Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Synthesis and Biological Evaluation of 2-Amino-1-phenyl-benzimidazole Derivatives as BACE1 Inhibitors

Author(s): Xiao-Bin Dai, Shi-Han Wu, Ning Ding, Yi-Yuan Ma, Zhen-Jiang Tong, Jia-Zhen Wu, Yi-Bo Wang, Yan-Cheng Yu, Xue-Jiao Leng, Xin Xue, Jin-Guo Xu, Wei-Chen Dai, Ke Xie, Jing-Han Zhao, Yu-Qi Hong, Tian-Xi Lan, Tian-Yu Mu, Xiao-Long Wang, Shan-Liang Sun*, Nian-Guang Li*, Qiao-Li Liang* and Liang Chang*

Volume 21, Issue 7, 2024

Published on: 15 March, 2023

Page: [1252 - 1262] Pages: 11

DOI: 10.2174/1570180820666230223151850

Price: $65

Abstract

Background: Alzheimer’s disease (AD), a chronic neurodegenerative disorder predominantly occurs among the elderly, is the leading cause of dementia. The accumulation of β-amyloid (Aβ) is considered the main pathogenies of AD, and β-site APP-cleaving enzyme 1 (BACE1) plays an important role in the formulation of Aβ.

Objective: In order to find a new scaffold as BACE1 inhibitors, a series of novel 2-amino-1-phenylbenzimidazole derivatives were designed and synthesized in this work.

Methods: Using our previous L-5 as a lead compound, we applied a scaffold hopping method and merged 2-amino-1-methyl-4-phenyl-1H-imidazol-5 (4H)-one into benzimidazole, so a novel class of BACE1 inhibitors T1~T20 with the structure of 2-amino-1-phenyl-benzimidazole were designed and synthesized.

Results: The biological activity evaluation indicated that the target compounds showed inhibitory activities against BACE1, with T14 being the most potent (IC50 = 0.45 μM), it also exhibited good logP value and tPSA. The docking studies indicated that compound T14 could form important hydrogen bonds with Asp289 and Asp93.

Conclusion: Compound T14 could be used as a potential BACE1 inhibitor for further modification to treat AD.

Keywords: Alzheimer's disease, BACE-1 inhibitor, benzimidazole derivatives, FRET, Compound T14, β-amyloid (Aβ).

Graphical Abstract
[1]
Querfurth, H.W.; LaFerla, F.M. Alzheimer’s disease. N. Engl. J. Med., 2010, 362(4), 329-344.
[http://dx.doi.org/10.1056/NEJMra0909142] [PMID: 20107219]
[2]
Alzheimer’s Disease International In: World Alzheimer Report Attitudes to dementia; Alzheimer’s Disease International: London, 2019. [https:// www.alz.co.uk/research/WorldAlzheimerReport2019.pdf]
[3]
Yan, R.; Vassar, R. Targeting the β secretase BACE1 for Alzheimer’s disease therapy. Lancet Neurol., 2014, 13(3), 319-329.
[http://dx.doi.org/10.1016/S1474-4422(13)70276-X] [PMID: 24556009]
[4]
Jonsson, T.; Atwal, J.K.; Steinberg, S.; Snaedal, J.; Jonsson, P.V.; Bjornsson, S.; Stefansson, H.; Sulem, P.; Gudbjartsson, D.; Maloney, J.; Hoyte, K.; Gustafson, A.; Liu, Y.; Lu, Y.; Bhangale, T.; Graham, R.R.; Huttenlocher, J.; Bjornsdottir, G.; Andreassen, O.A.; Jönsson, E.G.; Palotie, A.; Behrens, T.W.; Magnusson, O.T.; Kong, A.; Thorsteinsdottir, U.; Watts, R.J.; Stefansson, K. A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature, 2012, 488(7409), 96-99.
[http://dx.doi.org/10.1038/nature11283] [PMID: 22801501]
[5]
Scott, J.D.; Li, S.W.; Brunskill, A.P.J.; Chen, X.; Cox, K.; Cumming, J.N.; Forman, M.; Gilbert, E.J.; Hodgson, R.A.; Hyde, L.A.; Jiang, Q.; Iserloh, U.; Kazakevich, I.; Kuvelkar, R.; Mei, H.; Meredith, J.; Misiaszek, J.; Orth, P.; Rossiter, L.M.; Slater, M.; Stone, J.; Strickland, C.O.; Voigt, J.H.; Wang, G.; Wang, H.; Wu, Y.; Greenlee, W.J.; Parker, E.M.; Kennedy, M.E.; Stamford, A.W. Discovery of the 3-imino-1,2,4-thiadiazinane 1,1-dioxide derivative verubecestat (MK-8931)-a β-site amyloid precursor protein cleaving enzyme 1 inhibitor for the treatment of Alzheimer’s disease. J. Med. Chem., 2016, 59(23), 10435-10450.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00307] [PMID: 27933948]
[6]
Sakamoto, K.; Matsuki, S.; Matsuguma, K.; Yoshihara, T.; Uchida, N.; Azuma, F.; Russell, M.; Hughes, G.; Haeberlein, S.B.; Alexander, R.C.; Eketjäll, S.; Kugler, A.R. BACE1 inhibitor lanabecestat (AZD3293) in a phase 1 study of healthy Japanese subjects: Pharmacokinetics and effects on plasma and cerebrospinal fluid Aβ peptides. J. Clin. Pharmacol., 2017, 57(11), 1460-1471.
[http://dx.doi.org/10.1002/jcph.950] [PMID: 28618005]
[7]
Panza, F.; Lozupone, M.; Solfrizzi, V.; Sardone, R.; Piccininni, C.; Dibello, V.; Stallone, R.; Giannelli, G.; Bellomo, A.; Greco, A.; Daniele, A.; Seripa, D.; Logroscino, G.; Imbimbo, B.P. BACE inhibitors in clinical development for the treatment of Alzheimer’s disease. Expert Rev. Neurother., 2018, 18(11), 847-857.
[http://dx.doi.org/10.1080/14737175.2018.1531706] [PMID: 30277096]
[8]
Timmers, M.; Van Broeck, B.; Ramael, S.; Slemmon, J.; De Waepenaert, K.; Russu, A.; Bogert, J.; Stieltjes, H.; Shaw, L.M.; Engelborghs, S.; Moechars, D.; Mercken, M.; Liu, E.; Sinha, V.; Kemp, J.; Van Nueten, L.; Tritsmans, L.; Streffer, J.R. Profiling the dynamics of CSF and plasma Aβ reduction after treatment with JNJ-54861911, a potent oral BACE inhibitor. Alzheimers Dement., 2016, 2(3), 202-212.
[http://dx.doi.org/10.1016/j.trci.2016.08.001] [PMID: 29067308]
[9]
Mason, V.L. Alzheimer’s association international conference on Alzheimer’s disease 2015. Drugs Today, 2015, 51(7), 447-452.
[http://dx.doi.org/10.1358/dot.2015.51.7.2375989] [PMID: 26261847]
[10]
Fan, T.Y.; Wu, W.Y.; Yu, S.P.; Zhong, Y.; Zhao, C.; Chen, M.; Li, H.M.; Li, N.G.; Chen, Z.; Chen, S.; Sun, Z.H.; Duan, J.A.; Shi, Z.H. Design, synthesis and evaluation of 2-amino-imidazol-4-one derivatives as potent β-site amyloid precursor protein cleaving enzyme 1 (BACE-1) inhibitors. Bioorg. Med. Chem. Lett., 2019, 29(24), 126772.
[http://dx.doi.org/10.1016/j.bmcl.2019.126772] [PMID: 31711785]
[11]
Malamas, M.S.; Robichaud, A.; Erdei, J.; Quagliato, D.; Solvibile, W.; Zhou, P.; Morris, K.; Turner, J.; Wagner, E.; Fan, K.; Olland, A.; Jacobsen, S.; Reinhart, P.; Riddell, D.; Pangalos, M. Design and synthesis of aminohydantoins as potent and selective human β-secretase (BACE1) inhibitors with enhanced brain permeability. Bioorg. Med. Chem. Lett., 2010, 20(22), 6597-6605.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.029] [PMID: 20880704]
[12]
Hitchcock, S.A.; Pennington, L.D. Structure-brain exposure relationships. J. Med. Chem., 2006, 49(26), 7559-7583.
[http://dx.doi.org/10.1021/jm060642i] [PMID: 17181137]
[13]
Cumming, J.N.; Smith, E.M.; Wang, L.; Misiaszek, J.; Durkin, J.; Pan, J.; Iserloh, U.; Wu, Y.; Zhu, Z.; Strickland, C.; Voigt, J.; Chen, X.; Kennedy, M.E.; Kuvelkar, R.; Hyde, L.A.; Cox, K.; Favreau, L.; Czarniecki, M.F.; Greenlee, W.J.; McKittrick, B.A.; Parker, E.M.; Stamford, A.W. Structure based design of iminohydantoin BACE1 inhibitors: Identification of an orally available, centrally active BACE1 inhibitor. Bioorg. Med. Chem. Lett., 2012, 22(7), 2444-2449.
[http://dx.doi.org/10.1016/j.bmcl.2012.02.013] [PMID: 22390835]
[14]
Tran, M.Q.; Ermolenko, L.; Retailleau, P.; Nguyen, T.B.; Al-Mourabit, A. Reaction of quinones and guanidine derivatives: Simple access to bis-2-aminobenzimidazole moiety of benzosceptrin and other benzazole motifs. Org. Lett., 2014, 16(3), 920-923.
[http://dx.doi.org/10.1021/ol403672p] [PMID: 24479902]
[15]
Ilangovan, A.; Kumar, R.G. 2,2-Bis(ethoxycarbonyl)vinyl (BECV) as a versatile amine protecting group for selective functional-group transformations. Chemistry, 2010, 16(9), 2938-2943.
[http://dx.doi.org/10.1002/chem.200902054] [PMID: 20077532]
[16]
May, P.C.; Dean, R.A.; Lowe, S.L.; Martenyi, F.; Sheehan, S.M.; Boggs, L.N.; Monk, S.A.; Mathes, B.M.; Mergott, D.J.; Watson, B.M.; Stout, S.L.; Timm, D.E.; Smith LaBell, E.; Gonzales, C.R.; Nakano, M.; Jhee, S.S.; Yen, M.; Ereshefsky, L.; Lindstrom, T.D.; Calligaro, D.O.; Cocke, P.J.; Greg Hall, D.; Friedrich, S.; Citron, M.; Audia, J.E. Robust central reduction of amyloid-β in humans with an orally available, non-peptidic β-secretase inhibitor. J. Neurosci., 2011, 31(46), 16507-16516.
[http://dx.doi.org/10.1523/JNEUROSCI.3647-11.2011] [PMID: 22090477]
[17]
Ghose, A.K.; Herbertz, T.; Hudkins, R.L.; Dorsey, B.D.; Mallamo, J.P. Knowledge-based, central nervous system (CNS) lead selection and lead optimization for CNS drug discovery. ACS Chem. Neurosci., 2012, 3(1), 50-68.
[http://dx.doi.org/10.1021/cn200100h] [PMID: 22267984]
[18]
Das, S.; Joardar, S.; Manna, P.; Dua, T.K.; Bhattacharjee, N.; Khanra, R.; Bhowmick, S.; Kalita, J.; Saha, A.; Ray, S.; De Feo, V.; Dewanjee, S. Carnosic acid, a natural diterpene, attenuates arsenic-induced hepatotoxicity via reducing oxidative stress, MAPK activation, and apoptotic cell death pathway. Oxid. Med. Cell. Longev., 2018, 2018, 1421438.
[http://dx.doi.org/10.1155/2018/1421438] [PMID: 29854073]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy