Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

纳米金刚石介导的分子靶向治疗胰腺导管腺癌:破坏肿瘤-间质串扰,下一个希望?

卷 23, 期 8, 2023

发表于: 07 April, 2023

页: [620 - 633] 页: 14

弟呕挨: 10.2174/1568009623666230227120837

价格: $65

Open Access Journals Promotions 2
摘要

胰腺导管腺癌(PDAC)是世界范围内癌症相关疾病的主要原因之一。新的纳米技术支持的药物递送策略,包括化疗有效载荷的分子靶向,已经被考虑。然而,PDAC患者的总生存率并没有实现质的飞跃。这背后的主要原因之一是肿瘤结缔组织增生,肿瘤的致密和异质间质细胞外基质,恰当地称为肿瘤微环境(TME)。它占据了PDAC的大部分肿瘤肿块,在PDAC的肿瘤发病机制中起着关键作用,使PDAC成为基质最丰富的癌症之一。肿瘤与TME动态组分之间复杂的串扰影响肿瘤进展,并对药物递送构成潜在障碍。理解和破译肿瘤间质相互作用的复杂级联是迫切需要的,这样我们就可以开发出新的纳米载体来破坏基质并靶向肿瘤。纳米金刚石(NDs)由于其独特的表面特性,在各种临床前癌症模型中成为一种很有前途的纳米递送系统,并且有可能通过超越动态肿瘤基质屏障来递送化疗有效载荷。它可能是纳米颗粒介导的胰腺癌靶向治疗的下一个革命。

关键词: 胰腺导管腺癌、间质、胰腺星状细胞、癌相关成纤维细胞、分子靶向、纳米金刚石、结缔组织增生。

图形摘要
[1]
Muñoz, A.R.; Chakravarthy, D.; Gong, J.; Halff, G.A.; Ghosh, R.; Kumar, A.P. Pancreatic cancer: Current status and challenges. Curr. Pharmacol. Rep., 2017, 3(6), 396-408.
[http://dx.doi.org/10.1007/s40495-017-0112-3] [PMID: 29404265]
[2]
Ilic, M.; Ilic, I. Epidemiology of pancreatic cancer. World J. Gastroenterol., 2016, 22(44), 9694-9705.
[http://dx.doi.org/10.3748/wjg.v22.i44.9694] [PMID: 27956793]
[3]
Ansari, D.; Tingstedt, B.; Andersson, B.; Holmquist, F.; Sturesson, C.; Williamsson, C.; Sasor, A.; Borg, D.; Bauden, M.; Andersson, R. Pancreatic cancer: Yesterday, today and tomorrow. Future Oncol., 2016, 12(16), 1929-1946.
[http://dx.doi.org/10.2217/fon-2016-0010] [PMID: 27246628]
[4]
McGuigan, A.; Kelly, P.; Turkington, R.C.; Jones, C.; Coleman, H.G.; McCain, R.S. Pancreatic cancer: A review of clinical diagnosis, epidemiology, treatment and outcomes. World J. Gastroenterol., 2018, 24(43), 4846-4861.
[http://dx.doi.org/10.3748/wjg.v24.i43.4846] [PMID: 30487695]
[5]
Hruban, R.H.; Goggins, M.; Parsons, J.; Kern, S.E. Progression model for pancreatic cancer. Clin. Cancer Res., 2000, 6(8), 2969-2972.
[PMID: 10955772]
[6]
Zhu, Z.; Xiao, S.; Hao, H.; Hou, Q.; Fu, X. Kirsten rat sarcoma viral oncogene homologue (KRAS) mutations in the occurrence and treatment of pancreatic cancer. Curr. Top. Med. Chem., 2019, 19(23), 2176-2186.
[http://dx.doi.org/10.2174/1568026619666190828160804] [PMID: 31456520]
[7]
Sikdar, N.; Saha, G.; Dutta, A.; Ghosh, S.; Shrikhande, S.V.; Banerjee, S. Genetic alterations of periampullary and pancreatic ductal adenocarcinoma: An overview. Curr. Genomics, 2018, 19(6), 444-463.
[http://dx.doi.org/10.2174/1389202919666180221160753] [PMID: 30258276]
[8]
Cicenas, J.; Kvederaviciute, K.; Meskinyte, I.; Meskinyte-Kausiliene, E; Skeberdyte, A.; Cicenas, J. KRAS, TP53, CDKN2A, SMAD4, BRCA1, and BRCA2 mutations in pancreatic cancer. Cancers (Basel), 2017, 9(5), 42.
[http://dx.doi.org/10.3390/cancers9050042]
[9]
Delpu, Y.; Hanoun, N.; Lulka, H.; Sicard, F.; Selves, J.; Buscail, L.; Torrisani, J.; Cordelier, P. Genetic and epigenetic alterations in pancreatic carcinogenesis. Curr. Genomics, 2011, 12(1), 15-24.
[http://dx.doi.org/10.2174/138920211794520132] [PMID: 21886451]
[10]
Pipinikas, C.P.; Berner, A.M.; Sposito, T.; Thirlwell, C. The evolving (epi)genetic landscape of pancreatic neuroendocrine tumours. Endocr. Relat. Cancer, 2019, 26(9), R519-R544.
[http://dx.doi.org/10.1530/ERC-19-0175] [PMID: 31252410]
[11]
Timar, J.; Kashofer, K. Molecular epidemiology and diagnostics of KRAS mutations in human cancer. Cancer Metastasis Rev., 2020, 39(4), 1029-1038.
[http://dx.doi.org/10.1007/s10555-020-09915-5] [PMID: 32725342]
[12]
Khorana, A.A.; Mangu, P.B.; Berlin, J.; Engebretson, A.; Hong, T.S.; Maitra, A.; Mohile, S.G.; Mumber, M.; Schulick, R.; Shapiro, M.; Urba, S.; Zeh, H.J.; Katz, M.H.G. Potentially curable pancreatic cancer: American society of clinical oncology clinical practice guideline. J. Clin. Oncol., 2016, 34(21), 2541-2556.
[http://dx.doi.org/10.1200/JCO.2016.67.5553] [PMID: 27247221]
[13]
Buanes, T.A. Pancreatic cancer-improved care achievable. World J. Gastroenterol., 2014, 20(30), 10405-10418.
[http://dx.doi.org/10.3748/wjg.v20.i30.10405] [PMID: 25132756]
[14]
Petrelli, F.; Coinu, A.; Borgonovo, K.; Cabiddu, M.; Ghilardi, M.; Lonati, V.; Aitini, E.; Barni, S. FOLFIRINOX-based neoadjuvant therapy in borderline resectable or unresectable pancreatic cancer: A meta-analytical review of published studies. Pancreas, 2015, 44(4), 515-521.
[http://dx.doi.org/10.1097/MPA.0000000000000314] [PMID: 25872127]
[15]
Hackert, T.; Sachsenmaier, M.; Hinz, U.; Schneider, L.; Michalski, C.W.; Springfeld, C.; Strobel, O.; Jäger, D.; Ulrich, A.; Büchler, M.W. Locally advanced pancreatic cancer. Ann. Surg., 2016, 264(3), 457-463.
[http://dx.doi.org/10.1097/SLA.0000000000001850]
[16]
Sohal, D.P.S.; Mangu, P.B.; Khorana, A.A.; Shah, M.A.; Philip, P.A.; O’Reilly, E.M.; Uronis, H.E.; Ramanathan, R.K.; Crane, C.H.; Engebretson, A.; Ruggiero, J.T.; Copur, M.S.; Lau, M.; Urba, S.; Laheru, D. Metastatic pancreatic cancer: American society of clinical oncology clinical practice guideline. J. Clin. Oncol., 2016, 34, 2784-2796.
[17]
Mangge, H.; Niedrist, T.; Renner, W.; Lyer, S.; Alexiou, C.; Haybaeck, J. New diagnostic and therapeutic aspects of pancreatic ductal adenocarcinoma. Curr. Med. Chem., 2017, 24(28), 3012-3024.
[http://dx.doi.org/10.2174/0929867324666170510150124] [PMID: 28494747]
[18]
Zavoral, M.; Minarikova, P.; Zavada, F.; Salek, C.; Minarik, M. Molecular biology of pancreatic cancer. World J. Gastroenterol., 2011, 17(24), 2897-2908.
[http://dx.doi.org/10.3748/wjg.v17.i24.2897] [PMID: 21734801]
[19]
Goel, G.; Sun, W. Novel approaches in the management of pancreatic ductal adenocarcinoma: Potential promises for the future. J. Hematol. Oncol., 2015, 8(1), 44.
[http://dx.doi.org/10.1186/s13045-015-0141-5] [PMID: 25935754]
[20]
Karanikas, M.; Esempidis, A.; Chasan, Z.T.M.; Deftereou, T.; Antonopoulou, M.; Bozali, F.; Amarantidis, K.; Man, Y.G. Pancreatic cancer from molecular pathways to treatment opinion. J. Cancer, 2016, 7(10), 1328-1339.
[http://dx.doi.org/10.7150/jca.15419] [PMID: 27390608]
[21]
USFDA. Pancreatic cancer tgerapy. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs
[22]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[23]
Sohal, D.P.S.; Mangu, P.B.; Laheru, D. Metastatic pancreatic cancer: American society of clinical oncology clinical practice guideline summary. J. Oncol. Pract., 2017, 13(4), 261-264.
[http://dx.doi.org/10.1200/JOP.2016.017368] [PMID: 28399388]
[24]
Oken, M.M.; Creech, R.H.; Tormey, D.C.; Horton, J.; Davis, T.E.; McFadden, E.T.; Carbone, P.P. Toxicity and response criteria of the Eastern cooperative oncology group. Am. J. Clin. Oncol., 1982, 5(6), 649-656.
[http://dx.doi.org/10.1097/00000421-198212000-00014] [PMID: 7165009]
[25]
Wang-Gillam, A.; Hubner, R.A.; Siveke, J.T.; Von Hoff, D.D.; Belanger, B.; de Jong, F.A.; Mirakhur, B.; Chen, L.T. NAPOLI-1 phase 3 study of liposomal irinotecan in metastatic pancreatic cancer: Final overall survival analysis and characteristics of long-term survivors. Eur. J. Cancer, 2019, 108, 78-87.
[http://dx.doi.org/10.1016/j.ejca.2018.12.007] [PMID: 30654298]
[26]
Macarulla, T.; Blanc, J.F.; Wang-Gillam, A.; Chen, L.T.; Siveke, J.T.; Mirakhur, B.; Chen, J.; de Jong, F.A. Liposomal irinotecan and 5-fluorouracil/leucovorin in older patients with metastatic pancreatic cancer – A subgroup analysis of the pivotal NAPOLI-1 trial. J. Geriatr. Oncol., 2019, 10(3), 427-435.
[http://dx.doi.org/10.1016/j.jgo.2019.02.011] [PMID: 30842038]
[27]
Principe, D.R.; Underwood, P.W.; Korc, M.; Trevino, J.G.; Munshi, H.G.; Rana, A. The current treatment paradigm for pancreatic ductal adenocarcinoma and barriers to therapeutic efficacy. Front. Oncol., 2021, 11688377
[http://dx.doi.org/10.3389/fonc.2021.688377] [PMID: 34336673]
[28]
Quinn, Bridget A. The quest for an effective treatment for an intractable cancer. Adv. Cancer Res., 2015, 127, 283-306.
[http://dx.doi.org/10.1016/bs.acr.2015.04.009]
[29]
Cross, D.; Burmester, J.K. Gene therapy for cancer treatment: Past, present and future. Clin. Med. Res., 2006, 4(3), 218-227.
[http://dx.doi.org/10.3121/cmr.4.3.218] [PMID: 16988102]
[30]
Park, W.; Chawla, A.; O’Reilly, E.M. Pancreatic cancer. JAMA, 2021, 326(9), 851-862.
[http://dx.doi.org/10.1001/jama.2021.13027] [PMID: 34547082]
[31]
Neoptolemos, J.P.; Kleeff, J.; Michl, P.; Costello, E.; Greenhalf, W.; Palmer, D.H. Therapeutic developments in pancreatic cancer: Current and future perspectives. Nat. Rev. Gastroenterol. Hepatol., 2018, 15(6), 333-348.
[http://dx.doi.org/10.1038/s41575-018-0005-x] [PMID: 29717230]
[32]
Roth, M.T.; Cardin, D.B.; Berlin, J.D. Recent advances in the treatment of pancreatic cancer. F1000 Res., 2020, 9, 131.
[http://dx.doi.org/10.12688/f1000research.21981.1]
[33]
Casolino, R.; Braconi, C.; Malleo, G.; Paiella, S.; Bassi, C.; Milella, M.; Dreyer, S.B.; Froeling, F.E.M.; Chang, D.K.; Biankin, A.V.; Golan, T. Reshaping preoperative treatment of pancreatic cancer in the era of precision medicine. Ann. Oncol., 2021, 32(2), 183-196.
[http://dx.doi.org/10.1016/j.annonc.2020.11.013] [PMID: 33248227]
[34]
Springfeld, C.; Jäger, D.; Büchler, M.W.; Strobel, O.; Hackert, T.; Palmer, D.H.; Neoptolemos, J.P. Chemotherapy for pancreatic cancer. Pres. Med., 2019, 48(3), e159-e174.
[http://dx.doi.org/10.1016/j.lpm.2019.02.025] [PMID: 30879894]
[35]
Swayden, M.; Iovanna, J.; Soubeyran, P. Pancreatic cancer chemo-resistance is driven by tumor phenotype rather than tumor genotype. Heliyon, 2018, 4(12)e01055
[http://dx.doi.org/10.1016/j.heliyon.2018.e01055] [PMID: 30582059]
[36]
Zeng, S.; Pöttler, M.; Lan, B.; Grützmann, R.; Pilarsky, C.; Yang, H. Chemoresistance in pancreatic cancer. Int. J. Mol. Sci., 2019, 20(18), 4504.
[http://dx.doi.org/10.3390/ijms20184504] [PMID: 31514451]
[37]
Yu, S.; Zhang, C.; Xie, K.P. Therapeutic resistance of pancreatic cancer: Roadmap to its reversal. Biochim. Biophys. Acta Rev. Cancer, 2021, 1875(1)188461
[http://dx.doi.org/10.1016/j.bbcan.2020.188461] [PMID: 33157162]
[38]
Singh, M.; Mazumder, B. Recent advancements in nanodiamond mediated brain targeted drug delivery and bioimaging of brain ailments: A holistic review. Pharm. Nanotechnol., 2022, 10(1), 42-55.
[http://dx.doi.org/10.2174/2211738510666211222111938] [PMID: 34951376]
[39]
Jones, S.; Zhang, X.; Parsons, D.W.; Lin, J.C.H.; Leary, R.J.; Angenendt, P.; Mankoo, P.; Carter, H.; Kamiyama, H.; Jimeno, A.; Hong, S.M.; Fu, B.; Lin, M.T.; Calhoun, E.S.; Kamiyama, M.; Walter, K.; Nikolskaya, T.; Nikolsky, Y.; Hartigan, J.; Smith, D.R.; Hidalgo, M.; Leach, S.D.; Klein, A.P.; Jaffee, E.M.; Goggins, M.; Maitra, A.; Iacobuzio-Donahue, C.; Eshleman, J.R.; Kern, S.E.; Hruban, R.H.; Karchin, R.; Papadopoulos, N.; Parmigiani, G.; Vogelstein, B.; Velculescu, V.E.; Kinzler, K.W. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science, 2008, 321(5897), 1801-1806.
[http://dx.doi.org/10.1126/science.1164368] [PMID: 18772397]
[40]
Biankin, A.V.; Waddell, N.; Kassahn, K.S.; Gingras, M.C.; Muthuswamy, L.B.; Johns, A.L.; Miller, D.K.; Wilson, P.J.; Patch, A.M.; Wu, J.; Chang, D.K.; Cowley, M.J.; Gardiner, B.B.; Song, S.; Harliwong, I.; Idrisoglu, S.; Nourse, C.; Nourbakhsh, E.; Manning, S.; Wani, S.; Gongora, M.; Pajic, M.; Scarlett, C.J.; Gill, A.J.; Pinho, A.V.; Rooman, I.; Anderson, M.; Holmes, O.; Leonard, C.; Taylor, D.; Wood, S.; Xu, Q.; Nones, K.; Lynn Fink, J.; Christ, A.; Bruxner, T.; Cloonan, N.; Kolle, G.; Newell, F.; Pinese, M.; Scott Mead, R.; Humphris, J.L.; Kaplan, W.; Jones, M.D.; Colvin, E.K.; Nagrial, A.M.; Humphrey, E.S.; Chou, A.; Chin, V.T.; Chantrill, L.A.; Mawson, A.; Samra, J.S.; Kench, J.G.; Lovell, J.A.; Daly, R.J.; Merrett, N.D.; Toon, C.; Epari, K.; Nguyen, N.Q.; Barbour, A.; Zeps, N.; Kakkar, N.; Zhao, F.; Qing Wu Y.; Wang, M.; Muzny, D.M.; Fisher, W.E.; Charles Brunicardi, F.; Hodges, S.E.; Reid, J.G.; Drummond, J.; Chang, K.; Han, Y.; Lewis, L.R.; Dinh, H.; Buhay, C.J.; Beck, T.; Timms, L.; Sam, M.; Begley, K.; Brown, A.; Pai, D.; Panchal, A.; Buchner, N.; De Borja, R.; Denroche, R.E.; Yung, C.K.; Serra, S.; Onetto, N.; Mukhopadhyay, D.; Tsao, M.S.; Shaw, P.A.; Petersen, G.M.; Gallinger, S.; Hruban, R.H.; Maitra, A.; Iacobuzio-Donahue, C.A.; Schulick, R.D.; Wolfgang, C.L.; Morgan, R.A.; Lawlor, R.T.; Capelli, P.; Corbo, V.; Scardoni, M.; Tortora, G.; Tempero, M.A.; Mann, K.M.; Jenkins, N.A.; Perez-Mancera, P.A.; Adams, D.J.; Largaespada, D.A.; Wessels, L.F.A.; Rust, A.G.; Stein, L.D.; Tuveson, D.A.; Copeland, N.G.; Musgrove, E.A.; Scarpa, A.; Eshleman, J.R.; Hudson, T.J.; Sutherland, R.L.; Wheeler, D.A.; Pearson, J.V.; McPherson, J.D.; Gibbs, R.A.; Grimmond, S.M. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature, 2012, 491(7424), 399-405.
[http://dx.doi.org/10.1038/nature11547] [PMID: 23103869]
[41]
Chu, G.C.; Kimmelman, A.C.; Hezel, A.F.; DePinho, R.A. Stromal biology of pancreatic cancer. J. Cell. Biochem., 2007, 101(4), 887-907.
[http://dx.doi.org/10.1002/jcb.21209] [PMID: 17266048]
[42]
Vonlaufen, A.; Joshi, S.; Qu, C.; Phillips, P.A.; Xu, Z.; Parker, N.R.; Toi, C.S.; Pirola, R.C.; Wilson, J.S.; Goldstein, D.; Apte, M.V. Pancreatic stellate cells: Partners in crime with pancreatic cancer cells. Cancer Res., 2008, 68(7), 2085-2093.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2477] [PMID: 18381413]
[43]
Hwang, R.F.; Moore, T.; Arumugam, T.; Ramachandran, V.; Amos, K.D.; Rivera, A.; Ji, B.; Evans, D.B.; Logsdon, C.D. Cancer-associated stromal fibroblasts promote pancreatic tumor progression. Cancer Res., 2008, 68(3), 918-926.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5714] [PMID: 18245495]
[44]
Olive, K.P.; Jacobetz, M.A.; Davidson, C.J.; Gopinathan, A.; McIntyre, D.; Honess, D.; Madhu, B.; Goldgraben, M.A.; Caldwell, M.E.; Allard, D.; Frese, K.K.; DeNicola, G.; Feig, C.; Combs, C.; Winter, S.P.; Ireland-Zecchini, H.; Reichelt, S.; Howat, W.J.; Chang, A.; Dhara, M.; Wang, L.; Rückert, F.; Grützmann, R.; Pilarsky, C.; Izeradjene, K.; Hingorani, S.R.; Huang, P.; Davies, S.E.; Plunkett, W.; Egorin, M.; Hruban, R.H.; Whitebread, N.; McGovern, K.; Adams, J.; Iacobuzio-Donahue, C.; Griffiths, J.; Tuveson, D.A. Inhibition of hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science, 2009, 324(5933), 1457-1461.
[http://dx.doi.org/10.1126/science.1171362] [PMID: 19460966]
[45]
Hartel, M.; di Mola, F.F.; Gardini, A.; Zimmermann, A.; Di Sebastiano, P.; Guweidhi, A.; Innocenti, P.; Giese, T.; Giese, N.; Büchler, M.W.; Friess, H. Desmoplastic reaction influences pancreatic cancer growth behavior. World J. Surg., 2004, 28(8), 818-825.
[http://dx.doi.org/10.1007/s00268-004-7147-4] [PMID: 15457365]
[46]
Matsuo, Y.; Ochi, N.; Sawai, H.; Yasuda, A.; Takahashi, H.; Funahashi, H.; Takeyama, H.; Tong, Z.; Guha, S. CXCL8/IL-8 and CXCL12/SDF-1α co-operatively promote invasiveness and angiogenesis in pancreatic cancer. Int. J. Cancer, 2009, 124(4), 853-861.
[http://dx.doi.org/10.1002/ijc.24040] [PMID: 19035451]
[47]
Xu, Z.; Vonlaufen, A.; Phillips, P.A.; Fiala-Beer, E.; Zhang, X.; Yang, L.; Biankin, A.V.; Goldstein, D.; Pirola, R.C.; Wilson, J.S.; Apte, M.V. Role of pancreatic stellate cells in pancreatic cancer metastasis. Am. J. Pathol., 2010, 177(5), 2585-2596.
[http://dx.doi.org/10.2353/ajpath.2010.090899] [PMID: 20934972]
[48]
Gao, Z.; Wang, X.; Wu, K.; Zhao, Y.; Hu, G. Pancreatic stellate cells increase the invasion of human pancreatic cancer cells through the stromal cell-derived factor-1/CXCR4 axis. Pancreatology, 2010, 10(2-3), 186-193.
[http://dx.doi.org/10.1159/000236012] [PMID: 20484957]
[49]
Foster, D.S.; Jones, R.E.; Ransom, R.C.; Longaker, M.T.; Norton, J.A. The evolving relationship of wound healing and tumor stroma. JCI Insight, 2018, 3(18)e99911
[http://dx.doi.org/10.1172/jci.insight.99911] [PMID: 30232274]
[50]
Flier, J.S.; Underhill, L.H.; Dvorak, H.F. Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med., 1986, 315(26), 1650-1659.
[http://dx.doi.org/10.1056/NEJM198612253152606] [PMID: 3537791]
[51]
Tracy, L.E.; Minasian, R.A.; Caterson, E.J. Extracellular matrix and dermal fibroblast function in the healing wound. Adv. Wound Care (New Rochelle), 2016, 5(3), 119-136.
[http://dx.doi.org/10.1089/wound.2014.0561] [PMID: 26989578]
[52]
Desmoulière, A.; Guyot, C.; Gabbiani, G. The stroma reaction myofibroblast: A key player in the control of tumor cell behavior. Int. J. Dev. Biol., 2004, 48(5-6), 509-517.
[http://dx.doi.org/10.1387/ijdb.041802ad] [PMID: 15349825]
[53]
Dunér, S.; Lindman, J.L.; Ansari, D.; Gundewar, C.; Andersson, R. Pancreatic cancer: The role of pancreatic stellate cells in tumor progression. Pancreatology, 2011, 10(6), 673-681.
[http://dx.doi.org/10.1159/000320711] [PMID: 21242706]
[54]
Allam, A.; Thomsen, A.R.; Gothwal, M.; Saha, D.; Maurer, J.; Brunner, T.B. Pancreatic stellate cells in pancreatic cancer: In focus. Pancreatology, 2017, 17(4), 514-522.
[http://dx.doi.org/10.1016/j.pan.2017.05.390] [PMID: 28601475]
[55]
Nielsen, M.F.B.; Mortensen, M.B.; Detlefsen, S. Identification of markers for quiescent pancreatic stellate cells in the normal human pancreas. Histochem. Cell Biol., 2017, 148(4), 359-380.
[http://dx.doi.org/10.1007/s00418-017-1581-5] [PMID: 28540429]
[56]
Fu, Y.; Liu, S.; Zeng, S.; Shen, H. The critical roles of activated stellate cells-mediated paracrine signaling, metabolism and onco-immunology in pancreatic ductal adenocarcinoma. Mol. Cancer, 2018, 17(1), 62.
[http://dx.doi.org/10.1186/s12943-018-0815-z] [PMID: 29458370]
[57]
Bynigeri, R.R.; Jakkampudi, A.; Jangala, R.; Subramanyam, C.; Sasikala, M.; Rao, G.V.; Reddy, D.N.; Talukdar, R. Pancreatic stellate cell: Pandora’s box for pancreatic disease biology. World J. Gastroenterol., 2017, 23(3), 382-405.
[http://dx.doi.org/10.3748/wjg.v23.i3.382] [PMID: 28210075]
[58]
Apte, M.V.; Haber, P.S.; Darby, S.J.; Rodgers, S.C.; McCaughan, G.W.; Korsten, M.A.; Pirola, R.C.; Wilson, J.S. Pancreatic stellate cells are activated by proinflammatory cytokines: Implications for pancreatic fibrogenesis. Gut, 1999, 44(4), 534-541.
[http://dx.doi.org/10.1136/gut.44.4.534] [PMID: 10075961]
[59]
Bachem, M.G.; Schneider, E.; Groß, H.; Weidenbach, H.; Schmid, R.M.; Menke, A.; Siech, M.; Beger, H.; Grünert, A.; Adler, G. Identification, culture, and characterization of pancreatic stellate cells in rats and humans. Gastroenterology, 1998, 115(2), 421-432.
[http://dx.doi.org/10.1016/S0016-5085(98)70209-4] [PMID: 9679048]
[60]
Apte, M.V.; Park, S.; Phillips, P.A.; Santucci, N.; Goldstein, D.; Kumar, R.K.; Ramm, G.A.; Buchler, M.; Friess, H.; McCarroll, J.A.; Keogh, G.; Merrett, N.; Pirola, R.; Wilson, J.S. Desmoplastic reaction in pancreatic cancer: Role of pancreatic stellate cells. Pancreas, 2004, 29(3), 179-187.
[http://dx.doi.org/10.1097/00006676-200410000-00002] [PMID: 15367883]
[61]
Fujiwara, K.; Ohuchida, K.; Mizumoto, K.; Shindo, K.; Eguchi, D.; Kozono, S.; Ikenaga, N.; Ohtsuka, T.; Takahata, S.; Aishima, S.; Tanaka, M. CD271+ subpopulation of pancreatic stellate cells correlates with prognosis of pancreatic cancer and is regulated by interaction with cancer cells. PLoS One, 2012, 7(12)e52682
[http://dx.doi.org/10.1371/journal.pone.0052682] [PMID: 23300742]
[62]
Birtolo, C.; Pham, H.; Morvaridi, S.; Chheda, C.; Go, V.L.W.; Ptasznik, A.; Edderkaoui, M.; Weisman, M.H.; Noss, E.; Brenner, M.B.; Larson, B.; Guindi, M.; Wang, Q.; Pandol, S.J. Cadherin-11 is a cell surface marker up-regulated in activated pancreatic stellate cells and is involved in pancreatic cancer cell migration. Am. J. Pathol., 2017, 187(1), 146-155.
[http://dx.doi.org/10.1016/j.ajpath.2016.09.012] [PMID: 27855278]
[63]
Shek, F.W.T.; Benyon, R.C.; Walker, F.M.; McCrudden, P.R.; Pender, S.L.F.; Williams, E.J.; Johnson, P.A.; Johnson, C.D.; Bateman, A.C.; Fine, D.R.; Iredale, J.P. Expression of transforming growth factor-β 1 by pancreatic stellate cells and its implications for matrix secretion and turnover in chronic pancreatitis. Am. J. Pathol., 2002, 160(5), 1787-1798.
[http://dx.doi.org/10.1016/S0002-9440(10)61125-X] [PMID: 12000730]
[64]
Nielsen, M.F.B.; Mortensen, M.B.; Detlefsen, S. Key players in pancreatic cancer-stroma interaction: Cancer-associated fibroblasts, endothelial and inflammatory cells. World J. Gastroenterol., 2016, 22(9), 2678-2700.
[http://dx.doi.org/10.3748/wjg.v22.i9.2678] [PMID: 26973408]
[65]
Ko, A.H.; LoConte, N.; Tempero, M.A.; Walker, E.J.; Kate Kelley, R.; Lewis, S.; Chang, W.C.; Kantoff, E.; Vannier, M.W.; Catenacci, D.V.; Venook, A.P.; Kindler, H.L. A phase i study of folfirinox plus IPI-926, a hedgehog pathway inhibitor, for advanced pancreatic adenocarcinoma. Pancreas, 2016, 45(3), 370-375.
[http://dx.doi.org/10.1097/MPA.0000000000000458] [PMID: 26390428]
[66]
Öhlund, D.; Handly-Santana, A.; Biffi, G.; Elyada, E.; Almeida, A.S.; Ponz-Sarvise, M.; Corbo, V.; Oni, T.E.; Hearn, S.A.; Lee, E.J.; Chio, I.I.C.; Hwang, C.I.; Tiriac, H.; Baker, L.A.; Engle, D.D.; Feig, C.; Kultti, A.; Egeblad, M.; Fearon, D.T.; Crawford, J.M.; Clevers, H.; Park, Y.; Tuveson, D.A. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med., 2017, 214(3), 579-596.
[http://dx.doi.org/10.1084/jem.20162024] [PMID: 28232471]
[67]
Hammer, A.M.; Sizemore, G.M.; Shukla, V.C.; Avendano, A.; Sizemore, S.T.; Chang, J.J.; Kladney, R.D.; Cuitiño, M.C.; Thies, K.A.; Verfurth, Q.; Chakravarti, A.; Yee, L.D.; Leone, G.; Song, J.W.; Ghadiali, S.N.; Ostrowski, M.C. Stromal PDGFR-α activation enhances matrix stiffness, impedes mammary ductal development, and accelerates tumor growth. Neoplasia, 2017, 19(6), 496-508.
[http://dx.doi.org/10.1016/j.neo.2017.04.004] [PMID: 28501760]
[68]
Crawford, Y.; Kasman, I.; Yu, L.; Zhong, C.; Wu, X.; Modrusan, Z.; Kaminker, J.; Ferrara, N. PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell, 2009, 15(1), 21-34.
[http://dx.doi.org/10.1016/j.ccr.2008.12.004] [PMID: 19111878]
[69]
Joyce, J.A.; Pollard, J.W. Microenvironmental regulation of metastasis. Nat. Rev. Cancer, 2009, 9(4), 239-252.
[http://dx.doi.org/10.1038/nrc2618] [PMID: 19279573]
[70]
Cao, H.; Eppinga, R.D.; Razidlo, G.L.; Krueger, E.W.; Chen, J.; Qiang, L.; McNiven, M.A. Stromal fibroblasts facilitate cancer cell invasion by a novel invadopodia-independent matrix degradation process. Oncogene, 2016, 35(9), 1099-1110.
[http://dx.doi.org/10.1038/onc.2015.163] [PMID: 25982272]
[71]
Charrier, A.; Chen, R.; Chen, L.; Kemper, S.; Hattori, T.; Takigawa, M.; Brigstock, D.R. Connective tissue growth factor (CCN2) and microRNA-21 are components of a positive feedback loop in pancreatic stellate cells (PSC) during chronic pancreatitis and are exported in PSC-derived exosomes. J. Cell Commun. Signal., 2014, 8(2), 147-156.
[http://dx.doi.org/10.1007/s12079-014-0220-3] [PMID: 24464300]
[72]
Che, P.P.; Gregori, A.; Firuzi, O.; Dahele, M.; Sminia, P.; Peters, G.J.; Giovannetti, E. Pancreatic cancer resistance conferred by stellate cells: Looking for new preclinical models. Exp. Hematol. Oncol., 2020, 9(1), 18.
[http://dx.doi.org/10.1186/s40164-020-00176-0] [PMID: 32775041]
[73]
Zhu, Y.; Li, J.; Li, W.; Zhang, Y.; Yang, X.; Chen, N.; Sun, Y.; Zhao, Y.; Fan, C.; Huang, Q. The biocompatibility of nanodiamonds and their application in drug delivery systems. Theranostics, 2012, 2(3), 302-312.
[http://dx.doi.org/10.7150/thno.3627] [PMID: 22509196]
[74]
Man, H.B.; Ho, D. Nanodiamonds as platforms for biology and medicine. SLAS Technol., 2013, 18(1), 12-18.
[http://dx.doi.org/10.1177/2211068212456198] [PMID: 22933615]
[75]
Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci. Transl. Med., 2011, 3(73), 921.
[http://dx.doi.org/10.1126/scitranslmed.3001713]
[76]
Slegerova, J.; Hajek, M.; Rehor, I.; Sedlak, F.; Stursa, J.; Hruby, M.; Cigler, P. Designing the nanobiointerface of fluorescent nanodiamonds: Highly selective targeting of glioma cancer cells. Nanoscale, 2015, 7(2), 415-420.
[http://dx.doi.org/10.1039/C4NR02776K] [PMID: 25132312]
[77]
Perevedentseva, E.; Lin, Y.C.; Cheng, C.L. A review of recent advances in nanodiamond-mediated drug delivery in cancer. Expert Opin. Drug Deliv., 2021, 18(3), 369-382.
[http://dx.doi.org/10.1080/17425247.2021.1832988] [PMID: 33047984]
[78]
Gu, M.; Toh, T.B.; Hooi, L.; Lim, J.J.; Zhang, X.; Chow, E.K.H. Nanodiamond-mediated delivery of a G9a inhibitor for hepatocellular carcinoma therapy. ACS Appl. Mater. Interfaces, 2019, 11(49), 45427-45441.
[http://dx.doi.org/10.1021/acsami.9b16323] [PMID: 31718136]
[79]
Madamsetty, V.S.; Pal, K.; Keshavan, S.; Caulfield, T.R.; Dutta, S.K.; Wang, E.; Fadeel, B.; Mukhopadhyay, D. Development of multi-drug loaded PEGylated nanodiamonds to inhibit tumor growth and metastasis in genetically engineered mouse models of pancreatic cancer. Nanoscale, 2019, 11(45), 22006-22018.
[http://dx.doi.org/10.1039/C9NR05478B] [PMID: 31710073]
[80]
Mangoni, M.; Sottili, M.; Gerini, C.; Desideri, I.; Bastida, C.; Pallotta, S.; Castiglione, F.; Bonomo, P.; Meattini, I.; Greto, D.; Olmetto, E.; Terziani, F.; Becherini, C.; Delli Paoli, C.; Trombetta, L.; Loi, M.; Biti, G.; Livi, L. A PPAR gamma agonist protects against oral mucositis induced by irradiation in a murine model. Oral Oncol., 2017, 64, 52-58.
[http://dx.doi.org/10.1016/j.oraloncology.2016.11.018] [PMID: 28024724]
[81]
Sumida, T.; Kitadai, Y.; Shinagawa, K.; Tanaka, M.; Kodama, M.; Ohnishi, M.; Ohara, E.; Tanaka, S.; Yasui, W.; Chayama, K. Anti-stromal therapy with imatinib inhibits growth and metastasis of gastric carcinoma in an orthotopic nude mouse model. Int. J. Cancer, 2011, 128(9), 2050-2062.
[http://dx.doi.org/10.1002/ijc.25812] [PMID: 21387285]
[82]
Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell, 2014, 159(1), 80-93.
[83]
Xie, Y.; Hang, Y.; Wang, Y.; Sleightholm, R.; Prajapati, D.R.; Bader, J.; Yu, A.; Tang, W.; Jaramillo, L.; Li, J.; Singh, R.K.; Oupický, D. Stromal modulation and treatment of metastatic pancreatic cancer with local intraperitoneal triple miRNA/siRNA nanotherapy. ACS Nano, 2020, 14(1), 255-271.
[http://dx.doi.org/10.1021/acsnano.9b03978] [PMID: 31927946]
[84]
Mariathasan, S.; Turley, S.J.; Nickles, D.; Castiglioni, A.; Yuen, K.; Wang, Y.; Kadel, E.E., III; Koeppen, H.; Astarita, J.L.; Cubas, R.; Jhunjhunwala, S.; Banchereau, R.; Yang, Y.; Guan, Y.; Chalouni, C.; Ziai, J.; Şenbabaoğlu, Y.; Santoro, S.; Sheinson, D.; Hung, J.; Giltnane, J.M.; Pierce, A.A.; Mesh, K.; Lianoglou, S.; Riegler, J.; Carano, R.A.D.; Eriksson, P.; Höglund, M.; Somarriba, L.; Halligan, D.L.; van der Heijden, M.S.; Loriot, Y.; Rosenberg, J.E.; Fong, L.; Mellman, I.; Chen, D.S.; Green, M.; Derleth, C.; Fine, G.D.; Hegde, P.S.; Bourgon, R.; Powles, T. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature, 2018, 554(7693), 544-548.
[http://dx.doi.org/10.1038/nature25501] [PMID: 29443960]
[85]
Miyamoto, R.; Oda, T.; Hashimoto, S.; Kurokawa, T.; Inagaki, Y.; Shimomura, O.; Ohara, Y.; Yamada, K.; Akashi, Y.; Enomoto, T.; Kishimoto, M.; Yanagihara, H.; Kita, E.; Ohkohchi, N. Cetuximab delivery and antitumor effects are enhanced by mild hyperthermia in a xenograft mouse model of pancreatic cancer. Cancer Sci., 2016, 107(4), 514-520.
[http://dx.doi.org/10.1111/cas.12888] [PMID: 26782353]
[86]
Lu, M.; Wang, Y.K.; Zhao, J.; Lu, H.; Stenzel, M.H.; Xiao, P. PEG grafted‐nanodiamonds for the delivery of gemcitabine. Macromol. Rapid Commun., 2016, 37(24), 2023-2029.
[http://dx.doi.org/10.1002/marc.201600344] [PMID: 27813236]
[87]
Ye, W.; Han, H.; Li, H.; Jin, Q.; Wu, Y. Polymer coated nanodiamonds as gemcitabine prodrug with enzymatic sensitivity for pancreatic cancer treatment. Prog. Nat. Sci., 2020, 30(5), 711-717.
[http://dx.doi.org/10.1016/j.pnsc.2020.10.011]
[88]
Madamsetty, V.S.; Sharma, A.; Toma, M.; Samaniego, S.; Gallud, A.; Wang, E.; Pal, K.; Mukhopadhyay, D.; Fadeel, B. Tumor selective uptake of drug-nanodiamond complexes improves therapeutic outcome in pancreatic cancer. Nanomedicine, 2019, 18, 112-121.
[http://dx.doi.org/10.1016/j.nano.2019.02.020] [PMID: 30849547]
[89]
Afinitor and hair loss-a phase IV clinical study of FDA data., 2022. Available from: https://www.ehealthme.com/ds/afinitor/hair-loss/
[90]
Oxaliplatin and cardiomyopathy - a phase IV clinical study of FDA data., 2022. Available from: https://www.ehealthme.com/ds/oxaliplatin/laryngospasm/
[91]
Mitomycin-chemotherapy drugs, 2022. Available from: https://chemocare.com/chemotherapy/drug-info/mitomycin.aspx
[92]
Lynparza Olaparib, 2022. Available from: https://www.lynparza.com/side-effects.html
[93]
Side effects and tips, 2021. Available from: https://www.sutent. com/possible-side-effects
[94]
Accessdata.fda.gov. Establishment Registration and Device Listing. Available from: https://www.accessdata.fda.gov/drugsatfda_ docs/label/2013/021660s037lbl.pdf
[95]
Elliot, W.T.; Chan, J. Pharmacology Update: Cetuximab injection, 2004. Available from: https://www.reliasmedia.com/articles/4842-pharmacology-update-cetuximab-injection-erbitux
[97]
Zhou, M.; Han, S.; Aras, O.; An, F. Recent advances in paclitaxel-based self-delivery nanomedicine for cancer therapy. Curr. Med. Chem., 2021, 28(31), 6358-6374.
[http://dx.doi.org/10.2174/0929867327666201111143725] [PMID: 33176629]
[98]
Marupudi, N.I.; Han, J.E.; Li, K.W.; Renard, V.M.; Tyler, B.M.; Brem, H. Paclitaxel: A review of adverse toxicities and novel delivery strategies. Expert Opin. Drug Saf., 2007, 6(5), 609-621.
[http://dx.doi.org/10.1517/14740338.6.5.609] [PMID: 17877447]
[99]
de Man, F.M.; Goey, A.K.L.; van Schaik, R.H.N.; Mathijssen, R.H.J.; Bins, S. Individualization of irinotecan treatment: A review of pharmacokinetics, pharmacodynamics, and pharmacogenetics. Clin. Pharmacokinet., 2018, 57(10), 1229-1254.
[http://dx.doi.org/10.1007/s40262-018-0644-7] [PMID: 29520731]
[100]
Chopra, A. 177Lu-Labeled h-R3 (nimotuzumab), a humanized monoclonal antibody targeting the external domain of the epidermal growth factor receptor. In: Molecular Imaging and Contrast Agent Database (MICAD); National Center for Biotechnology Information (US): Bethesda, MD, 2012; pp. 2004-2013.
[101]
Kush, P.; Kaur, M.; Sharma, M.; Madan, J.; Kumar, P.; Deep, A.; Kim, K.H. Investigations of potent biocompatible metal-organic framework for efficient encapsulation and delivery of Gemcitabine: Biodistribution, pharmacokinetic and cytotoxicity study. Biomed. Phys. Eng. Express, 2020, 6(2)025014
[http://dx.doi.org/10.1088/2057-1976/ab73f7] [PMID: 33438640]
[102]
Harmsen, S.; Meijerman, I.; Maas-Bakker, R.F.; Beijnen, J.H.; Schellens, J.H.M. PXR-mediated P-glycoprotein induction by small molecule tyrosine kinase inhibitors. Eur. J. Pharm. Sci., 2013, 48(4-5), 644-649.
[http://dx.doi.org/10.1016/j.ejps.2012.12.019] [PMID: 23277288]
[103]
Ciaffaglione, V.; Modica, M.N.; Pittalà, V.; Romeo, G.; Salerno, L.; Intagliata, S. Mutual prodrugs of 5‐fluorouracil: From a classic chemotherapeutic agent to novel potential anticancer drugs. ChemMedChem, 2021, 16(23), 3496-3512.
[http://dx.doi.org/10.1002/cmdc.202100473] [PMID: 34415107]
[104]
Entezar-Almahdi, E.; Mohammadi-Samani, S.; Tayebi, L.; Farjadian, F. Recent advances in designing 5-fluorouracil delivery systems: A stepping stone in the safe treatment of colorectal cancer. Int. J. Nanomedicine, 2020, 15, 5445-5458.
[http://dx.doi.org/10.2147/IJN.S257700] [PMID: 32801699]
[105]
Wang, WB; Yang, Y; Zhao, YP; Zhang, TP; Liao, Q; Shu, H Recent studies of 5-fluorouracil resistance in pancreatic cancer. World J. Gastroenterol., 2014, 20(42), 15682-90.
[http://dx.doi.org/10.3748/wjg.v20.i42.15682] [PMID: 25400452]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy