Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Review Article

Tea tree (Melaleuca alternifolia) Essential Oil Concentration in Microemulsion with Antibacterial and Antifungal Activity: An Overview

Author(s): Prashant Upadhyay*, Pooja Malik and Sukirti Upadhyay

Volume 18, Issue 4, 2023

Published on: 10 April, 2023

Page: [298 - 311] Pages: 14

DOI: 10.2174/1574885518666230228103854

Price: $65

Abstract

The tea tree (Melaleuca alternifolia), a member of the Myrtaceae family, is a valuable medicinal and aromatic plant. Tea Tree essential oil (TTO) has many medical applications, including antibacterial, antifungal, antiviral, antiprotozoal, anti-inflammatory, antioxidant, and anticancer properties. Although the concentration of TTO in a microemulsion is of economic interest, very few studies on this product have been conducted. In this study, we look at how different tea tree oil concentrations in microemulsion formulations affect susceptibility to various bacteria and fungi. TTO susceptibility in a diverse range of microbial species has now been studied using data from a previously published literature review survey. Most bacteria are resistant to TTO at concentrations as low as 1.0 percent, but mucosal skin staphylococci and micrococci, Enterococcus faecalis, and Pseudomonas aeruginosa have minimum inhibitory concentrations much higher than 2 percent. TTO susceptibility in fungi has only recently been scrutinized. Fungicidal dosages range from 0.12 to 2 percent, with minimum inhibitory concentrations ranging from 0.03 to 0.5 percent and the only notable exception is Aspergillus niger, which contains fungicidal concentrations of up to 8%. The review emphasizes the importance of new antibacterial and antifungal formulations, as well as the role of natural essential oils in the discovery of new antibacterial and antifungal agents, and discusses, in brief, all constituents derived from the essential oil (tea tree) that are in preclinical and clinical development. This paper summarizes human and food-borne bacteria and fungi susceptibility to tea tree essential oils and their constituents. Among the many tested, essential oils of spices and herbs (Melaleuca alternifolia) were found to have the strongest antimicrobial properties. This review looks at a wide range of scientific literature, including Sci-hub, Google Scholar, Pub, Chem, NCBI, and web books.

Keywords: Antibacterial activity, antifungal activity, antimicrobial activity, tea tree oil, Melaleuca alternifolia, microemulsion.

Graphical Abstract
[1]
Campana R, Tiboni M, Maggi F, et al. Comparative analysis of the antimicrobial activity of essential oils and their formulated microemulsions against foodborne pathogens and spoilage bacteria. Antibiotics 2022; 11(4): 447.
[http://dx.doi.org/10.3390/antibiotics11040447] [PMID: 35453199]
[2]
Liu M, Gao Q, Sun C, et al. Effects of dietary tea tree oil on the growth, physiological and non-specific immunity response in the giant freshwater prawn (Macrobrachium rosenbergii) under high ammonia stress. Fish Shellfish Immunol 2022; 120(6): 458-69.
[http://dx.doi.org/10.1016/j.fsi.2021.12.025] [PMID: 34929307]
[3]
Martín-Pérez T, Heredero-Bermejo I, Verdú-Expósito C, Pérez-Serrano J. In vitro evaluation of the combination of Melaleuca alternifolia (Tea Tree) oil and dimethyl sulfoxide (DMSO) against trophozoites and cysts of Acanthamoeba strains. Oxygen Consumption Rate (OCR) assay as a method for drug screening. Pathogens 2021; 10(4): 491.
[http://dx.doi.org/10.3390/pathogens10040491] [PMID: 33921633]
[4]
Carson CF, Hammer KA, Riley TV. Melaleuca alternifolia (Tea Tree) oil: a review of antimicrobial and other medicinal properties. Clin Microbiol Rev 2006; 19(1): 50-62.
[http://dx.doi.org/10.1128/CMR.19.1.50-62.2006] [PMID: 16418522]
[5]
Vo TV, Truong TH, Chen BH. Surfactant‐assisted extraction of Melaleuca alternifolia (tea tree) oil by hydrodistillation and its application in microemulsion. J Chem Technol Biotechnol 2022; 97(12): 3419-29.
[http://dx.doi.org/10.1002/jctb.7202]
[6]
Chen H, Zhong Q. Physical and antimicrobial properties of self-emulsified nanoemulsions containing three synergistic essential oils. Int J Food Microbiol 2022; 365(32): 109557.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2022.109557] [PMID: 35121386]
[7]
Abd Rashed A, Rathi DNG, Ahmad Nasir NAH, Abd Rahman AZ. Antifungal properties of essential oils and their compounds for application in skin fungal infections: Conventional and nonconventional approaches. Molecules 2021; 26(4): 1093.
[http://dx.doi.org/10.3390/molecules26041093] [PMID: 33669627]
[8]
D’Arrigo M, Ginestra G, Mandalari G, Furneri PM, Bisignano G. Synergism and postantibiotic effect of tobramycin and Melaleuca alternifolia (tea tree) oil against Staphylococcus aureus and Escherichia coli. Phytomedicine 2010; 17(5): 317-22.
[http://dx.doi.org/10.1016/j.phymed.2009.07.008] [PMID: 19699074]
[9]
Yasin M, Younis A, Javed T, et al. River Tea Tee oil: Composition, antimicrobial and antioxidant activities, and potential applications in agriculture. Plants 2021; 10(10): 2105.
[http://dx.doi.org/10.3390/plants10102105] [PMID: 34685914]
[10]
Lohani A, Verma A, Hema G, Pathak K. Topical delivery of geranium/calendula essential oil-entrapped ethanolic lipid vesicular cream to combat skin aging. BioMed Res Int 2021; 2021(8): 1-13.
[http://dx.doi.org/10.1155/2021/4593759] [PMID: 34552986]
[11]
Le MT, Nguyen NM, Le XT. Enriching terpinen-4-ol from tea tree (Melaleuca alternifolia) oil using vacuum fractional distillation: Effect of column and packings on the separation. IOP Conf Ser Earth Environ Sci 2021; 947(1): 012001.
[http://dx.doi.org/10.1088/1755-1315/947/1/012001]
[12]
Nazar MF, Saleem MA, Basharat H, et al. Architecting water-dispersible organic nanopowder from volatile microemulsion: An emerging colloidal technology. Colloid Interface Sci Commun 2021; 45: 100536.
[http://dx.doi.org/10.1016/j.colcom.2021.100536]
[13]
Sarada K, Gowda RJP, Sarris IE, Kumar RN, Prasannakumara BC. Effect of magnetohydrodynamics on heat transfer behaviour of a non-newtonian fluid flow over a stretching sheet under local thermal non-equilibrium condition. Fluids 2021; 6(8): 264.
[http://dx.doi.org/10.3390/fluids6080264]
[14]
Kawakami K, Yoshikawa T, Hayashi T, Nishihara Y, Masuda K. Microemulsion formulation for enhanced absorption of poorly soluble drugs. J Control Release 2002; 81(1-2): 75-82.
[http://dx.doi.org/10.1016/S0168-3659(02)00050-0] [PMID: 11992680]
[15]
Sahu GK, Sharma H, Gupta A, et al. Advancements in micro emulsion based drug delivery systems for better therapeutic effects Int J Pharm Sci Dev Res 2015; 1: 008-15.
[16]
Malik MA, Wani MY, Hashim MA. Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials. Arab J Chem 2012; 5(4): 397-417.
[http://dx.doi.org/10.1016/j.arabjc.2010.09.027]
[17]
Pawlonka J, Slowik G, Gac W, Borowiecki T. An application of microemulsion method for synthesis of copper-zinc materials Annales Universitatis Mariae Curie-Skłodowska, sectio AA– Chemia 2013; 68(1-2).
[http://dx.doi.org/10.2478/umcschem-2013-0009]
[18]
Das S, Lee SH, Chow PS, Macbeath C. Microemulsion composed of combination of skin beneficial oils as vehicle: Development of resveratrol-loaded microemulsion based formulations for skin care applications. Colloids Surf B Biointerfaces 2020; 194: 111161.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111161] [PMID: 32521462]
[19]
Gupta S, Moulik SP. Biocompatible microemulsions and their prospective uses in drug delivery. J Pharm Sci 2008; 97(1): 22-45.
[http://dx.doi.org/10.1002/jps.21177] [PMID: 17887122]
[20]
Hegde RR, Verma A, Ghosh A. Microemulsion: new insights into the ocular drug delivery. ISRN Pharm 2013; 2013: 1-11.
[http://dx.doi.org/10.1155/2013/826798] [PMID: 23936681]
[21]
Chen H, Chang X, Du D, Li J, Xu H, Yang X. Microemulsion-based hydrogel formulation of ibuprofen for topical delivery. Int J Pharm 2006; 315(1-2): 52-8.
[http://dx.doi.org/10.1016/j.ijpharm.2006.02.015] [PMID: 16600540]
[22]
Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 2000; 45(1): 89-121.
[http://dx.doi.org/10.1016/S0169-409X(00)00103-4] [PMID: 11104900]
[23]
Gloerfelt-Tarp F, Mieog JC, Bigland M, Wheeler S, Palmer WM, Kretzschmar T. Predicting tea tree oil distillate composition using portable spectrometric technology. J Raman Spectrosc 2022; 53(4): 771-84.
[http://dx.doi.org/10.1002/jrs.6308]
[24]
Cox S, Mann C, Markham J, Gustafson J, Warmington J, Wyllie S. Determining the antimicrobial actions of Tea Tree oil. Molecules 2001; 6(12): 87-91.
[http://dx.doi.org/10.3390/60100087]
[25]
Groppo FC, Ramacciato JC, Simões RP, Flório FM, Sartoratto A. Antimicrobial activity of garlic, tea tree oil, and chlorhexidine against oral microorganisms. Int Dent J 2002; 52(6): 433-7.
[http://dx.doi.org/10.1111/j.1875-595X.2002.tb00638.x] [PMID: 12553397]
[26]
de Groot AC, Schmidt E. Tea tree oil: contact allergy and chemical composition. Contact Dermat 2016; 75(3): 129-43.
[http://dx.doi.org/10.1111/cod.12591] [PMID: 27173437]
[27]
Riyankati B, Hadi S, Handayani SS. Characterization and chemical composition analysis of Tea Tree (Meleauca alternifolia) leaf hydrosols growing on lombok island. J Penelitian Pendidikan IPA 2022; 8(1): 119-23.
[http://dx.doi.org/10.29303/jppipa.v8i1.1239]
[28]
Majumder S, Sarkar S, Ghosh A, et al. Photosynthetic organs of wild Indian tea tree are rich in patchouli components: a GC-MS based metabolomics. Nat Prod Res 2022; 36(8): 2191-5.
[http://dx.doi.org/10.1080/14786419.2020.1851222] [PMID: 33251869]
[29]
Li Y, Cao X, Sun J, et al. Characterization of chemical compositions by a GC–MS/MS approach and evaluation of antioxidant activities of essential oils from Cinnamomum reticulatum Hay, Leptospermum petersonii Bailey, and Juniperus formosana Hayata. Arab J Chem 2022; 15(2): 103609.
[http://dx.doi.org/10.1016/j.arabjc.2021.103609]
[30]
Van NTB, Vi OT, Yen NTP, et al. Minimum inhibitory concentrations of commercial essential oils against common chicken pathogenic bacteria and their relationship with antibiotic resistance. J Appl Microbiol 2022; 132(2): 1025-35.
[http://dx.doi.org/10.1111/jam.15302] [PMID: 34543506]
[31]
Marsh A, Clark BJ, Altria KD. A review of the background, operating parameters and applications of microemulsion liquid chromatography (MELC). J Sep Sci 2005; 28(15): 2023-32.
[http://dx.doi.org/10.1002/jssc.200500129]
[32]
Ohadi M, Shahravan A, Dehghan N, Eslaminejad T, Banat IM, Dehghannoudeh G. Potential use of microbial surfactant in microemulsion drug delivery system: A Systematic Review. Drug Des Devel Ther 2020; 14: 541-50.
[http://dx.doi.org/10.2147/DDDT.S232325] [PMID: 32103896]
[33]
Boonme P. Applications of microemulsions in cosmetics. J Cosmet Dermatol 2007; 6(4): 223-8.
[http://dx.doi.org/10.1111/j.1473-2165.2007.00337.x] [PMID: 18047605]
[34]
Aubert T, Grasset F, Mornet S, et al. Functional silica nanoparticles synthesized by water-in-oil microemulsion processes. J Colloid Interface Sci 2010; 341(2): 201-8.
[http://dx.doi.org/10.1016/j.jcis.2009.09.064] [PMID: 19875127]
[35]
Lakshmi J, Kumar BA, Gupta S. Investigation of microemulsion as a potential carrier for advanced transdermal delivery: An overview. Int J Pharm Sci Rev Res 2013; 20: 51-9.
[36]
Soliman SM, Abdel Malak NS, El-Gazayerly ON, Abdel Rehim AA. Formulation of microemulsion gel systems for transdermal delivery of celecoxib: In vitro permeation, anti-inflammatory activity and skin irritation tests. Drug Discov Ther 2010; 4(6): 459-71.
[PMID: 22491312]
[37]
Raza K, Negi P, Takyar S, Shukla A, Amarji B, Katare OP. Novel dithranol phospholipid microemulsion for topical application: development, characterization and percutaneous absorption studies. J Microencapsul 2011; 28(3): 190-9.
[http://dx.doi.org/10.3109/02652048.2010.546435] [PMID: 21395406]
[38]
Xavier-Junior FH, Vauthier C, Morais ARV, Alencar EN, Egito EST. Microemulsion systems containing bioactive natural oils: an overview on the state of the art. Drug Dev Ind Pharm 2017; 43(5): 700-14.
[http://dx.doi.org/10.1080/03639045.2016.1235186] [PMID: 27622950]
[39]
Zhi J, Wang Y, Lu Y, Ma J, Luo G. In situ preparation of magnetic chitosan/Fe3O4 composite nanoparticles in tiny pools of water-in-oil microemulsion. React Funct Polym 2006; 66(12): 1552-8.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2006.05.006]
[40]
Clavijo-Romero A, Quintanilla-Carvajal MX, Ruiz Y. Stability and antimicrobial activity of eucalyptus essential oil emulsions. Food Sci Technol Int 2019; 25(1): 24-37.
[http://dx.doi.org/10.1177/1082013218794841] [PMID: 30149730]
[41]
Karadağ AE, Üstündağ Okur N, Demirci B, Demirci F. Rosmarinus officinalis L. essential oil encapsulated in new microemulsion formulations for enhanced antimicrobial activity. J Surfactants Deterg 2022; 25(1): 95-103.
[http://dx.doi.org/10.1002/jsde.12549]
[42]
Sharma AK, Garg T, Goyal AK, Rath G. Role of microemuslsions in advanced drug delivery. Artif Cells Nanomed Biotechnol 2016; 44(4): 1177-85.
[http://dx.doi.org/10.3109/21691401.2015.1012261] [http://dx.doi.org/10.3109/21691401.2015.1012261]
[43]
Khosravi-Darani K, Pardakhty A, Honarpisheh H, Rao VSNM, Mozafari MR. The role of high-resolution imaging in the evaluation of nanosystems for bioactive encapsulation and targeted nanotherapy. Micron 2007; 38(8): 804-18.
[http://dx.doi.org/10.1016/j.micron.2007.06.009] [PMID: 17669661]
[44]
Tartaro G, Mateos H, Schirone D, Angelico R, Palazzo G. Microemulsion microstructure(s): a tutorial review. Nanomaterials 2020; 10(9): 1657.
[http://dx.doi.org/10.3390/nano10091657] [PMID: 32846957]
[45]
Podlogar F. Bešter Rogač M, Gašperlin M. The effect of internal structure of selected water–Tween 40®–Imwitor 308®–IPM microemulsions on ketoprofene release. Int J Pharm 2005; 302(1-2): 68-77.
[http://dx.doi.org/10.1016/j.ijpharm.2005.06.023] [PMID: 16099611]
[46]
El Laithy HM, El-Shaboury KMF. The development of Cutina lipogels and gel microemulsion for topical administration of fluconazole. AAPS PharmSciTech 2002; 3(4): E35.
[PMID: 12916929]
[47]
Pasquali RC, Taurozzi MP, Bregni C. Some considerations about the hydrophilic–lipophilic balance system. Int J Pharm 2008; 356(1-2): 44-51.
[http://dx.doi.org/10.1016/j.ijpharm.2007.12.034] [PMID: 18258397]
[48]
Al‐Adham ISI, Jaber N. A review of the antimicrobial activity of thermodynamically stable microemulsions. Lett Appl Microbiol 2021; 75(3): 537-47.
[http://dx.doi.org/10.1111/lam.13570] [PMID: 34591987]
[49]
Zhao J-H, Ji L, Wang H, et al. Microemulsion-based novel transdermal delivery system of tetramethylpyrazine: preparation and evaluation in vitro and in vivo. Int J Nanomedicine 2011; 6: 1611-9.
[PMID: 21904451]
[50]
Bardhan S, Kundu K, Chakraborty G, Saha SK, Paul BK. The schulman method of cosurfactant titration of the oil/water interface (dilution method): A review on a well-known powerful technique in interfacial science for characterization of water-in-oil microemulsions. J Surfactants Deterg 2015; 18(4): 547-67.
[http://dx.doi.org/10.1007/s11743-015-1694-6]
[51]
Kumar H, Katal A. Thermodynamic analysis of micelles formation of anionic surfactant SDS in the presence of aqueous and aqueous solution of ionic liquid 1‐butyl‐3‐methylimidazolium chloride. J Phys Org Chem 2021; 34(7): 34.
[http://dx.doi.org/10.1002/poc.4199]
[52]
Ghosh S, Chawathe A, Thach S. An equation of state to model microemulsion phase behavior in presence of co-solvents using average solubilization theory. SPE Annual Technical Conference and Exhibition. SPE: Dallas, Texas, USA. 2018.
[http://dx.doi.org/10.2118/191530-MS]
[53]
Ryu KA, Park PJ, Kim SB, Bin BH, Jang DJ, Kim ST. Topical delivery of coenzyme Q10-loaded microemulsion for skin regeneration. Pharmaceutics 2020; 12(4): 332.
[http://dx.doi.org/10.3390/pharmaceutics12040332] [PMID: 32272811]
[54]
Roohinejad S, Oey I, Everett DW, et al. Microemulsions: A Review. Deliv Food Act 2018; pp. 231-62.
[55]
Chuesiang P, Siripatrawan U, Sanguandeekul R, McLandsborough L, Julian McClements D. Optimization of cinnamon oil nanoemulsions using phase inversion temperature method: Impact of oil phase composition and surfactant concentration. J Colloid Interface Sci 2018; 514: 208-16.
[http://dx.doi.org/10.1016/j.jcis.2017.11.084] [PMID: 29257975]
[56]
Johannsen NM, Lind E, King DS, Sharp RL. Effect of preexercise electrolyte ingestion on fluid balance in men and women. Med Sci Sports Exerc 2009; 41(11): 2017-25.
[http://dx.doi.org/10.1249/MSS.0b013e3181a82940] [PMID: 19812516]
[57]
Cox SD, Mann CM, Markham JL. Interactions between components of the essential oil of Melaleuca alternifolia. J Appl Microbiol 2001; 91(3): 492-7.
[http://dx.doi.org/10.1046/j.1365-2672.2001.01406.x] [PMID: 11556915]
[58]
An P, Yang X, Yu J, Qi J, Ren X, Kong Q. α-terpineol and terpene- 4-ol, the critical components of tea tree oil, exert antifungal activities in vitro and in vivo against Aspergillus niger in grapes by inducing morphous damage and metabolic changes of fungus. Food Control 2019; 98: 42-53.
[http://dx.doi.org/10.1016/j.foodcont.2018.11.013]
[59]
Francisconi RS, Huacho PMM, Tonon CC, et al. Antibiofilm efficacy of tea tree oil and of its main component terpinen-4-ol against Candida albicans. Braz Oral Res 2020; 34: e050.
[http://dx.doi.org/10.1590/1807-3107bor-2020.vol34.0050] [PMID: 32578760]
[60]
Demo M, Oliva MM, López ML, Zunino MP, Zygadlo JA. Antimicrobial activity of essential oils obtained from aromatic plants of Argentina. Pharm Biol 2005; 43(2): 129-34.
[http://dx.doi.org/10.1080/13880200590919438]
[61]
Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal 2016; 6(2): 71-9.
[http://dx.doi.org/10.1016/j.jpha.2015.11.005] [PMID: 29403965]
[62]
Miranda CD, Rojas R, Contreras-Lynch S, Vega A. Evaluation of the correlation between Minimum Inhibitory Concentrations (MIC) and disk diffusion data of Flavobacterium psychrophilum isolated from outbreaks occurred in Chilean salmonid farms. Aquaculture 2021; 530: 735811.
[http://dx.doi.org/10.1016/j.aquaculture.2020.735811]
[63]
van den Bijllaardt W, Schijffelen MJ, Bosboom RW, et al. Susceptibility of ESBL Escherichia coli and Klebsiella pneumoniae to fosfomycin in the Netherlands and comparison of several testing methods including Etest, MIC test strip, Vitek2, Phoenix and disc diffusion. J Antimicrob Chemother 2018; 73(9): 2380-7.
[http://dx.doi.org/10.1093/jac/dky214] [PMID: 29982660]
[64]
Sadekuzzaman M, Mizan MFR, Kim HS, Yang S, Ha S-D. Activity of thyme and tea tree essential oils against selected foodborne pathogens in biofilms on abiotic surfaces. Lebensm Wiss Technol 2018; 89: 134-9.
[http://dx.doi.org/10.1016/j.lwt.2017.10.042]
[65]
Bozin B, Mimica-Dukic N, Samojlik I, Jovin E. Antimicrobial and antioxidant properties of rosemary and sage (Rosmarinus officinalis L. and Salvia officinalis L., Lamiaceae) essential oils. J Agric Food Chem 2007; 55(19): 7879-85.
[http://dx.doi.org/10.1021/jf0715323] [PMID: 17708648]
[66]
Brun P, Bernabè G, Filippini R, Piovan A. In vitro antimicrobial activities of commercially available tea tree (Melaleuca alternifolia) essential oils. Curr Microbiol 2019; 76(1): 108-16.
[http://dx.doi.org/10.1007/s00284-018-1594-x] [PMID: 30421144]
[67]
Gao F, Zhou H, Shen Z, et al. Long-lasting anti-bacterial activity and bacteriostatic mechanism of tea tree oil adsorbed on the amino-functionalized mesoporous silica-coated by PAA. Colloids Surf B Biointerfaces 2020; 188: 110784.
[http://dx.doi.org/10.1016/j.colsurfb.2020.110784] [PMID: 31935631]
[68]
Halcón L, Milkus K. and wounds: A review of tea tree oil as a promising antimicrobial. Am J Infect Control 2004; 32(7): 402-8.
[http://dx.doi.org/10.1016/j.ajic.2003.12.008] [PMID: 15525915]
[69]
Low WL, Martin C, Hill DJ, Kenward MA. Antimicrobial efficacy of silver ions in combination with tea tree oil against Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans. Int J Antimicrob Agents 2011; 37(2): 162-5.
[http://dx.doi.org/10.1016/j.ijantimicag.2010.10.015] [PMID: 21163626]
[70]
de Assis KMA, da Silva Leite JM, de Melo DF, et al. Bicontinuous microemulsions containing Melaleuca alternifolia essential oil as a therapeutic agent for cutaneous wound healing. Drug Deliv Transl Res 2020; 10(6): 1748-63.
[http://dx.doi.org/10.1007/s13346-020-00850-0] [PMID: 32924099]
[71]
Roana J, Mandras N, Scalas D, Campagna P, Tullio V. Antifungal activity of Melaleuca alternifolia essential oil (TTO) and its synergy with Itraconazole or Ketoconazole against Ttrichophyton rubrum. Molecules 2021; 26(2): 461.
[http://dx.doi.org/10.3390/molecules26020461] [PMID: 33477259]
[72]
Li WR, Sun TL, Zhou SL, et al. A comparative analysis of antibacterial activity, dynamics, and effects of silver ions and silver nanoparticles against four bacterial strains. Int Biodeterior Biodegradation 2017; 123: 304-10.
[http://dx.doi.org/10.1016/j.ibiod.2017.07.015]
[73]
Bassett IB, Barnetson RSC, Pannowitz DL. A comparative study of tea‐tree oil versus benzoylperoxide in the treatment of acne. Med J Aust 1990; 153(8): 455-8.
[http://dx.doi.org/10.5694/j.1326-5377.1990.tb126150.x] [PMID: 2145499]
[74]
Hammer KA, Carson CF, Riley TV. Antimicrobial activity of essential oils and other plant extracts. J Appl Microbiol 1999; 86(6): 985-90.
[http://dx.doi.org/10.1046/j.1365-2672.1999.00780.x] [PMID: 10438227]
[75]
Arellano S, Zhu L, Dev Kumar G, Law B, Friedman M, Ravishankar S. Essential oil microemulsions inactivate antibiotic-resistant bacteria on iceberg lettuce during 28-day storage at 4 °c. Molecules 2022; 27(19): 6699.
[http://dx.doi.org/10.3390/molecules27196699] [PMID: 36235235]
[76]
Lv X, Liu T, Ma H, et al. Preparation of essential oil-based microemulsions for improving the solubility, ph stability, photostability, and skin permeation Quercetin. AAPS PharmSciTech 2017; 18(8): 3097-104.
[http://dx.doi.org/10.1208/s12249-017-0798-x] [PMID: 28516411]
[77]
Larson D, Jacob SE. Tea tree oil. Dermatitis 2012; 23(1): 48-9.
[http://dx.doi.org/10.1097/DER.0b013e31823e202d] [PMID: 22653070]
[78]
Hammer K, Carson CF, Riley TV. In-vitro activity of essential oils, in particular Melaleuca alternifolia (tea tree) oil and tea tree oil products, against Candida spp. J Antimicrob Chemother 1998; 42(5): 591-5.
[http://dx.doi.org/10.1093/jac/42.5.591] [PMID: 9848442]
[79]
Chao SC, Young DG, Oberg CJ. Screening for inhibitory activity of essential oils on selected bacteria, fungi and viruses. J Essent Oil Res 2000; 12(5): 639-49.
[http://dx.doi.org/10.1080/10412905.2000.9712177]
[80]
Hammer KA, Carson CF, Riley TV. Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. J Appl Microbiol 2003; 95(4): 853-60.
[http://dx.doi.org/10.1046/j.1365-2672.2003.02059.x] [PMID: 12969301]
[81]
Inouye S, Tsuruoka T, Watanabe M, et al. Inhibitory effect of essential oils on apical growth of Aspergillus fumigatus by vapour contact. Mycoses 2000; 43(1-2): 17-23.
[http://dx.doi.org/10.1046/j.1439-0507.2000.00538.x] [PMID: 10838841]
[82]
Thomsen PS, Jensen TM, Hammer KA, Carson CF, Mølgaard P, Riley TV. Survey of the antimicrobial activity of commercially available Australian tea tree (Melaleuca alternifolia) essential oil products in vitro. J Altern Complement Med 2011; 17(9): 835-41.
[http://dx.doi.org/10.1089/acm.2010.0508] [PMID: 21854197]
[83]
Silva SAM, Michniak-Kohn B, Leonardi GR. An overview about oxidation in clinical practice of skin aging. An Bras Dermatol 2017; 92(3): 367-74.
[http://dx.doi.org/10.1590/abd1806-4841.20175481] [PMID: 29186250]
[84]
Garcia-Sotelo D, Silva-Espinoza B, Perez-Tello M, et al. Antimicrobial activity and thermal stability of rosemary essential oil:β−cyclodextrin capsules applied in tomato juice. Lebensm Wiss Technol 2019; 111: 837-45.
[http://dx.doi.org/10.1016/j.lwt.2019.05.061]
[85]
Fu Y, Zu Y, Chen L, et al. Antimicrobial activity of clove and rosemary essential oils alone and in combination. Phytother Res 2007; 21(10): 989-94.
[http://dx.doi.org/10.1002/ptr.2179] [PMID: 17562569]
[86]
Amenu D. Antimicrobial activity of medicinal plant extracts and their synergistic effect on some selected pathogens Am J Ethnomedicine 2014; 1: 018-29.
[87]
Dávila-Rodríguez M, López-Malo A, Palou E, Ramírez-Corona N, Jiménez-Munguía MT. Antimicrobial activity of nanoemulsions of cinnamon, rosemary, and oregano essential oils on fresh celery. Lebensm Wiss Technol 2019; 112: 108247.
[http://dx.doi.org/10.1016/j.lwt.2019.06.014]
[88]
Farag RS, Daw ZY, Hewedi FM, El-Baroty GSA. Antimicrobial activity of some egyptian spice essential oils. J Food Prot 1989; 52(9): 665-7.
[http://dx.doi.org/10.4315/0362-028X-52.9.665] [PMID: 31003289]
[89]
Thring TSA, Hili P, Naughton DP. Antioxidant and potential anti-inflammatory activity of extracts and formulations of white tea, rose, and witch hazel on primary human dermal fibroblast cells. J Inflamm 2011; 8(1): 27.
[http://dx.doi.org/10.1186/1476-9255-8-27] [PMID: 21995704]
[90]
Moreno S, Scheyer T, Romano CS, Vojnov AA. Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free Radic Res 2006; 40(2): 223-31.
[http://dx.doi.org/10.1080/10715760500473834] [PMID: 16390832]
[91]
Kalemba D, Kunicka A. Antibacterial and antifungal properties of essential oils. Curr Med Chem 2003; 10(10): 813-29.
[http://dx.doi.org/10.2174/0929867033457719] [PMID: 12678685]
[92]
Majiene D, Trumbeckaite S, Pavilonis A, Savickas A, Martirosyan D. Antifungal and antibacterial activity of propolis. Curr Nutr Food Sci 2007; 3(4): 304-8.
[http://dx.doi.org/10.2174/1573401310703040304]
[93]
Nieto G, Ros G, Castillo J. Antioxidant and antimicrobial properties of rosemary (Rosmarinus officinalis, L.): A Review. Medicines (Basel) 2018; 5(3): 98.
[http://dx.doi.org/10.3390/medicines5030098] [PMID: 30181448]
[94]
Fletcher JC, Riley MJH. Essential oil composition Patent WO1998040086A2 1998.
[95]
Scheyer T. Compositions and methods for treating demodex infestations Patent WO2009032773A2 2022.
[96]
Amenu D. Method for treating ocular demodex. Dimensions 2021; 15: 223-9.
[97]
Pavilonis A. Tea Tree oil: A Review. Molecules 2019; 11: 134-45.
[98]
Andriolli A, Panni F. Antifungal and antibacterial compositions containing Melaleuca essential oil Patent WO1999048511A1 1999.
[99]
Linder C. Application for biocompatible Tea Tree oil compositions. Molecules 2015; 12: 156-65.
[100]
Thompson T, Linn WOR. Antifungal and antibacterial activity of rosemary oil, Bethel. Advance J 2019; 24: 109-15.
[101]
Kritzman A, Markus A, Strongin P, et al. Applications of microencapsulated essential oils Patent US8753676B2 2014.
[102]
Markus A, Linder C, Schuster D. Formulations containing microencapsulated essential oils Patent WO2006077568A1 2006.
[103]
Mounik L. Method for treating ocular demodex Patent US- 8440240-B2
[104]
Mohammad Soleymani S, Salimi A. Enhancement of dermal delivery of finasteride using microemulsion systems. Adv Pharm Bull 2019; 9(4): 584-92.
[http://dx.doi.org/10.15171/apb.2019.067] [PMID: 31857962]
[105]
Paul BK, Moulik SP. Uses and applications of microemulsions. Current Science 2001; 80(8): 990-1001.
[106]
Andersson M, Löfroth JE. Small particles of a heparin/chitosan complex prepared from a pharmaceutically acceptable microemulsion. Int J Pharm 2003; 257(1-2): 305-9.
[http://dx.doi.org/10.1016/S0378-5173(03)00131-5] [PMID: 12711186]
[107]
Nazar MF, Khan AM, Shah SS. Microemulsion system with improved loading of piroxicam: a study of microstructure. AAPS PharmSciTech 2009; 10(4): 1286-94.
[http://dx.doi.org/10.1208/s12249-009-9328-9] [PMID: 19876741]
[108]
Mohyaldinn E. Application of emulsions and microemulsions in enhanced oil recovery and well stimulation. Microemulsion 2019; 23: 234-41.
[109]
Mohamad Zain N, Mohd Amin N, Nordin FA, Mahmud J, Mohd Amin I. the antimicrobial and antibiofilm potential of sweet basil essential oil on streptococcus mutans and staphylococcus aureus. Malays Appl Biol 2022; 51(4): 213-20.
[http://dx.doi.org/10.55230/mabjournal.v51i4.30]
[110]
Jadhav K, Shaikh I, Ambade K, Kadam V. Applications of microemulsion based drug delivery system. Curr Drug Deliv 2006; 3(3): 267-73.
[http://dx.doi.org/10.2174/156720106777731118] [PMID: 16848728]
[111]
Nordin LM. Microemulsions: Applications in transdermal and dermal delivery - Critical Reviewstm. Crit Rev Ther Drug Carr Syst 2007; 24(6)
[112]
Yi G, Yin C, Lao Y, et al. Antibacterial and antitumor activities of chitosan/polyvinyl alcohol films containing microemulsion of papaya seed essential oil. Mater Today Commun 2022; 31: 103475.
[http://dx.doi.org/10.1016/j.mtcomm.2022.103475]
[113]
Benson H. Transdermal drug delivery: penetration enhancement techniques. Curr Drug Deliv 2005; 2(1): 23-33.
[http://dx.doi.org/10.2174/1567201052772915] [PMID: 16305405]
[114]
Wei S, Tian Q, Zhao X, et al. Tea Tree oil nanoemulsion potentiates antibiotics against multidrug-resistant Escherichia coli. ACS Infect Dis 2022; 8(8): 1618-26.
[http://dx.doi.org/10.1021/acsinfecdis.2c00223] [PMID: 35854664]
[115]
Yu YQ, Yang X, Wu XF, Fan YB. Enhancing permeation of drug molecules across the skin via delivery in nanocarriers: novel strategies for effective transdermal applications. Front Bioeng Biotechnol 2021; 9: 646554.
[http://dx.doi.org/10.3389/fbioe.2021.646554] [PMID: 33855015]
[116]
Shekade SV, Shirolkar DSV, Chaudhari Y. A Review on microemulsion drug delivery system for nasal application. J Pharm Sci 2020; 12: 11.
[117]
Sánchez-López E, Guerra M, Dias-Ferreira J, et al. Current applications of nanoemulsions in cancer therapeutics. Nanomaterials 2019; 9(6): 821.
[http://dx.doi.org/10.3390/nano9060821] [PMID: 31159219]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy