Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

Peptides for Dual Targeting of ErbB1 and ErbB2: Blocking EGFR Cell Signaling Transduction Pathways for Cancer Chemotherapy

Author(s): Sunil Kumar Patnaik, Akey Krishna Swaroop, Palathoti Nagarjuna, Moola Joghee Nanjan and Moola Joghee Nanjan Chandrasekar*

Volume 17, 2024

Published on: 11 April, 2023

Article ID: e240223214012 Pages: 11

DOI: 10.2174/1874467216666230224104950

open_access

Open Access Journals Promotions 2
Abstract

Cancer is one of the most deadly diseases involving dysregulated cell proliferation. Chemotherapeutic drugs have serious drawbacks of nonspecific toxicity and drug resistance. Tyrosine kinases are a significant class of enzymes of protein kinases. The four members of the trans-membrane family of tyrosine kinase receptors known as the human epidermal growth factor receptors (EGFR), ErbB1/HER1, ErbB2/HER2/neu, ErbB3/HER3, and ErbB4/HER4, are overexpressed in many forms of cancer. These receptors are crucial for cell division, invasion, metastasis, angiogenesis, and uncontrolled activation of cancer cells. In this context, an attractive combination of anticancer drug targets is ErbB1 and ErbB2. Numerous cancer types exhibit overexpression of ErbB1 and ErbB2, which is linked to poor prognosis and causes resistance to ErbB1-targeted therapy. Further, it has been reported in recent years that the use of peptides as anticancer agents have the potential to circumvent the drawbacks of the currently used chemotherapeutic drugs. Among them, short peptides have several advantages when compared to small molecules. The present report reviews the importance of tyrosine kinases as targets for cancer, the role of peptides as therapeutic agents, and the investigations that have been carried out by earlier workers for targeting both ErbB1 and ErbB2 using therapeutic peptides.

Keywords: EGFR/HER1/ErbB1, HER2/ErbB2, Dual targeting, Therapeutic peptides, Anticancer drugs, Tyrosine kinases.

[1]
WHO/Newsroom/Fact sheets/Cancer. 2020.
[2]
Kurreck, J; Stein, CA Molecular medicine: An introduction., 2015,
[3]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[4]
Bray, F.; Møller, B. Predicting the future burden of cancer. Nat. Rev. Cancer, 2006, 6(1), 63-74.
[http://dx.doi.org/10.1038/nrc1781] [PMID: 16372017]
[5]
Fitzmaurice, C.; Dicker, D.; Pain, A.; Hamavid, H.; Moradi-Lakeh, M.; MacIntyre, M.F.; Allen, C.; Hansen, G.; Woodbrook, R.; Wolfe, C.; Hamadeh, R.R.; Moore, A.; Werdecker, A.; Gessner, B.D.; Te Ao, B.; McMahon, B.; Karimkhani, C.; Yu, C.; Cooke, G.S.; Schwebel, D.C.; Carpenter, D.O.; Pereira, D.M.; Nash, D.; Kazi, D.S.; De Leo, D.; Plass, D.; Ukwaja, K.N.; Thurston, G.D.; Yun Jin, K.; Simard, E.P.; Mills, E.; Park, E.K.; Catalá-López, F.; deVeber, G.; Gotay, C.; Khan, G.; Hosgood, H.D., III; Santos, I.S.; Leasher, J.L.; Singh, J.; Leigh, J.; Jonas, J.B.; Sanabria, J.; Beardsley, J.; Jacobsen, K.H.; Takahashi, K.; Franklin, R.C.; Ronfani, L.; Montico, M.; Naldi, L.; Tonelli, M.; Geleijnse, J.; Petzold, M.; Shrime, M.G.; Younis, M.; Yonemoto, N.; Breitborde, N.; Yip, P.; Pourmalek, F.; Lotufo, P.A.; Esteghamati, A.; Hankey, G.J.; Ali, R.; Lunevicius, R.; Malekzadeh, R.; Dellavalle, R.; Weintraub, R.; Lucas, R.; Hay, R.; Rojas-Rueda, D.; Westerman, R.; Sepanlou, S.G.; Nolte, S.; Patten, S.; Weichenthal, S.; Abera, S.F.; Fereshtehnejad, S.M.; Shiue, I.; Driscoll, T.; Vasankari, T.; Alsharif, U.; Rahimi-Movaghar, V.; Vlassov, V.V.; Marcenes, W.S.; Mekonnen, W.; Melaku, Y.A.; Yano, Y.; Artaman, A.; Campos, I.; MacLachlan, J.; Mueller, U.; Kim, D.; Trillini, M.; Eshrati, B.; Williams, H.C.; Shibuya, K.; Dandona, R.; Murthy, K.; Cowie, B.; Amare, A.T.; Antonio, C.A.; Castañeda-Orjuela, C.; van Gool, C.H.; Violante, F.; Oh, I.H.; Deribe, K.; Soreide, K.; Knibbs, L.; Kereselidze, M.; Green, M.; Cardenas, R.; Roy, N.; Tillmann, T.; Li, Y.; Krueger, H.; Monasta, L.; Dey, S.; Sheikhbahaei, S.; Hafezi-Nejad, N.; Kumar, G.A.; Sreeramareddy, C.T.; Dandona, L.; Wang, H.; Vollset, S.E.; Mokdad, A.; Salomon, J.A.; Lozano, R.; Vos, T.; Forouzanfar, M.; Lopez, A.; Murray, C.; Naghavi, M. The global burden of cancer 2013. JAMA Oncol., 2015, 1(4), 505-527.
[http://dx.doi.org/10.1001/jamaoncol.2015.0735] [PMID: 26181261]
[6]
Burrell, R.A.; McGranahan, N.; Bartek, J.; Swanton, C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature, 2013, 501(7467), 338-345.
[http://dx.doi.org/10.1038/nature12625] [PMID: 24048066]
[7]
Langley, R.R.; Fidler, I.J. Tumor cell-organ microenvironment interactions in the pathogenesis of cancer metastasis. Endocr. Rev., 2007, 28(3), 297-321.
[http://dx.doi.org/10.1210/er.2006-0027] [PMID: 17409287]
[8]
Kakde, D.; Jain, D.; Shrivastava, V.; Kakde, R.; Patil, A.T. Cancer therapeutics-opportunities, challenges and advances in drug delivery. J. Appl. Pharm. Sci., 2011, 1(9), 1-0.
[9]
Srivastava, J.K.; Pillai, G.G.; Bhat, H.R.; Verma, A.; Singh, U.P. Design and discovery of novel monastrol-1,3,5-triazines as potent anti-breast cancer agent via attenuating Epidermal Growth Factor Receptor tyrosine kinase. Sci. Rep., 2017, 7(1), 5851.
[http://dx.doi.org/10.1038/s41598-017-05934-5] [PMID: 28724908]
[10]
Manning, G.; Whyte, D.B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The protein kinase complement of the human genome. Science, 2002, 298(5600), 1912-1934.
[http://dx.doi.org/10.1126/science.1075762] [PMID: 12471243]
[11]
Alonso, A.; Sasin, J.; Bottini, N.; Friedberg, I.; Friedberg, I.; Osterman, A.; Godzik, A.; Hunter, T.; Dixon, J.; Mustelin, T. Protein tyrosine phosphatases in the human genome. Cell, 2004, 117(6), 699-711.
[http://dx.doi.org/10.1016/j.cell.2004.05.018] [PMID: 15186772]
[12]
Ahsan, Aarif; Ramanand, S.G.; Bergin, I.L.; Zhao, L.; Whitehead, C.E.; Rehemtulla, A.; Ray, D.; Pratt, W.B.; Lawrence, T.S; Niyati, M.K. Efficacy of an EGFR-specific peptide against EGFR-dependent cancer cell lines and tumor xenografts. Neoplasia, 2014, 16(2), 105-114.
[13]
Lemmon, M.A.; Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell, 2010, 141(7), 1117-1134.
[http://dx.doi.org/10.1016/j.cell.2010.06.011] [PMID: 20602996]
[14]
Kennedy, S.P.; Hastings, J.F.; Han, J.Z.R.; Croucher, D.R. The under-appreciated promiscuity of the epidermal growth factor receptor family. Front. Cell Dev. Biol., 2016, 4, 88.
[http://dx.doi.org/10.3389/fcell.2016.00088] [PMID: 27597943]
[15]
Schechter, A.L.; Stern, D.F.; Vaidyanathan, L.; Decker, S.J.; Drebin, J.A.; Greene, M.I.; Weinberg, R.A. The neu oncogene: An erb-B-related gene encoding a 185,000-Mr tumour antigen. Nature, 1984, 312(5994), 513-516.
[http://dx.doi.org/10.1038/312513a0] [PMID: 6095109]
[16]
Roskoski, R., Jr Small molecule inhibitors targeting the EGFR/ErbB family of protein-tyrosine kinases in human cancers. Pharmacol. Res., 2019, 139, 395-411.
[http://dx.doi.org/10.1016/j.phrs.2018.11.014] [PMID: 30500458]
[17]
Knighton, D.R.; Zheng, J.; Ten Eyck, L.F.; Ashford, V.A.; Xuong, N.H.; Taylor, S.S.; Sowadski, J.M. Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science, 1991, 253(5018), 407-414.
[http://dx.doi.org/10.1126/science.1862342] [PMID: 1862342]
[18]
Wang, Xiaoyu; Xu, Linfeng; Lao, Yuanzhi; Zhang, Hongmei; Xu, Hongxi Natural products targeting EGFR signaling pathways as potential anticancer drugs. Curr. Protein Pept. Sci., 2018, 19(4), 380-388.
[19]
Wee, P.; Wang, Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers, 2017, 1-45.
[20]
Elmetwally, S.A.; Saied, K.F.; Eissa, I.H.; Elkaeed, E.B. Design, synthesis and anticancer evaluation of thieno[2,3-d]pyrimidine derivatives as dual EGFR/HER2 inhibitors and apoptosis inducers. Bioorg. Chem., 2019, 88, 102944.
[http://dx.doi.org/10.1016/j.bioorg.2019.102944] [PMID: 31051400]
[21]
Ahammad, I.; Rafiul Islam, Md.; Mahmud, A.; Islam, S.; Hossain, M. Virtual screening to identify novel inhibitors of pan ERBB family of proteins from natural products with known anti-tumorigenic properties. Int. J. Pept. Res. Ther., 2019, 25, 1923-930.
[22]
Wang, Y. Breast cancer metastasis driven by ErbB2 and 14-3-3zeta: A division of labor. Cell Adhes. Migr., 2010, 4(1), 7-9.
[http://dx.doi.org/10.4161/cam.4.1.10497] [PMID: 20009581]
[23]
Yang, L.; Li, Y.; Bhattacharya, A.; Zhang, Y. Dual inhibition of ErbB1 and ErbB2 in cancer by recombinant human prolidase mutant hPEPD-G278D. Oncotarget, 2106, 7(27), 42340-42352.
[http://dx.doi.org/10.18632/oncotarget.9851] [PMID: 27286447]
[24]
Hu, J.B.; Dong, M.J.; Zhang, J.; Holistic, A. A holistic in silico approach to develop novel inhibitors targeting ErbB1 and ErbB2 kinases. Trop. J. Pharm. Res., 2016, 15(2), 231-239.
[http://dx.doi.org/10.4314/tjpr.v15i2.3]
[25]
Chiu, C.G.; Masoudi, H.; Leung, S.; Voduc, D.K.; Gilks, B.; Huntsman, D.G.; Wiseman, S.M. HER-3 overexpression is prognostic of reduced breast cancer survival: A study of 4046 patients. Ann. Surg., 2010, 251(6), 1107-1116.
[http://dx.doi.org/10.1097/SLA.0b013e3181dbb77e] [PMID: 20485140]
[26]
Yarden, Y.; Sliwkowski, M.X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol., 2001, 2(2), 127-137.
[http://dx.doi.org/10.1038/35052073] [PMID: 11252954]
[27]
Tebbutt, N.; Pedersen, M.W.; Johns, T.G. Targeting the ERBB family in cancer: Couples therapy. Nat. Rev. Cancer, 2013, 13(9), 663-673.
[http://dx.doi.org/10.1038/nrc3559] [PMID: 23949426]
[28]
Chandrasekar, M.J.N.; Patnaik, S.K.; Nagarjuna, P.; Ramamurthi, D.; Swaroop, A.K. Targeting of ErbB1, ErbB2, and their Dual Targeting Using Small Molecules and Natural Peptides: Blocking EGFR Cell Signaling Pathways in Cancer: A Mini-Review. Mini Rev. Med. Chem., 2022, 22(22), 2831-2846.
[http://dx.doi.org/10.2174/1389557522666220512152448] [PMID: 35549881]
[29]
Raghavendra, N.M.; Pingili, D.; Kadasi, S.; Mettu, A.; Prasad, S.V.U.M. Dual or multi-targeting inhibitors: The next generation anticancer agents. Eur. J. Med. Chem., 2018, 143, 1277-1300.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.021] [PMID: 29126724]
[30]
Martinez-Garcia, M.; Banerji, U.; Albanell, J.; Bahleda, R.; Dolly, S.; Kraeber-Bodéré, F.; Rojo, F.; Routier, E.; Guarin, E.; Xu, Z.X.; Rueger, R.; Tessier, J.J.L.; Shochat, E.; Blotner, S.; Naegelen, V.M.; Soria, J.C. First-in-human, phase I dose-escalation study of the safety, pharmacokinetics, and pharmacodynamics of RO5126766, a first-in-class dual MEK/RAF inhibitor in patients with solid tumors. Clin. Cancer Res., 2012, 18(17), 4806-4819.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-0742] [PMID: 22761467]
[31]
Zhang, Q.; Zhai, S.; Li, L.; Li, X.; Zhou, H.; Liu, A.; Su, G.; Mu, Q.; Du, Y.; Yan, B. Anti-tumor selectivity of a novel Tubulin and HSP90 dual-targeting inhibitor in non-small cell lung cancer models. Biochem. Pharmacol., 2013, 86(3), 351-360.
[http://dx.doi.org/10.1016/j.bcp.2013.05.019] [PMID: 23743233]
[32]
Li, Q.; Wu, J.; Zheng, H.; Liu, K.; Guo, T.L.; Liu, Y.; Eblen, S.T.; Grant, S.; Zhang, S. Discovery of 3-(2-aminoethyl)-5-(3-phenyl-propylidene)-thiazolidine-2,4-dione as a dual inhibitor of the Raf/MEK/ERK and the PI3K/Akt signaling pathways. Bioorg. Med. Chem. Lett., 2010, 20(15), 4526-4530.
[http://dx.doi.org/10.1016/j.bmcl.2010.06.030] [PMID: 20580230]
[33]
Knight, S.D.; Adams, N.D.; Burgess, J.L.; Chaudhari, A.M.; Darcy, M.G.; Donatelli, C.A.; Luengo, J.I.; Newlander, K.A.; Parrish, C.A.; Ridgers, L.H.; Sarpong, M.A.; Schmidt, S.J.; Van Aller, G.S.; Carson, J.D.; Diamond, M.A.; Elkins, P.A.; Gardiner, C.M.; Garver, E.; Gilbert, S.A.; Gontarek, R.R.; Jackson, J.R.; Kershner, K.L.; Luo, L.; Raha, K.; Sherk, C.S.; Sung, C.M.; Sutton, D.; Tummino, P.J.; Wegrzyn, R.J.; Auger, K.R.; Dhanak, D. Discovery of GSK2126458, a highly potent inhibitor of PI3K and the mammalian target of rapamycin. ACS Med. Chem. Lett., 2010, 1(1), 39-43.
[http://dx.doi.org/10.1021/ml900028r] [PMID: 24900173]
[34]
Ding, X.; Salphati, L.; Kim, A.; Morinello, E.; Wong, L.; Pang, J.; Percey, S.; Meng, M.; Reuschel, S.; Dean, B. Determination of GDC-0980 (apitolisib), a small molecule dual phosphatidylinositide 3-kinase/mammalian target of rapamycin inhibitor in dog plasma by LC-MS/MS to support a GLP toxicology study. Biomed. Chromatogr., 2015, 29(8), 1274-1279.
[http://dx.doi.org/10.1002/bmc.3417] [PMID: 25677784]
[35]
Nishimura, N.; Siegmund, A.; Liu, L.; Yang, K.; Bryan, M.C.; Andrews, K.L.; Bo, Y.; Booker, S.K.; Caenepeel, S.; Freeman, D.; Liao, H.; McCarter, J.; Mullady, E.L.; San Miguel, T.; Subramanian, R.; Tamayo, N.; Wang, L.; Whittington, D.A.; Zalameda, L.; Zhang, N.; Hughes, P.E.; Norman, M.H. Phospshoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) dual inhibitors: Discovery and structure-activity relationships of a series of quinoline and quinoxaline derivatives. J. Med. Chem., 2011, 54(13), 4735-4751.
[http://dx.doi.org/10.1021/jm200386s] [PMID: 21612232]
[36]
Schrauwen, S.; Depreeuw, J.; Coenegrachts, L.; Hermans, E.; Lambrechts, D.; Amant, F. Dual blockade of PI3K/AKT/mTOR (NVP-BEZ235) and Ras/Raf/MEK (AZD6244) pathways synergistically inhibit growth of primary endometrioid endometrial carcinoma cultures, whereas NVP-BEZ235 reduces tumor growth in the corresponding xenograft models. Gynecol. Oncol., 2015, 138(1), 165-173.
[http://dx.doi.org/10.1016/j.ygyno.2015.04.028] [PMID: 25933683]
[37]
Iqbal, S.; Goldman, B.; Fenoglio-Preiser, C.M.; Lenz, H.J.; Zhang, W.; Danenberg, K.D.; Shibata, S.I.; Blanke, C.D. Southwest Oncology Group study S0413: A phase II trial of lapatinib (GW572016) as first-line therapy in patients with advanced or metastatic gastric cancer. Ann. Oncol., 2011, 22(12), 2610-2615.
[http://dx.doi.org/10.1093/annonc/mdr021] [PMID: 21415234]
[38]
Ishikawa, T.; Seto, M.; Banno, H.; Kawakita, Y.; Oorui, M.; Taniguchi, T.; Ohta, Y.; Tamura, T.; Nakayama, A.; Miki, H.; Kamiguchi, H.; Tanaka, T.; Habuka, N.; Sogabe, S.; Yano, J.; Aertgeerts, K.; Kamiyama, K. Design and synthesis of novel human epidermal growth factor receptor 2 (HER2)/epidermal growth factor receptor (EGFR) dual inhibitors bearing a pyrrolo[3,2-d]pyrimidine scaffold. J. Med. Chem., 2011, 54(23), 8030-8050.
[http://dx.doi.org/10.1021/jm2008634] [PMID: 22003817]
[39]
Cha, M.Y.; Lee, K.O.; Kang, S.J.; Jung, Y.H.; Song, J.Y.; Choi, K.J.; Byun, J.Y.; Lee, H.J.; Lee, G.S.; Park, S.B.; Kim, M.S. Synthesis and biological evaluation of pyrimidine-based dual inhibitors of human epidermal growth factor receptor 1 (HER-1) and HER-2 tyrosine kinases. J. Med. Chem., 2012, 55(6), 2846-2857.
[http://dx.doi.org/10.1021/jm201758g] [PMID: 22372864]
[40]
Peng, C.; Brain, J.; Hu, Y.; Goodrich, A.; Kong, L.; Grayzel, D.; Pak, R.; Read, M.; Li, S. Inhibition of heat shock protein 90 prolongs survival of mice with BCR-ABL-T315I–induced leukemia and suppresses leukemic stem cells. Blood, 2007, 110(2), 678-685.
[http://dx.doi.org/10.1182/blood-2006-10-054098] [PMID: 17395781]
[41]
Wu, L.; Yu, J.; Chen, R.; Liu, Y.; Lou, L.; Wu, Y.; Huang, L.; Fan, Y.; Gao, P.; Huang, M.; Wu, Y.; Chen, Y.; Xu, J. Dual inhibition of Bcr-Abl and Hsp90 by C086 potently inhibits the proliferation of imatinib-resistant CML cells. Clin. Cancer Res., 2015, 21(4), 833-843.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-3317] [PMID: 25501124]
[42]
Weisberg, E.; Manley, P.W.; Cowan-Jacob, S.W.; Hochhaus, A.; Griffin, J.D. Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat. Rev. Cancer, 2007, 7(5), 345-356.
[http://dx.doi.org/10.1038/nrc2126] [PMID: 17457302]
[43]
Huang, W.S.; Zhu, X.; Wang, Y.; Azam, M.; Wen, D.; Sundaramoorthi, R.; Thomas, R.M.; Liu, S.; Banda, G.; Lentini, S.P.; Das, S.; Xu, Q.; Keats, J.; Wang, F.; Wardwell, S.; Ning, Y.; Snodgrass, J.T.; Broudy, M.I.; Russian, K.; Daley, G.Q.; Iuliucci, J.; Dalgarno, D.C.; Clackson, T.; Sawyer, T.K.; Shakespeare, W.C. 9-(Arenethenyl)purines as dual Src/Abl kinase inhibitors targeting the inactive conformation: Design, synthesis, and biological evaluation. J. Med. Chem., 2009, 52(15), 4743-4756.
[http://dx.doi.org/10.1021/jm900166t] [PMID: 19572547]
[44]
Yakes, F.M.; Chen, J.; Tan, J.; Yamaguchi, K.; Shi, Y.; Yu, P.; Qian, F.; Chu, F.; Bentzien, F.; Cancilla, B.; Orf, J.; You, A.; Laird, A.D.; Engst, S.; Lee, L.; Lesch, J.; Chou, Y.C.; Joly, A.H. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol. Cancer Ther., 2011, 10(12), 2298-2308.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0264] [PMID: 21926191]
[45]
Zhan, Z.; Ai, J.; Liu, Q.; Ji, Y.; Chen, T.; Xu, Y.; Geng, M.; Duan, W. Discovery of anilinopyrimidines as dual inhibitors of c-Met and VEGFR-2: synthesis, SAR, and cellular activity. ACS Med. Chem. Lett., 2014, 5(6), 673-678.
[http://dx.doi.org/10.1021/ml500066m] [PMID: 24944742]
[46]
Chekler, E.L.P.; Kiselyov, A.S.; Ouyang, X.; Chen, X.; Pattaropong, V.; Wang, Y.; Tuma, M.C.; Doody, J.F. Discovery of dual VEGFR-2 and tubulin inhibitors with in vivo efficacy. ACS Med. Chem. Lett., 2010, 1(9), 488-492.
[http://dx.doi.org/10.1021/ml1001568] [PMID: 24900236]
[47]
Guerrant, W.; Patil, V.; Canzoneri, J.C.; Oyelere, A.K. Dual targeting of histone deacetylase and topoisomerase II with novel bifunctional inhibitors. J. Med. Chem., 2012, 55(4), 1465-1477.
[http://dx.doi.org/10.1021/jm200799p] [PMID: 22260166]
[48]
Seo, Y.H. Dual inhibitors against topoisomerases and histone deacetylases. J. Cancer Prev., 2015, 20(2), 85-91.
[http://dx.doi.org/10.15430/JCP.2015.20.2.85] [PMID: 26151040]
[49]
Chen, L.; Wilson, D.; Jayaram, H.N.; Pankiewicz, K.W. Dual inhibitors of inosine monophosphate dehydrogenase and histone deacetylases for cancer treatment. J. Med. Chem., 2007, 50(26), 6685-6691.
[http://dx.doi.org/10.1021/jm070864w] [PMID: 18038969]
[50]
Chen, L.; Petrelli, R.; Gao, G.; Wilson, D.J.; McLean, G.T.; Jayaram, H.N.; Sham, Y.Y.; Pankiewicz, K.W. Dual inhibitors of inosine monophosphate dehydrogenase and histone deacetylase based on a cinnamic hydroxamic acid core structure. Bioorg. Med. Chem., 2010, 18(16), 5950-5964.
[http://dx.doi.org/10.1016/j.bmc.2010.06.081] [PMID: 20650640]
[51]
Tan, L.; Nomanbhoy, T.; Gurbani, D.; Patricelli, M.; Hunter, J.; Geng, J.; Herhaus, L.; Zhang, J.; Pauls, E.; Ham, Y.; Choi, H.G.; Xie, T.; Deng, X.; Buhrlage, S.J.; Sim, T.; Cohen, P.; Sapkota, G.; Westover, K.D.; Gray, N.S. Discovery of type II inhibitors of TGFβ-activated kinase 1 (TAK1) and mitogen-activated protein kinase kinase kinase kinase 2 (MAP4K2). J. Med. Chem., 2015, 58(1), 183-196.
[http://dx.doi.org/10.1021/jm500480k] [PMID: 25075558]
[52]
Gangjee, A.; Yu, J.; Kisliuk, R.L.; Haile, W.H.; Sobrero, G.; McGuire, J.J. Design, synthesis, and biological activities of classical N-{4-[2-(2-amino-4-ethylpyrrolo [2, 3-d] pyrimidin-5-yl) ethyl] benzoyl}-L-glutamic acid and its 6-methyl derivative as potential dual inhibitors of thymidylate synthase and dihydrofolate reductase and as potential antitumor agents. J. Med. Chem., 2003, 46(4), 591-600.
[http://dx.doi.org/10.1021/jm0203534] [PMID: 12570380]
[53]
Tanaka, Y.; Aikawa, K.; Nishida, G.; Homma, M.; Sogabe, S.; Igaki, S.; Hayano, Y.; Sameshima, T.; Miyahisa, I.; Kawamoto, T.; Tawada, M.; Imai, Y.; Inazuka, M.; Cho, N.; Imaeda, Y.; Ishikawa, T. Discovery of potent Mcl-1/Bcl-xL dual inhibitors by using a hybridization strategy based on structural analysis of target proteins. J. Med. Chem., 2013, 56(23), 9635-9645.
[http://dx.doi.org/10.1021/jm401170c] [PMID: 24215352]
[54]
Jacobs, C.; Frotscher, M.; Dannhardt, G.; Hartmann, R.W. 1-imidazolyl(alkyl)-substituted di- and tetrahydroquinolines and analogues: Syntheses and evaluation of dual inhibitors of thromboxane A(2) synthase and aromatase. J. Med. Chem., 2000, 43(9), 1841-1851.
[http://dx.doi.org/10.1021/jm991180u] [PMID: 10794700]
[55]
Normanno, N.; De Luca, A.; Bianco, C.; Strizzi, L.; Mancino, M.; Maiello, M.R.; Carotenuto, A.; De Feo, G.; Caponigro, F.; Salomon, D.S. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene, 2006, 366(1), 2-16.
[http://dx.doi.org/10.1016/j.gene.2005.10.018] [PMID: 16377102]
[56]
Liu, L.; Greger, J.; Shi, H.; Liu, Y.; Greshock, J.; Annan, R.; Halsey, W.; Sathe, G.M.; Martin, A.M.; Gilmer, T.M. Novel mechanism of lapatinib resistance in HER2-positive breast tumor cells: Activation of AXL. Cancer Res., 2009, 69(17), 6871-6878.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4490] [PMID: 19671800]
[57]
Amin, D.N.; Sergina, N.; Lim, L.; Goga, A.; Moasser, M.M. HER3 signalling is regulated through a multitude of redundant mechanisms in HER2-driven tumour cells. Biochem. J., 2012, 447(3), 417-425.
[http://dx.doi.org/10.1042/BJ20120724] [PMID: 22853430]
[58]
Deng, Y.; Li, J. Rational optimization of tumor suppressor-derived peptide inhibitor selectivity between oncogene tyrosine kinases ErbB1 and ErbB2. Arch. Pharm., 2017, 350(12), 1700181.
[http://dx.doi.org/10.1002/ardp.201700181] [PMID: 29131383]
[59]
Ryan, Q.; Ibrahim, A.; Cohen, M.H.; Johnson, J.; Ko, C.; Sridhara, R.; Justice, R.; Pazdur, R. FDA drug approval summary: Lapatinib in combination with capecitabine for previously treated metastatic breast cancer that overexpresses HER-2. Oncologist, 2008, 13(10), 1114-1119.
[http://dx.doi.org/10.1634/theoncologist.2008-0816] [PMID: 18849320]
[60]
Conibear, A.C.; Schmid, A.; Kamalov, M.; Becker, C.F.W.; Bello, C. Recent advances in peptide-based approaches for cancer treatment. Curr. Med. Chem., 2020, 27(8), 1174-1205.
[http://dx.doi.org/10.2174/0929867325666171123204851] [PMID: 29173146]
[61]
Hayashi, M.A.F.; Ducancel, F.; Konno, K. Natural peptides with potential applications in drug development, diagnosis, and/or biotechnology. Int. J. Pept., 2012, 2012, 1-2.
[http://dx.doi.org/10.1155/2012/757838] [PMID: 22927866]
[62]
Bidwell, G.L., III; Raucher, D. Therapeutic peptides for cancer therapy. Part I – peptide inhibitors of signal transduction cascades. Expert Opin. Drug Deliv., 2009, 6(10), 1033-1047.
[http://dx.doi.org/10.1517/17425240903143745] [PMID: 19637980]
[63]
Lau, J.L.; Dunn, M.K. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg. Med. Chem., 2018, 26(10), 2700-2707.
[http://dx.doi.org/10.1016/j.bmc.2017.06.052] [PMID: 28720325]
[64]
Banting, F.G.; Best, C.H.; Collip, J.B.; Campbell, W.R.; Fletcher, A.A. Pancreatic extracts in the treatment of diabetes mellitus. Can. Med. Assoc. J., 1922, 12(3), 141-146.
[PMID: 20314060]
[65]
Elkinton, J.R.; Hunt, A.D., Jr; Godfrey, L.; McCrory, W.W.; Rogerson, A.G.; Stokes, J. Effects of pituitary adrenocorticotropic hormone therapy. J. Am. Med. Assoc., 1949, 141(18), 1273-1279.
[http://dx.doi.org/10.1001/jama.1949.02910180001001] [PMID: 15396915]
[66]
Roy, A.; Bharadvaja, N. Venom-derived bioactive compounds as potential anticancer agents: A review. Int. J. Pept. Res. Ther., 2021, 27(1), 129-147.
[http://dx.doi.org/10.1007/s10989-020-10073-z]
[67]
Zhang, Q.T.; Liu, Z.D.; Wang, Z.; Wang, T.; Wang, N.; Wang, N.; Zhang, B.; Zhao, Y.F. Recent Advances in Small Peptides of Marine Origin in Cancer Therapy. Mar. Drugs, 2021, 19(2), 115.
[http://dx.doi.org/10.3390/md19020115] [PMID: 33669851]
[68]
Karpiński, T.M.; Szkaradkiewicz, A.K. Anticancer peptides from bacteria. Bangladesh J. Pharmacol., 2013, 8(3), 343-348.
[http://dx.doi.org/10.3329/bjp.v8i3.15704]
[69]
Stupp, R.; Hegi, M.E.; Gorlia, T.; Erridge, S.C.; Perry, J.; Hong, Y.K.; Aldape, K.D.; Lhermitte, B.; Pietsch, T.; Grujicic, D.; Steinbach, J.P.; Wick, W.; Tarnawski, R.; Nam, D.H.; Hau, P.; Weyerbrock, A.; Taphoorn, M.J.B.; Shen, C.C.; Rao, N.; Thurzo, L.; Herrlinger, U.; Gupta, T.; Kortmann, R.D.; Adamska, K.; McBain, C.; Brandes, A.A.; Tonn, J.C.; Schnell, O.; Wiegel, T.; Kim, C.Y.; Nabors, L.B.; Reardon, D.A.; van den Bent, M.J.; Hicking, C.; Markivskyy, A.; Picard, M.; Weller, M. Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): A multicentre, randomised, open-label, phase 3 trial. Lancet Oncol., 2014, 15(10), 1100-1108.
[http://dx.doi.org/10.1016/S1470-2045(14)70379-1] [PMID: 25163906]
[70]
Meerovitch, K.; Torkildsen, G.; Lonsdale, J.; Goldfarb, H.; Lama, T.; Cumberlidge, G.; Ousler, G.W., III Safety and efficacy of MIM D3 ophthalmic solutions in a randomized placebo controlled Phase 2 clinical trial in patients with dry eye. Clin. Ophthalmol., 2013, 7, 1275-1285.
[http://dx.doi.org/10.2147/OPTH.S44688] [PMID: 23836957]
[71]
Birk, A.V.; Liu, S.; Soong, Y.; Mills, W.; Singh, P.; Warren, J.D.; Seshan, S.V.; Pardee, J.D.; Szeto, H.H. The mitochondrial-targeted compound SS-31 re-energizes ischemic mitochondria by interacting with cardiolipin. J. Am. Soc. Nephrol., 2013, 24(8), 1250-1261.
[http://dx.doi.org/10.1681/ASN.2012121216] [PMID: 23813215]
[72]
Felício, M.R.; Silva, O.N.; Gonçalves, S.; Santos, N.C.; Franco, O.L. Peptides with dual antimicrobial and anticancer activities. Front Chem., 2017, 5, 5.
[http://dx.doi.org/10.3389/fchem.2017.00005] [PMID: 28271058]
[73]
Chiangjong, W.; Chutipongtanate, S.; Hongeng, S. Anticancer peptide: Physicochemical property, functional aspect and trend in clinical application (Review). Int. J. Oncol., 2020, 57(3), 678-696.
[http://dx.doi.org/10.3892/ijo.2020.5099] [PMID: 32705178]
[74]
Hewitt, W.M.; Leung, S.S.F.; Pye, C.R.; Ponkey, A.R.; Bednarek, M.; Jacobson, M.P.; Lokey, R.S. Cell-permeable cyclic peptides from synthetic libraries inspired by natural products. J. Am. Chem. Soc., 2015, 137(2), 715-721.
[http://dx.doi.org/10.1021/ja508766b] [PMID: 25517352]
[75]
Lee, S.; Xie, J.; Chen, X. Peptides and peptide hormones for molecular imaging and disease diagnosis. Chem. Rev., 2010, 110(5), 3087-3111.
[http://dx.doi.org/10.1021/cr900361p] [PMID: 20225899]
[76]
Chen, K.; Sun, X.; Niu, G.; Ma, Y.; Yap, L.P.; Hui, X.; Wu, K.; Fan, D.; Conti, P.S.; Chen, X. Evaluation of 64Cu labeled GX1: A phage display peptide probe for PET imaging of tumor vasculature. Mol. Imaging Biol., 2012, 14(1), 96-105.
[http://dx.doi.org/10.1007/s11307-011-0479-1] [PMID: 21360213]
[77]
Chen, K.; Conti, P.S. Target-specific delivery of peptide-based probes for PET imaging. Adv. Drug Deliv. Rev., 2010, 62(11), 1005-1022.
[http://dx.doi.org/10.1016/j.addr.2010.09.004] [PMID: 20851156]
[78]
Buonfiglio, R.; Recanatini, M.; Masetti, M. Protein flexibility in drug discovery: From theory to computation. ChemMedChem, 2015, 10(7), 1141-1148.
[http://dx.doi.org/10.1002/cmdc.201500086] [PMID: 25891095]
[79]
Cicero, A.F.G.; Fogacci, F.; Colletti, A. Potential role of bioactive peptides in prevention and treatment of chronic diseases: A narrative review. Br. J. Pharmacol., 2017, 174(11), 1378-1394.
[http://dx.doi.org/10.1111/bph.13608] [PMID: 27572703]
[80]
Wu, D.; Gao, Y.; Qi, Y.; Chen, L.; Ma, Y.; Li, Y. Peptide-based cancer therapy: Opportunity and challenge. Cancer Lett., 2014, 351(1), 13-22.
[http://dx.doi.org/10.1016/j.canlet.2014.05.002] [PMID: 24836189]
[81]
Lee, A.C.L.; Harris, J.L.; Khanna, K.K.; Hong, J.H. A comprehensive review on current advances in peptide drug development and design. Int. J. Mol. Sci., 2019, 20(10), 2383.
[http://dx.doi.org/10.3390/ijms20102383] [PMID: 31091705]
[82]
O’Brien-Simpson, N.M.; Hoffmann, R.; Chia, C.S.B.; Wade, J.D. Antimicrobial and anticancer peptides. Front Chem., 2018, 6, 13.
[http://dx.doi.org/10.3389/fchem.2018.00013] [PMID: 29468150]
[83]
Marqus, S.; Pirogova, E.; Piva, T.J. Evaluation of the use of therapeutic peptides for cancer treatment. J. Biomed. Sci., 2017, 24(1), 21.
[http://dx.doi.org/10.1186/s12929-017-0328-x] [PMID: 28320393]
[84]
McGregor, D. Discovering and improving novel peptide therapeutics. Curr. Opin. Pharmacol., 2008, 8(5), 616-619.
[http://dx.doi.org/10.1016/j.coph.2008.06.002] [PMID: 18602024]
[85]
Thundimadathil, J. Cancer treatment using peptides: Current therapies and future prospects. J Amino Acids, 2012, 2012, 967347.
[http://dx.doi.org/10.1155/2012/967347]
[86]
Accardo, A.; Tesauro, D.; Morelli, G. Peptide-based targeting strategies for simultaneous imaging and therapy with nanovectors. Polym. J., 2013, 45(5), 481-493.
[http://dx.doi.org/10.1038/pj.2012.215]
[87]
Fosgerau, K.; Hoffmann, T. Peptide therapeutics: Current status and future directions. Drug Discov. Today, 2015, 20(1), 122-128.
[http://dx.doi.org/10.1016/j.drudis.2014.10.003] [PMID: 25450771]
[88]
Vlieghe, P.; Lisowski, V.; Martinez, J.; Khrestchatisky, M. Synthetic therapeutic peptides: Science and market. Drug Discov. Today, 2010, 15(1-2), 40-56.
[http://dx.doi.org/10.1016/j.drudis.2009.10.009] [PMID: 19879957]
[89]
Aronson, M.R.; Simonson, A.W.; Orchard, L.M.; Llinás, M.; Medina, S.H. Lipopeptisomes: Anticancer peptide-assembled particles for fusolytic oncotherapy. Acta Biomater., 2018, 80, 269-277.
[http://dx.doi.org/10.1016/j.actbio.2018.09.025] [PMID: 30240951]
[90]
Craik, D.J.; Fairlie, D.P.; Liras, S.; Price, D. The future of peptide-based drugs. Chem. Biol. Drug Des., 2013, 81(1), 136-147.
[http://dx.doi.org/10.1111/cbdd.12055] [PMID: 23253135]
[91]
Bray, B.L. Large-scale manufacture of peptide therapeutics by chemical synthesis. Nat. Rev. Drug Discov., 2003, 2(7), 587-593.
[http://dx.doi.org/10.1038/nrd1133] [PMID: 12815383]
[92]
Thayer, A.M. Making peptides at large scale. Chem. Eng. News, 2011, 89(22), 21-25.
[http://dx.doi.org/10.1021/cen-v089n022.p021]
[93]
Bussel, J.B.; Kuter, D.J.; George, J.N.; McMillan, R.; Aledort, L.M.; Conklin, G.T.; Lichtin, A.E.; Lyons, R.M.; Nieva, J.; Wasser, J.S.; Wiznitzer, I.; Kelly, R.; Chen, C.F.; Nichol, J.L. AMG 531, a thrombopoiesis-stimulating protein, for chronic ITP. N. Engl. J. Med., 2006, 355(16), 1672-1681.
[http://dx.doi.org/10.1056/NEJMoa054626] [PMID: 17050891]
[94]
Peng, S.B.; Zhang, X.; Paul, D.; Kays, L.M.; Gough, W.; Stewart, J.; Uhlik, M.T.; Chen, Q.; Hui, Y.H.; Zamek-Gliszczynski, M.J.; Wijsman, J.A.; Credille, K.M.; Yan, L.Z. Identification of LY2510924, a novel cyclic peptide CXCR4 antagonist that exhibits antitumor activities in solid tumor and breast cancer metastatic models. Mol. Cancer Ther., 2015, 14(2), 480-490.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0850] [PMID: 25504752]
[95]
Hanks, S.K.; Quinn, A.M.; Hunter, T. The protein kinase family: Conserved features and deduced phylogeny of the catalytic domains. Science, 1988, 241(4861), 42-52.
[http://dx.doi.org/10.1126/science.3291115] [PMID: 3291115]
[96]
Eck, M.J.; Manley, P.W. The interplay of structural information and functional studies in kinase drug design: Insights from BCR-Abl. Curr. Opin. Cell Biol., 2009, 21(2), 288-295.
[http://dx.doi.org/10.1016/j.ceb.2009.01.014] [PMID: 19217274]
[97]
Dengjel, J.; Kratchmarova, I.; Blagoev, B. Receptor tyrosine kinase signaling: A view from quantitative proteomics. Mol. Biosyst., 2009, 5(10), 1112-1121.
[http://dx.doi.org/10.1039/b909534a] [PMID: 19756300]
[98]
Licht-Murava, A.; Eldar-Finkelman, H. Exploiting substrate recognition for selective inhibition of protein kinases. Curr. Pharm. Des., 2012, 18(20), 2914-2920.
[http://dx.doi.org/10.2174/138161212800672741] [PMID: 22571660]
[99]
Wang, Y.; Ho, T.G.; Bertinetti, D.; Neddermann, M.; Franz, E.; Mo, G.C.H.; Schendowich, L.P.; Sukhu, A.; Spelts, R.C.; Zhang, J.; Herberg, F.W.; Kennedy, E.J. Isoform-selective disruption of AKAP-localized PKA using hydrocarbon stapled peptides. ACS Chem. Biol., 2014, 9(3), 635-642.
[http://dx.doi.org/10.1021/cb400900r] [PMID: 24422448]
[100]
Keskin, O.; Yalcin, S. A review of the use of somatostatin analogs in oncology. OncoTargets Ther., 2013, 6, 471-483.
[PMID: 23667314]
[101]
Wolin, E.; Jarzab, B.; Eriksson, B.; Walter, T.; Toumpanakis, C.; Morse, M.A.; Tomassetti, P.; Weber, M.M.; Fogelman, D.; Ramage, J.; Poon, D.; Gadbaw, B.; Li, J.; Pasieka, J.L.; Mahamat, A.; Swahn, F.; Newell-Price, J.; Mansoor, W.; Öberg, K. Phase III study of pasireotide long-acting release in patients with metastatic neuroendocrine tumors and carcinoid symptoms refractory to available somatostatin analogues. Drug Des. Devel. Ther., 2015, 9, 5075-5086.
[http://dx.doi.org/10.2147/DDDT.S84177] [PMID: 26366058]
[102]
Valdehita, A.; Bajo, A.M.; Schally, A.V.; Varga, J.L.; Carmena, M.J.; Prieto, J.C. Vasoactive intestinal peptide (VIP) induces transactivation of EGFR and HER2 in human breast cancer cells. Mol. Cell. Endocrinol., 2009, 302(1), 41-48.
[http://dx.doi.org/10.1016/j.mce.2008.11.024] [PMID: 19101605]
[103]
Kohno, M.; Horibe, T.; Haramoto, M.; Yano, Y.; Ohara, K.; Nakajima, O.; Matsuzaki, K.; Kawakami, K. A novel hybrid peptide targeting EGFR-expressing cancers. Eur. J. Cancer, 2011, 47(5), 773-783.
[http://dx.doi.org/10.1016/j.ejca.2010.10.021] [PMID: 21112771]
[104]
Tyagi, A.; Kapoor, P.; Kumar, R.; Chaudhary, K.; Gautam, A.; Raghava, G.P.S. In silico models for designing and discovering novel anticancer peptides. Sci. Rep., 2013, 3(1), 2984.
[http://dx.doi.org/10.1038/srep02984] [PMID: 24136089]
[105]
Sudhakar, D.R.; P, K.; Subbarao, N. Docking and molecular dynamics simulation study of EGFR1 with EGF-like peptides to understand molecular interactions. Mol. Biosyst., 2016, 12(6), 1987-1995.
[http://dx.doi.org/10.1039/C6MB00032K] [PMID: 27072492]
[106]
Xiang, Z.; Yang, X.; Xu, J.; Lai, W.; Wang, Z.; Hu, Z.; Tian, J.; Geng, L.; Fang, Q. Tumor detection using magnetosome nanoparticles functionalized with a newly screened EGFR/HER2 targeting peptide. Biomaterials, 2017, 115, 53-64.
[http://dx.doi.org/10.1016/j.biomaterials.2016.11.022] [PMID: 27888699]
[107]
Schroeder, J.A. Arizona cancer therapeutics LLC. EGFR-based inhibitor peptides for combinatorial inactivation of ERBB1, ERBB2, and ERBB3. US10066004B2, 2018.
[108]
Zhong, H.; He, J.; Yu, J.; Li, X.; Mei, Y.; Hao, L.; Wu, X. Mig6 not only inhibits EGFR and HER2 but also targets HER3 and HER4 in a differential specificity: Implications for targeted esophageal cancer therapy. Biochimie, 2021, 190, 132-142.
[http://dx.doi.org/10.1016/j.biochi.2021.07.002] [PMID: 34293452]
[109]
Spector, N.L.; Xia, W.; Burris, H., III; Hurwitz, H.; Dees, E.C.; Dowlati, A.; O’Neil, B.; Overmoyer, B.; Marcom, P.K.; Blackwell, K.L.; Smith, D.A.; Koch, K.M.; Stead, A.; Mangum, S.; Ellis, M.J.; Liu, L.; Man, A.K.; Bremer, T.M.; Harris, J.; Bacus, S. Study of the biologic effects of lapatinib, a reversible inhibitor of ErbB1 and ErbB2 tyrosine kinases, on tumor growth and survival pathways in patients with advanced malignancies. J. Clin. Oncol., 2005, 23(11), 2502-2512.
[http://dx.doi.org/10.1200/JCO.2005.12.157] [PMID: 15684311]
[110]
Mine, Y.; Munir, H.; Nakanishi, Y.; Sugiyama, D. Biomimetic peptides for the treatment of cancer. Anticancer Res., 2016, 36(7), 3565-3570.
[PMID: 27354624]

© 2024 Bentham Science Publishers | Privacy Policy