Review Article

辅酶Q10增强身体活动和延长人类生命周期

卷 31, 期 14, 2024

发表于: 26 May, 2023

页: [1804 - 1817] 页: 14

弟呕挨: 10.2174/0929867330666230228103913

价格: $65

摘要

背景:辅酶Q (CoQ)是一个在维持电子传递链和抗氧化防御中起重要作用的酶家族。辅酶q10是人类中最常见的辅酶q。CoQ10的缺乏会随着年龄的增长而自然发生,并可能导致许多疾病的发展或进展。此外,某些药物,特别是他汀类药物和双膦酸盐,会干扰辅酶q10生物合成的酶,从而导致辅酶q10缺乏。 目的:本文旨在评估CoQ10在人体健康中的功能的累积研究和见解,重点关注其在维持身体活动和延长生命周期方面的潜在作用。 结果:尽管补充辅酶q10对心血管疾病患者有很多好处,但对患有他汀类药物相关肌肉症状的患者似乎没有什么价值。这可能归因于所使用的剂量和治疗方案的巨大异质性。 结论:因此,需要进一步的研究,涉及更多的患者,以阐明辅酶q10辅助治疗在一系列健康状况和疾病中的益处。

关键词: 辅酶Q10,泛醌,泛醇,衰老,身体活动,抗氧化剂,补充剂。

[1]
Crane, F.L. Biochemical functions of coenzyme Q10. J. Am. Coll. Nutr., 2001, 20(6), 591-598.
[http://dx.doi.org/10.1080/07315724.2001.10719063] [PMID: 11771674]
[2]
Gutierrez-Mariscal, F.M.; Yubero-Serrano, E.M.; Villalba, J.M.; Lopez-Miranda, J.; Coenzyme, Q. Coenzyme Q10: From bench to clinic in aging diseases, a translational review. Crit. Rev. Food Sci. Nutr., 2019, 59(14), 2240-2257.
[http://dx.doi.org/10.1080/10408398.2018.1442316] [PMID: 29451807]
[3]
Barcelos, I.P.; Haas, R.H. CoQ10 and aging. Biology, 2019, 8(2), 28.
[http://dx.doi.org/10.3390/biology8020028] [PMID: 31083534]
[4]
Schmelzer, C.; Lindner, I.; Rimbach, G.; Niklowitz, P.; Menke, T.; Döring, F. Functions of coenzyme Q10 in inflammation and gene expression. Biofactors, 2008, 32(1-4), 179-183.
[http://dx.doi.org/10.1002/biof.5520320121] [PMID: 19096114]
[5]
Zhang, Y.; Liu, J.; Chen, X.; Oliver Chen, C.Y. Ubiquinol is superior to ubiquinone to enhance coenzyme Q10 status in older men. Food Funct., 2018, 9(11), 5653-5659.
[http://dx.doi.org/10.1039/C8FO00971F] [PMID: 30302465]
[6]
Palamakula, A.; Soliman, M.; Khan, M.M. Regional permeability of coenzyme Q10 in isolated rat gastrointestinal tracts. Pharmazie, 2005, 60(3), 212-214.
[PMID: 15801676]
[7]
Raizner, A.E.; Coenzyme, Q. Coenzyme Q(10). Methodist DeBakey Cardiovasc. J., 2019, 15(3), 185-191.
[http://dx.doi.org/10.14797/mdcj-15-3-185] [PMID: 31687097]
[8]
Tippairote, T.; Bjørklund, G.; Gasmi, A.; Semenova, Y.; Peana, M.; Chirumbolo, S.; Hangan, T. Combined supplementation of coenzyme Q10 and other nutrients in specific medical conditions. Nutrients, 2022, 14(20), 4383.
[http://dx.doi.org/10.3390/nu14204383] [PMID: 36297067]
[9]
Hargreaves, I.; Heaton, R.A.; Mantle, D. Disorders of human coenzyme Q10 metabolism: An overview. Int. J. Mol. Sci., 2020, 21(18), 6695.
[http://dx.doi.org/10.3390/ijms21186695] [PMID: 32933108]
[10]
Testai, L.; Martelli, A.; Flori, L.; Cicero, A.F.G. Colletti A. Coenzyme Q10: Clinical applications beyond cardiovascular diseases. Nutrients, 2021, 13(5), 1697.
[http://dx.doi.org/10.3390/nu13051697] [PMID: 34067632]
[11]
Saini, R. Coenzyme Q10: The essential nutrient. J. Pharm. Bioallied Sci., 2011, 3(3), 466-467.
[http://dx.doi.org/10.4103/0975-7406.84471] [PMID: 21966175]
[12]
Clement, A.M. The Antioxidant Defense Network: Synergistic Combinations to Prevent Oxidative Damage; Brigham Young University: Provo, Utah, 2008.
[13]
Rabanal-Ruiz, Y.; Llanos-González, E.; Alcain, F.J. The use of coenzyme Q10 in cardiovascular diseases. Antioxidants, 2021, 10(5), 755.
[http://dx.doi.org/10.3390/antiox10050755] [PMID: 34068578]
[14]
Åberg, F.; Appelkvist, E.L.; Dallner, G.; Ernster, L. Distribution and redox state of ubiquinones in rat and human tissues. Arch. Biochem. Biophys., 1992, 295(2), 230-234.
[http://dx.doi.org/10.1016/0003-9861(92)90511-T] [PMID: 1586151]
[15]
Crane, F.L.; Hatefi, Y.; Lester, R.L.; Widmer, C. Isolation of a quinone from beef heart mitochondria. Biochim. Biophys. Acta, 1957, 25(1), 220-221.
[http://dx.doi.org/10.1016/0006-3002(57)90457-2] [PMID: 13445756]
[16]
Glancy, B.; Kane, D.A.; Kavazis, A.N.; Goodwin, M.L.; Willis, W.T.; Gladden, L.B. Mitochondrial lactate metabolism: History and implications for exercise and disease. J. Physiol., 2021, 599(3), 863-888.
[http://dx.doi.org/10.1113/JP278930] [PMID: 32358865]
[17]
Sazanov, L.A. The mechanism of coupling between electron transfer and proton translocation in respiratory complex I. J. Bioenerg. Biomembr., 2014, 46(4), 247-253.
[http://dx.doi.org/10.1007/s10863-014-9554-z] [PMID: 24943718]
[18]
Zickermann, V.; Wirth, C.; Nasiri, H.; Siegmund, K.; Schwalbe, H.; Hunte, C.; Brandt, U. Mechanistic insight from the crystal structure of mitochondrial complex I. Science, 2015, 347(6217), 44-49.
[http://dx.doi.org/10.1126/science.1259859] [PMID: 25554780]
[19]
Alcázar-Fabra, M.; Navas, P.; Brea-Calvo, G. Coenzyme Q biosynthesis and its role in the respiratory chain structure. Biochim. Biophys. Acta Bioenerg., 2016, 1857(8), 1073-1078.
[http://dx.doi.org/10.1016/j.bbabio.2016.03.010] [PMID: 26970214]
[20]
Turunen, M.; Olsson, J.; Dallner, G. Metabolism and function of coenzyme Q. Biochim. Biophys. Acta Biomembr., 2004, 1660(1-2), 171-199.
[http://dx.doi.org/10.1016/j.bbamem.2003.11.012] [PMID: 14757233]
[21]
Xu, Z.; Huo, J.; Ding, X.; Yang, M.; Li, L.; Dai, J.; Hosoe, K.; Kubo, H.; Mori, M.; Higuchi, K.; Sawashita, J. Coenzyme Q10 improves lipid metabolism and ameliorates obesity by regulating CaMKII-mediated PDE4 inhibition. Sci. Rep., 2017, 7(1), 8253.
[http://dx.doi.org/10.1038/s41598-017-08899-7] [PMID: 28811612]
[22]
Hajiluian, G.; Heshmati, J.; Jafari Karegar, S.; Sepidarkish, M.; Shokri, A.; Shidfar, F. Diabetes, age, and duration of supplementation subgroup analysis for the effect of coenzyme Q10 on oxidative stress: A systematic review and meta-analysis. Complement. Med. Res., 2021, 28(6), 557-570.
[http://dx.doi.org/10.1159/000515249] [PMID: 33866314]
[23]
Tomasetti, M.; Littarru, G.P.; Stocker, R.; Alleva, R. Coenzyme Q10 enrichment decreases oxidative DNA damage in human lymphocytes. Free Radic. Biol. Med., 1999, 27(9-10), 1027-1032.
[http://dx.doi.org/10.1016/S0891-5849(99)00132-X] [PMID: 10569635]
[24]
Tomasetti, M.; Alleva, R.; Collins, A.R.; Collins, A.R. In vivo supplementation with coenzyme Q10 enhances the recovery of human lymphocytes from oxidative DNA damage. FASEB J., 2001, 15(8), 1425-1427.
[http://dx.doi.org/10.1096/fj.00-0694fje] [PMID: 11387245]
[25]
Pala, R.; Orhan, C.; Tuzcu, M.; Sahin, N.; Ali, S.; Cinar, V.; Atalay, M.; Sahin, K. Coenzyme Q10 supplementation modulates NFκB and Nrf2 pathways in exercise training. J. Sports Sci. Med., 2016, 15(1), 196-203.
[PMID: 26957943]
[26]
Xia, L.; Nordman, T.; Olsson, J.M.; Damdimopoulos, A.; Björkhem-Bergman, L.; Nalvarte, I.; Eriksson, L.C.; Arnér, E.S.J.; Spyrou, G.; Björnstedt, M. The mammalian cytosolic selenoenzyme thioredoxin reductase reduces ubiquinone. A novel mechanism for defense against oxidative stress. J. Biol. Chem., 2003, 278(4), 2141-2146.
[http://dx.doi.org/10.1074/jbc.M210456200] [PMID: 12435734]
[27]
Nordman, T.; Xia, L.; Björkhem-Bergman, L.; Damdimopoulos, A.; Nalvarte, I.; Arnér, E.S.J.; Spyrou, G.; Eriksson, L.C.; Björnstedt, M.; Olsson, J.M. Regeneration of the antioxidant ubiquinol by lipoamide dehydrogenase, thioredoxin reductase and glutathione reductase. Biofactors, 2003, 18(1-4), 45-50.
[http://dx.doi.org/10.1002/biof.5520180206] [PMID: 14695919]
[28]
Bjørklund, G.; Zou, L.; Wang, J.; Chasapis, C.T.; Peana, M. Thioredoxin reductase as a pharmacological target. Pharmacol. Res., 2021, 174, 105854.
[http://dx.doi.org/10.1016/j.phrs.2021.105854] [PMID: 34455077]
[29]
Aaseth, J.; Alexander, J.; Alehagen, U.; Coenzyme, Q. Coenzyme Q10 supplementation – In ageing and disease. Mech. Ageing Dev., 2021, 197, 111521.
[http://dx.doi.org/10.1016/j.mad.2021.111521] [PMID: 34129891]
[30]
Reig, M.; Aristoy, M.C.; Toldrá, F. Sources of variability in the analysis of meat nutrient coenzyme Q10 for food composition databases. Food Control, 2015, 48, 151-154.
[http://dx.doi.org/10.1016/j.foodcont.2014.02.009]
[31]
Pravst, I.; Žmitek, K.; Žmitek, J. Coenzyme Q10 contents in foods and fortification strategies. Crit. Rev. Food Sci. Nutr., 2010, 50(4), 269-280.
[http://dx.doi.org/10.1080/10408390902773037] [PMID: 20301015]
[32]
Kamei, M.; Fujita, T.; Kanbe, T.; Sasaki, K.; Oshiba, K.; Otani, S.; Matsui-Yuasa, I.; Morisawa, S. The distribution and content of ubiquinone in foods. Int. J. Vitam. Nutr. Res., 1986, 56(1), 57-63.
[PMID: 3710719]
[33]
Strazisar, M.; Fir, M.; Golc-Wondra, A.; Milivojevic, L.; Prosek, M.; Abram, V. Quantitative determination of coenyzme Q10 by liquid chromatography and liquid chromatography/mass spectrometry in dairy products. J. AOAC Int., 2005, 88(4), 1020-1027.
[http://dx.doi.org/10.1093/jaoac/88.4.1020] [PMID: 16152917]
[34]
Grażyna, C.; Hanna, C.; Adam, A.; Magdalena, B.M. Natural antioxidants in milk and dairy products. Int. J. Dairy Technol., 2017, 70(2), 165-178.
[http://dx.doi.org/10.1111/1471-0307.12359]
[35]
Campisi, L.; La Motta, C. The use of the coenzyme Q10 as a food supplement in the management of fibromyalgia: A critical review. Antioxidants, 2022, 11(10), 1969.
[http://dx.doi.org/10.3390/antiox11101969] [PMID: 36290691]
[36]
Mantle, D.; Dybring, A. Bioavailability of coenzyme Q10: An overview of the absorption process and subsequent metabolism. Antioxidants, 2020, 9(5), 386.
[http://dx.doi.org/10.3390/antiox9050386] [PMID: 32380795]
[37]
Bhagavan, H.N.; Chopra, R.K. Coenzyme Q10: Absorption, tissue uptake, metabolism and pharmacokinetics. Free Radic. Res., 2006, 40(5), 445-453.
[http://dx.doi.org/10.1080/10715760600617843] [PMID: 16551570]
[38]
Kwong, L.K.; Kamzalov, S.; Rebrin, I.; Bayne, A.C.V.; Jana, C.K.; Morris, P.; Forster, M.J.; Sohal, R.S. Effects of coenzyme Q10 administration on its tissue concentrations, mitochondrial oxidant generation, and oxidative stress in the rat. Free Radic. Biol. Med., 2002, 33(5), 627-638.
[http://dx.doi.org/10.1016/S0891-5849(02)00916-4] [PMID: 12208349]
[39]
Rodick, T.C.; Seibels, D.R.; Babu, J.R.; Huggins, K.W.; Ren, G.; Mathews, S.T. Potential role of coenzyme Q10 in health and disease conditions. Nutr. Diet. Suppl., 2018, 10, 1-11.
[http://dx.doi.org/10.2147/NDS.S112119]
[40]
Banach, M.; Serban, C.; Ursoniu, S.; Rysz, J.; Muntner, P.; Toth, P.P.; Jones, S.R.; Rizzo, M.; Glasser, S.P.; Watts, G.F.; Blumenthal, R.S.; Lip, G.Y.H.; Mikhailidis, D.P.; Sahebkar, A. Statin therapy and plasma coenzyme Q10 concentrations-A systematic review and meta-analysis of placebo- controlled trials. Pharmacol. Res., 2015, 99, 329-336.
[http://dx.doi.org/10.1016/j.phrs.2015.07.008] [PMID: 26192349]
[41]
Gasmi, A.; Bjørklund, G.; Mujawdiya, P.K.; Semenova, Y.; Piscopo, S.; Peana, M.; Coenzyme, Q. Coenzyme Q10 in aging and disease. Crit. Rev. Food Sci. Nutr., 2022, 1-13.
[http://dx.doi.org/10.1080/10408398.2022.2137724] [PMID: 36300654]
[42]
Taylor, F.; Huffman, M.D.; Macedo, A.F.; Moore, T.H.M.; Burke, M.; Davey Smith, G.; Ward, K.; Ebrahim, S.; Gay, H.C. Statins for the primary prevention of cardiovascular disease. Cochrane Libr., 2013, 2021(9), CD004816.
[http://dx.doi.org/10.1002/14651858.CD004816.pub5] [PMID: 23440795]
[43]
Borowy-Borowski, H.; Sodja, C.; Docherty, J.; Roy Walker, P.; Sikorska, M. Unique technology for solubilization and delivery of highly lipophilic bioactive molecules. J. Drug Target., 2004, 12(7), 415-424.
[http://dx.doi.org/10.1080/10611860412331285233] [PMID: 15621666]
[44]
Masterson, R.V. Coenzyme Q10 compositions for organ protection during perfusion. EP Patent 1082005A1, 2000.
[45]
Zappia, V.; De Rosa, M. Lipophilic salts of S-adenosyl-L-methionine (SAM) with acylated taurine derivatives. US Patent 5073546A, 1989.
[46]
Ohashi, H.; Takami, T.; Koyama, N.; Kogure, Y.; Ida, K. Aqueous solution containing ubidecarenone. EP Patent 0083108B1, 1984.
[47]
Prošek, M.; Šmidovnik, A.; Milivojevič, M.F.; Golc-Wondra, A.; Žmitek, J.; Kostanjevec, B.; Donša, B.; Vindiš-Zelenko, B. Use of coenzyme Q10 for improved effectiveness of animal husbandry and production of animal tissues with an increased content of the said coenzyme. WIPO-World Intellectual Property Organization, 2008.
[48]
Kamisoyama, H.; Honda, K.; Kitaguchi, K.; Hasegawa, S. Transfer of dietary coenzyme Q10 into the egg yolk of laying hens. J. Poult. Sci., 2010, 47(1), 28-33.
[http://dx.doi.org/10.2141/jpsa.009037]
[49]
Pravst, I.; Prošek, M.; Wondra, A.G.; Žmitek, K.; Žmitek, J. The stability of coenzyme Q 10 in fortified foods. Acta Chim. Slov., 2009, 56, 953-958.
[50]
Pravst, I.; Žmitek, K. The coenzyme Q10 content of food supplements. J. Verbraucherschutz Lebensmsicherh., 2011, 6(4), 457-463.
[http://dx.doi.org/10.1007/s00003-011-0704-5]
[51]
Kettawan, A.; Kunthida, C.; Takahashi, T.; Kishi, T.; Chikazawa, J.; Sakata, Y.; Yano, E.; Watabe, K.; Yamamoto, Y.; Okamoto, T. The quality control assessment of commercially available coenzyme Q(10)-containing dietary and health supplements in Japan. J. Clin. Biochem. Nutr., 2007, 41(2), 124-131.
[http://dx.doi.org/10.3164/jcbn.2007017] [PMID: 18193106]
[52]
Hrynovets, I.; Hrynovets, V.; Renka, M.; Ripetska, O.; Buchkovska, A.; Renka, D-J.; Chaban, T.; Harkov, S.; Demchuk, I.; Ogurtsov, V. Development and construction of devices to perfect the process of production of biodental films by the solvent casting method. Farmatsija, 2018, 65(2), 47-53.
[53]
Hidaka, T.; Fujii, K.; Funahashi, I.; Fukutomi, N.; Hosoe, K. Safety assessment of coenzyme Q10 (CoQ10). Biofactors, 2008, 32(1-4), 199-208.
[http://dx.doi.org/10.1002/biof.5520320124] [PMID: 19096117]
[54]
Shults, C.W.; Flint Beal, M.; Song, D.; Fontaine, D. Pilot trial of high dosages of coenzyme Q10 in patients with Parkinson’s disease. Exp. Neurol., 2004, 188(2), 491-494.
[http://dx.doi.org/10.1016/j.expneurol.2004.05.003] [PMID: 15246848]
[55]
Arenas-Jal, M.; Suñé-Negre, J.M.; García-Montoya, E. Coenzyme Q10 supplementation: Efficacy, safety, and formulation challenges. Compr. Rev. Food Sci. Food Saf., 2020, 19(2), 574-594.
[http://dx.doi.org/10.1111/1541-4337.12539] [PMID: 33325173]
[56]
Mantle, D.; Hargreaves, I. Coenzyme Q10 and degenerative disorders affecting longevity: An overview. Antioxidants, 2019, 8(2), 44.
[http://dx.doi.org/10.3390/antiox8020044] [PMID: 30781472]
[57]
Wear, D.; Vegh, C.; Sandhu, J.K.; Sikorska, M.; Cohen, J.; Pandey, S. Ubisol-Q10, a nanomicellar and water-dispersible formulation of coenzyme-Q10 as a potential treatment for Alzheimer’s and Parkinson’s disease. Antioxidants, 2021, 10(5), 764.
[http://dx.doi.org/10.3390/antiox10050764] [PMID: 34064983]
[58]
Dahri, M.; Tarighat-Esfanjani, A.; Asghari-Jafarabadi, M.; Hashemilar, M. Oral coenzyme Q10 supplementation in patients with migraine: Effects on clinical features and inflammatory markers. Nutr. Neurosci., 2019, 22(9), 607-615.
[http://dx.doi.org/10.1080/1028415X.2017.1421039] [PMID: 29298622]
[59]
Gvozdjáková, A.; Kucharská, J.; Ostatníková, D.; Babinská, K.; Nakládal, D.; Crane, F.L. Ubiquinol improves symptoms in children with autism. Oxid. Med. Cell. Longev., 2014, 2014, 1-6.
[http://dx.doi.org/10.1155/2014/798957] [PMID: 24707344]
[60]
Qu, H.; Guo, M.; Chai, H.; Wang, W.; Gao, Z.; Shi, D. Effects of coenzyme Q10 on statin-induced myopathy: An updated meta-analysis of randomized controlled trials. J. Am. Heart Assoc., 2018, 7(19), e009835.
[http://dx.doi.org/10.1161/JAHA.118.009835] [PMID: 30371340]
[61]
Kennedy, C.; Köller, Y.; Surkova, E. Effect of coenzyme Q10 on statin-associated myalgia and adherence to statin therapy: A systematic review and meta-analysis. Atherosclerosis, 2020, 299, 1-8.
[http://dx.doi.org/10.1016/j.atherosclerosis.2020.03.006] [PMID: 32179207]
[62]
Wei, H.; Xin, X.; Zhang, J.; Xie, Q.; Naveed, M.; Kaiyan, C.; Xiao, P. Effects of coenzyme Q10 supplementation on statin-induced myopathy: A meta-analysis of randomized controlled trials. Ir. J. Med. Sci., 2022, 191(2), 719-725.
[http://dx.doi.org/10.1007/s11845-021-02651-x] [PMID: 33999383]
[63]
Orlando, P.; Silvestri, S.; Galeazzi, R.; Antonicelli, R.; Marcheggiani, F.; Cirilli, I.; Bacchetti, T.; Tiano, L. Effect of ubiquinol supplementation on biochemical and oxidative stress indexes after intense exercise in young athletes. Redox Rep., 2018, 23(1), 136-145.
[http://dx.doi.org/10.1080/13510002.2018.1472924] [PMID: 29734881]
[64]
García Verazaluce, J.J.; Vargas Corzo, Mdel.C.; Aguilar Cordero, M.J.; Ocaña Peinado, F.; Sarmiento Ramírez, Á.; Guisado Barrilao, R. Effect of phlebodium decumanum and coenzyme Q10 on sports performance in professional volleyball players. Nutr. Hosp., 2014, 31(1), 401-414.
[http://dx.doi.org/10.3305/nh.2015.31.1.8177] [PMID: 25561135]
[65]
Sarmiento, A.; Diaz-Castro, J.; Pulido-Moran, M.; Kajarabille, N.; Guisado, R.; Ochoa, J.J. Coenzyme Q10 supplementation and exercise in healthy humans: A systematic review. Curr. Drug Metab., 2016, 17(4), 345-358.
[http://dx.doi.org/10.2174/1389200216666151103115654] [PMID: 26526835]
[66]
Emami, A.; Tofighi, A.; Asri-Rezaei, S.; Bazargani-Gilani, B. The effect of short-term coenzyme Q10 supplementation and pre-cooling strategy on cardiac damage markers in elite swimmers. Br. J. Nutr., 2018, 119(4), 381-390.
[http://dx.doi.org/10.1017/S0007114517003774] [PMID: 29498347]
[67]
Drobnic, F.; Lizarraga, M.A.; Caballero-García, A.; Cordova, A.; Coenzyme, Q. Coenzyme Q10 supplementation and its impact on exercise and sport performance in humans: A recovery or a performance-enhancing molecule? Nutrients, 2022, 14(9), 1811.
[http://dx.doi.org/10.3390/nu14091811] [PMID: 35565783]
[68]
Zheng, A.; Moritani, T. Influence of CoQ10 on autonomic nervous activity and energy metabolism during exercise in healthy subjects. J. Nutr. Sci. Vitaminol., 2008, 54(4), 286-290.
[http://dx.doi.org/10.3177/jnsv.54.286] [PMID: 18797149]
[69]
Yang, Y.K.; Wang, L.P.; Chen, L.; Yao, X.P.; Yang, K.Q.; Gao, L.G.; Zhou, X.L. Coenzyme Q10 treatment of cardiovascular disorders of ageing including heart failure, hypertension and endothelial dysfunction. Clin. Chim. Acta, 2015, 450, 83-89.
[http://dx.doi.org/10.1016/j.cca.2015.08.002] [PMID: 26254995]
[70]
Castro-Marrero, J.; Cordero, M.D.; Segundo, M.J.; Sáez-Francàs, N.; Calvo, N.; Román-Malo, L.; Aliste, L.; Fernández de Sevilla, T.; Alegre, J. Does oral coenzyme Q10 plus NADH supplementation improve fatigue and biochemical parameters in chronic fatigue syndrome? Antioxid. Redox Signal., 2015, 22(8), 679-685.
[http://dx.doi.org/10.1089/ars.2014.6181] [PMID: 25386668]
[71]
Castro-Marrero, J.; Sáez-Francàs, N.; Segundo, M.J.; Calvo, N.; Faro, M.; Aliste, L.; Fernández de Sevilla, T.; Alegre, J. Effect of coenzyme Q10 plus nicotinamide adenine dinucleotide supplementation on maximum heart rate after exercise testing in chronic fatigue syndrome – A randomized, controlled, double-blind trial. Clin. Nutr., 2016, 35(4), 826-834.
[http://dx.doi.org/10.1016/j.clnu.2015.07.010] [PMID: 26212172]
[72]
McHugh, D.; Gil, J. Senescence and aging: Causes, consequences, and therapeutic avenues. J. Cell Biol., 2018, 217(1), 65-77.
[http://dx.doi.org/10.1083/jcb.201708092] [PMID: 29114066]
[73]
Mylonas, A.; O’Loghlen, A. Cellular senescence and ageing: Mechanisms and interventions. Front. Aging, 2022, 3, 866718.
[http://dx.doi.org/10.3389/fragi.2022.866718] [PMID: 35821824]
[74]
Braakhuis, A.J.; Nagulan, R.; Somerville, V. The effect of MitoQ on aging-related biomarkers: A systematic review and meta-analysis. Oxid. Med. Cell. Longev., 2018, 2018, 1-12.
[http://dx.doi.org/10.1155/2018/8575263] [PMID: 30116495]
[75]
Sangsefidi, Z.S.; Yaghoubi, F.; Hajiahmadi, S.; Hosseinzadeh, M. The effect of coenzyme Q10 supplementation on oxidative stress: A systematic review and meta-analysis of randomized controlled clinical trials. Food Sci. Nutr., 2020, 8(4), 1766-1776.
[http://dx.doi.org/10.1002/fsn3.1492] [PMID: 32328242]
[76]
Dai, S.; Tian, Z.; Zhao, D.; Liang, Y.; Liu, M.; Liu, Z.; Hou, S.; Yang, Y. Effects of coenzyme Q10 supplementation on biomarkers of oxidative stress in adults: A GRADE-assessed systematic review and updated meta-analysis of randomized controlled trials. Antioxidants, 2022, 11(7), 1360.
[http://dx.doi.org/10.3390/antiox11071360] [PMID: 35883851]
[77]
Alehagen, U.; Aaseth, J.; Alexander, J.; Brismar, K.; Larsson, A. Selenium and coenzyme Q10 supplementation improves renal function in elderly deficient in selenium: Observational results and results from a subgroup analysis of a prospective randomised double-blind placebo-controlled trial. Nutrients, 2020, 12(12), 3780.
[http://dx.doi.org/10.3390/nu12123780] [PMID: 33317156]
[78]
Alehagen, U.; Johansson, P.; Aaseth, J.; Alexander, J.; Surowiec, I.; Lundstedt-Enkel, K.; Lundstedt, T. Significant changes in metabolic profiles after intervention with selenium and coenzyme Q10 in an elderly population. Biomolecules, 2019, 9(10), 553.
[http://dx.doi.org/10.3390/biom9100553] [PMID: 31575091]
[79]
Linnane, A.W.; Kopsidas, G.; Zhang, C.; Yarovaya, N.; Kovalenko, S.; Papakostopoulos, P.; Eastwood, H.; Graves, S.; Richardson, M. Cellular redox activity of coenzyme Q10: Effect of CoQ10 supplementation on human skeletal muscle. Free Radic. Res., 2002, 36(4), 445-453.
[http://dx.doi.org/10.1080/10715760290021306] [PMID: 12069109]
[80]
Feher, J.; Kovacs, B.; Kovacs, I.; Schveoller, M.; Papale, A.; Balacco Gabrieli, C. Improvement of visual functions and fundus alterations in early age-related macular degeneration treated with a combination of acetyl-L-carnitine, n-3 fatty acids, and coenzyme Q10. Ophthalmologica, 2005, 219(3), 154-166.
[http://dx.doi.org/10.1159/000085248] [PMID: 15947501]
[81]
Alehagen, U.; Aaseth, J.; Alexander, J.; Johansson, P. Still reduced cardiovascular mortality 12 years after supplementation with selenium and coenzyme Q10 for four years: A validation of previous 10-year follow-up results of a prospective randomized double-blind placebo-controlled trial in elderly. PLoS One, 2018, 13(4), e0193120.
[http://dx.doi.org/10.1371/journal.pone.0193120] [PMID: 29641571]
[82]
Alehagen, U.; Alexander, J.; Aaseth, J. Supplementation with selenium and coenzyme Q10 reduces cardiovascular mortality in elderly with low selenium status. A secondary analysis of a randomised clinical trial. PLoS One, 2016, 11(7), e0157541.
[http://dx.doi.org/10.1371/journal.pone.0157541] [PMID: 27367855]
[83]
Almahmoud, M.F.; Soliman, E.Z.; Bertoni, A.G.; Kestenbaum, B.; Katz, R.; Lima, J.A.C.; Ouyang, P.; Miller, P.E.; Michos, E.D.; Herrington, D.M. Fibroblast growth factor-23 and heart failure with reduced versus preserved ejection fraction: MESA. J. Am. Heart Assoc., 2018, 7(18), e008334.
[http://dx.doi.org/10.1161/JAHA.117.008334] [PMID: 30371180]
[84]
Alehagen, U.; Aaseth, J.; Larsson, A.; Alexander, J. Decreased concentration of fibroblast growth factor 23 (FGF-23) as a result of supplementation with selenium and coenzyme Q10 in an elderly swedish population: A sub-analysis. Cells, 2022, 11(3), 509.
[http://dx.doi.org/10.3390/cells11030509] [PMID: 35159318]
[85]
Rudolf, H.; Mügge, A.; Trampisch, H.J.; Scharnagl, H.; März, W.; Kara, K. NT-proBNP for risk prediction of cardiovascular events and all-cause mortality: The getABI-study. Int. J. Cardiol. Heart Vasc., 2020, 29, 100553.
[http://dx.doi.org/10.1016/j.ijcha.2020.100553] [PMID: 32529024]
[86]
Alehagen, U.; Johansson, P.; Björnstedt, M.; Rosén, A.; Dahlström, U. Cardiovascular mortality and N-terminal-proBNP reduced after combined selenium and coenzyme Q10 supplementation: A 5-year prospective randomized double-blind placebo-controlled trial among elderly Swedish citizens. Int. J. Cardiol., 2013, 167(5), 1860-1866.
[http://dx.doi.org/10.1016/j.ijcard.2012.04.156] [PMID: 22626835]
[87]
Alehagen, U.; Aaseth, J.; Lindahl, T.L.; Larsson, A.; Alexander, J. Dietary supplementation with selenium and coenzyme Q10 prevents increase in plasma D-dimer while lowering cardiovascular mortality in an elderly swedish population. Nutrients, 2021, 13(4), 1344.
[http://dx.doi.org/10.3390/nu13041344] [PMID: 33920725]
[88]
Alehagen, U.; Aaseth, J.; Johansson, P. Less increase of copeptin and MR-proADM due to intervention with selenium and coenzyme Q10 combined: Results from a 4-year prospective randomized double-blind placebo-controlled trial among elderly Swedish citizens. Biofactors, 2015, 41(6), 443-452.
[http://dx.doi.org/10.1002/biof.1245] [PMID: 26662217]
[89]
Hargreaves, I.P.; Mantle, D. Coenzyme Q10 supplementation in fibrosis and aging. Adv. Exp. Med. Biol., 2019, 1178, 103-112.
[http://dx.doi.org/10.1007/978-3-030-25650-0_6] [PMID: 31493224]
[90]
Alehagen, U.; Aaseth, J.; Alexander, J.; Svensson, E.; Johansson, P.; Larsson, A. Less fibrosis in elderly subjects supplemented with selenium and coenzyme Q10-A mechanism behind reduced cardiovascular mortality? Biofactors, 2018, 44(2), 137-147.
[http://dx.doi.org/10.1002/biof.1404] [PMID: 29220105]
[91]
Alehagen, U.; Aaseth, J.; Johansson, P. Reduced cardiovascular mortality 10 years after supplementation with selenium and coenzyme Q10 for four years: Follow-up results of a prospective randomized double-blind placebo-controlled trial in elderly citizens. PLoS One, 2015, 10(12), e0141641.
[http://dx.doi.org/10.1371/journal.pone.0141641] [PMID: 26624886]
[92]
Jafari, M.; Mousavi, S.M.; Asgharzadeh, A.; Yazdani, N. Coenzyme Q10 in the treatment of heart failure: A systematic review of systematic reviews. Indian Heart J., 2018, 70 Suppl 1(Suppl 1), S111-S117.
[http://dx.doi.org/10.1016/j.ihj.2018.01.031]
[93]
Soja, A.M.; Mortensen, S.A. Treatment of congestive heart failure with coenzyme Q10 Illuminated by meta-analyses of clinical trials. Mol. Aspects Med., 1997, 18(Suppl.), 159-168.
[http://dx.doi.org/10.1016/S0098-2997(97)00042-3] [PMID: 9266518]
[94]
Sander, S.; Coleman, C.I.; Patel, A.A.; Kluger, J.; Michael White, C. The impact of coenzyme Q10 on systolic function in patients with chronic heart failure. J. Card. Fail., 2006, 12(6), 464-472.
[http://dx.doi.org/10.1016/j.cardfail.2006.03.007] [PMID: 16911914]
[95]
Rosenfeldt, F.; Hilton, D.; Pepe, S.; Krum, H. Systematic review of effect of coenzyme Q10 in physical exercise, hypertension and heart failure. Biofactors, 2003, 18(1-4), 91-100.
[http://dx.doi.org/10.1002/biof.5520180211] [PMID: 14695924]
[96]
Fotino, A.D.; Thompson-Paul, A.M.; Bazzano, L.A. Effect of coenzyme Q10 supplementation on heart failure: A meta- analysis. Am. J. Clin. Nutr., 2013, 97(2), 268-275.
[http://dx.doi.org/10.3945/ajcn.112.040741] [PMID: 23221577]
[97]
Madmani, M.E.; Yusuf Solaiman, A.; Tamr Agha, K.; Madmani, Y.; Shahrour, Y.; Essali, A.; Kadro, W. Coenzyme Q10 for heart failure. Cochrane Libr., 2014, (6), CD008684.
[http://dx.doi.org/10.1002/14651858.CD008684.pub2] [PMID: 24049047]
[98]
Lei, L.; Liu, Y. Efficacy of coenzyme Q10 in patients with cardiac failure: A meta-analysis of clinical trials. BMC Cardiovasc. Disord., 2017, 17(1), 196.
[http://dx.doi.org/10.1186/s12872-017-0628-9] [PMID: 28738783]
[99]
Trongtorsak, A.; Kongnatthasate, K.; Susantitaphong, P.; Kittipibul, V.; Ariyachaipanich, A. Effect of coenzyme Q10 on left ventricular remodeling and mortality in patients with heart failure: A meta-analysis. J. Am. Coll. Cardiol., 2017, 69(Suppl. 11), 707-707.
[http://dx.doi.org/10.1016/S0735-1097(17)34096-2]
[100]
Al Saadi, T.; Assaf, Y.; Farwati, M.; Turkmani, K.; Al- Mouakeh, A.; Shebli, B.; Khoja, M.; Essali, A.; Madmani, M.E. Coenzyme Q10 for heart failure. Cochrane Database Syst. Rev., 2021, 2(2), CD008684.
[http://dx.doi.org/10.1002/14651858.CD008684.pub3]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy