueous medium. J. Mol. Recognit., 2013, 26(6), 259-267.
[http://dx.doi.org/10.1002/jmr.2268] [PMID: 23595807]
[35]
Rezaeian, K.; Khanmohammadi, H. Naked-eye detection of biologically important anions by a new chromogenic azo-azomethine sensor. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 133, 31-37.
[http://dx.doi.org/10.1016/j.saa.2014.05.049] [PMID: 24929312]
[36]
Radchatawedchakoon, W.; Sangsuwan, W.; Kruanetr, S.; Sakee, U. Synthesis and evaluation of simple naked-eye colorimetric chemosensors for anions based on azo dye-thiosemicarbazones. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 121, 306-312.
[http://dx.doi.org/10.1016/j.saa.2013.10.086] [PMID: 24263127]
[37]
Khanmohammadi, H.; Rezaeian, K.; Abdollahi, A. Colorimetric detection of anions in aqueous media using N-monosubstituted dia-minomaleonitrile-based azo-azomethine receptors: Real-life applications. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 139, 405-412.
[http://dx.doi.org/10.1016/j.saa.2014.12.088] [PMID: 25576937]
[38]
Bhardwaj, V.K.; Singh, N.; Hundal, M.S.; Hundal, G. Mesitylene based azo-coupled chromogenic tripodal receptors—a visual detection of Ag(I) in aqueous medium. Tetrahedron, 2006, 62(33), 7878-7886.
[http://dx.doi.org/10.1016/j.tet.2006.05.047]
[39]
Cheng, Y.; Zhang, M.; Yang, H.; Li, F.; Yi, T.; Huang, C. Azo dyes based on 8-hydroxyquinoline benzoates: Synthesis and application as colorimetric Hg2+-selective chemosensors. Dyes Pigments, 2008, 76(3), 775-783.
[http://dx.doi.org/10.1016/j.dyepig.2007.01.022]
[40]
Wang, J.; Ha, C.S. A colorimetric and fluorescent turn-on chemosensor for Zn2+ based on an azobenzene-containing compound. Tetrahedron, 2009, 65(34), 6959-6964.
[http://dx.doi.org/10.1016/j.tet.2009.06.055]
[41]
Cheng, X.; Li, Q.; Li, C.; Qin, J.; Li, Z. Azobenzene-based colorimetric chemosensors for rapid naked-eye detection of mercury(II). Chemistry, 2011, 17(26), 7276-7281.
[http://dx.doi.org/10.1002/chem.201003275] [PMID: 21598320]
[42]
Udhayakumari, D.; Velmathi, S. Azo linked polycyclic aromatic hydrocarbons-based dual chemosensor for Cu+2 and Hg+2 ions. Ind. Eng. Chem. Res., 2015, 54(14), 3541-3547.
[http://dx.doi.org/10.1021/acs.iecr.5b00775]
[43]
Gupta, V.K.; Shoora, S.K.; Kumawat, L.K.; Jain, A.K. A highly selective colorimetric and turn-on fluorescent chemosensor based on 1-(2-pyridylazo)-2-naphthol for the detection of aluminium(III) ions. Sens. Actuators B Chem., 2015, 209, 15-24.
[http://dx.doi.org/10.1016/j.snb.2014.10.143]
[44]
Ward, C.J.; Ashton, P.R.; James, T.D.; Patel, P. A molecular colour sensor for monosaccharides. Chem. Commun., 2000, (3), 229-230.
[http://dx.doi.org/10.1039/a909204h]
[45]
Koumoto, K.; Shinkai, S. Colorimetric sugar sensing method useful in “neutral” aqueous media. Chem. Lett., 2000, 29(8), 856-857.
[http://dx.doi.org/10.1246/cl.2000.856]
[46]
James, T.D.; Sandanayake, K.R.A.S.; Iguchi, R.; Shinkai, S. Novel saccharide-photoinduced electron transfer sensors based on the interaction of boronic acid and amine. J. Am. Chem. Soc., 1995, 117(35), 8982-8987.
[http://dx.doi.org/10.1021/ja00140a013]
[47]
Norrild, J. A fluorescent glucose sensor binding covalently to all five hydroxy groups of α-D-glucofuranose. A reinvestigation. J. Chem. Soc., Perkin Trans. 2, 1999, (3), 449-456.
[48]
Pina Luis, G.; Granda, M.; Granda, M.; Badía, R.; Díaz-García, M.E. Selective fluorescent chemosensor for fructose. Analyst, 1998, 123(1), 155-158.
[http://dx.doi.org/10.1039/a703778c]
[49]
James, T.D.; Linnane, P.; Shinkai, S. Fluorescent saccharide receptors: A sweet solution to the design, assembly and evaluation of boronic acid derived PET sensors. Chem. Commun., 1996, (3), 281-288.
[http://dx.doi.org/10.1039/cc9960000281]
[50]
Arimori, S.; Frimat, K.A.; James, T.D.; Bell, M.L.; Oh, C.S. Modular fluorescence sensors for saccharides. Chem. Commun., 2001, (18), 1836-1837.
[http://dx.doi.org/10.1039/b105994g] [PMID: 12240339]
[51]
DiCesare, N.; Lakowicz, J.R. Spectral properties of fluorophores combining the boronic acid group with electron donor or withdrawing groups. Implication in the development of fluorescence probes for saccharides. J. Phys. Chem. A, 2001, 105(28), 6834-6840.
[http://dx.doi.org/10.1021/jp010076x] [PMID: 31427854]
[52]
DiCesare, N.; Adhikari, D.P.; Heynekamp, J.J.; Heagy, M.D.; Lakowicz, J.R. Spectroscopic and photophysical characterization of fluorescent chemosensors for monosaccharides based on N-phenylboronic acid derivatives of 1, 8-naphthalimide. J. Fluoresc., 2002, 12(2), 147-154.
[http://dx.doi.org/10.1023/A:1016884011396] [PMID: 32132808]
[53]
Gao, X.; Zhang, Y.; Wang, B. New boronic acid fluorescent reporter compounds. 2. A naphthalene-based on-off sensor functional at physiological pH. Org. Lett., 2003, 5(24), 4615-4618.
[http://dx.doi.org/10.1021/ol035783i] [PMID: 14627397]
[54]
Bosch, L.I.; Fyles, T.M.; James, T.D. Binary and ternary phenylboronic acid complexes with saccharides and Lewis bases. Tetrahedron, 2004, 60(49), 11175-11190.
[http://dx.doi.org/10.1016/j.tet.2004.08.046]
[55]
Arimori, S.; Phillips, M.D.; James, T.D. Probing disaccharide selectivity with modular fluorescent sensors. Tetrahedron Lett., 2004, 45(7), 1539-1542.
[http://dx.doi.org/10.1016/j.tetlet.2003.12.013]
[56]
Kawanishi, T.; Romey, M.A.; Zhu, P.C.; Holody, M.Z.; Shinkai, S. A study of boronic acid based fluorescent glucose sensors. J. Fluoresc., 2004, 14(5), 499-512.
[http://dx.doi.org/10.1023/B:JOFL.0000039338.16715.48] [PMID: 15617258]
[57]
Trupp, S.; Schweitzer, A.; Mohr, G.J. A fluorescent water-soluble naphthalimide-based receptor for saccharides with highest sensitivity in the physiological pH range. Org. Biomol. Chem., 2006, 4(15), 2965-2968.
[http://dx.doi.org/10.1039/b604716e] [PMID: 16855745]
[58]
Egawa, Y.; Gotoh, R.; Niina, S.; Anzai, J. Ortho-azo substituted phenylboronic acids for colorimetric sugar sensors. Bioorg. Med. Chem. Lett., 2007, 17(13), 3789-3792.
[http://dx.doi.org/10.1016/j.bmcl.2007.02.073] [PMID: 17543522]
[59]
Egawa, Y.; Gotoh, R.; Seki, T.; Anzai, J. Sugar response of boronic acid-substituted azobenzene dye-modified polymer. Mater. Sci. Eng. C, 2009, 29(1), 115-118.
[http://dx.doi.org/10.1016/j.msec.2008.05.014]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy