Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Role of Animal Models in Parkinson's Disease (PD): What Role They Play in Preclinical Translational Research

Author(s): Rajnish Srivastava, Hagera Dilnashin, Devesh Kapoor, Sai Aparna, Elmira Heidarli, Surya Pratap Singh and Vivek Jain*

Volume 23, Issue 2, 2024

Published on: 31 March, 2023

Page: [181 - 202] Pages: 22

DOI: 10.2174/1871527322666230223150347

Price: $65

conference banner
Abstract

Background: Animal models for drug discovery and development in Parkinson ’s disease have played an important role in the characterization of the pathophysiology of diseases and associated mechanisms of injury, drug target identification, and evaluation of novel therapeutic agents for toxicity/ safety, pharmacokinetics, pharmacodynamics, and efficacy.

Objective: The review is intended to reform the scope, advantages, and limitations of various Parkinson’s Disease models and their scope in translational research. The lack of a gold standard for PD animal models presents a major challenge in devising a validation system. This review is an attempt to provide a way to adopt the validation approach for PD animal model for research.

Methods: Because underlying disease mechanisms are so similar across species, it is possible to extrapolate results from Parkinson's disease studies using animal models. Furthermore, behavioural tests used to access the neurobehavioral test with its limitations were explored for rodents, non-human primates, lower-order animals, and invertebrates. The role of gender selectivity and non-selectivity is the one major concern in PD model validation that is addressed in the review.

Results: The rigorous validation has been done on animal models for Parkinson's disease (PD) based on comparisons to the human state. Regarding toxicological and safety investigations in PD, non-animal options must be thoroughly validated. There are both advantages and disadvantages to using animal models of Parkinson's disease as proof-of-concept research.

Conclusion: The specific animal model selected for a given drug to be tested and developed depends on the goal of the specific study.

Keywords: Animal model, behavioural tests, invertebrates, non-human primates, Parkinson’s disease, rodents, translational research, validation.

Graphical Abstract
[1]
Poewe W, Seppi K, Tanner CM, et al. Parkinson disease. Nat Rev Dis Primers 2017; 3(1): 17013.
[http://dx.doi.org/10.1038/nrdp.2017.13] [PMID: 28332488]
[2]
Naqvi S, Panghal A, Flora SJS. Nanotechnology: A promising approach for delivery of neuroprotective drugs. Front Neurosci 2020; 14: 494.
[http://dx.doi.org/10.3389/fnins.2020.00494] [PMID: 32581676]
[3]
Parkinson’s Disease Statistics. Parkinson’s News Today. Available from: https://parkinsonsnewstoday.com/parkinsons-disease-statistics/
[4]
Mathur S, DeWitte S, Robledo I, Isaacs T, Stamford J. Rising to the challenges of clinical trial improvement in Parkinson’s disease. J Parkinsons Dis 2015; 5(2): 263-8.
[http://dx.doi.org/10.3233/JPD-150541] [PMID: 25720445]
[5]
Grotta J. Neuroprotection is unlikely to be effective in humans using current trial designs. Stroke 2002; 33(1): 306-7.
[http://dx.doi.org/10.1161/str.33.1.306] [PMID: 11779929]
[6]
Katila N, Bhurtel S, Shadfar S, et al. Metformin lowers α-synuclein phosphorylation and upregulates neurotrophic factor in the MPTP mouse model of Parkinson’s disease. Neuropharmacology 2017; 125: 396-407.
[http://dx.doi.org/10.1016/j.neuropharm.2017.08.015] [PMID: 28807678]
[7]
Picillo M, Barone P, Pellecchia MT. Merging clinical and imaging biomarkers to tackle Parkinson’s disease. Mov Disord Clin Pract 2017; 4(5): 652-62.
[http://dx.doi.org/10.1002/mdc3.12521] [PMID: 30363377]
[8]
Duty S, Jenner P. Animal models of Parkinson’s disease: A source of novel treatments and clues to the cause of the disease. Br J Pharmacol 2011; 164(4): 1357-91.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01426.x] [PMID: 21486284]
[9]
Petzinger GM, Walsh JP, Akopian G, et al. Effects of treadmill exercise on dopaminergic transmission in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury. J Neurosci 2007; 27(20): 5291-300.
[http://dx.doi.org/10.1523/JNEUROSCI.1069-07.2007] [PMID: 17507552]
[10]
Emborg ME. Nonhuman primate models of Parkinson’s disease. ILAR J 2007; 48(4): 339-55.
[http://dx.doi.org/10.1093/ilar.48.4.339] [PMID: 17712221]
[11]
Bové J, Perier C. Neurotoxin-based models of Parkinson’s disease. Neuroscience 2012; 211: 51-76.
[http://dx.doi.org/10.1016/j.neuroscience.2011.10.057] [PMID: 22108613]
[12]
Cannon JR, Greenamyre JT. Neurotoxic in vivo models of Parkinson’s disease. Prog Brain Res 2010; 184: 17-33.
[http://dx.doi.org/10.1016/S0079-6123(10)84002-6] [PMID: 20887868]
[13]
Bagga V, Dunnett SB, Fricker RA. The 6-OHDA mouse model of Parkinson’s disease – Terminal striatal lesions provide a superior measure of neuronal loss and replacement than median forebrain bundle lesions. Behav Brain Res 2015; 288: 107-17.
[http://dx.doi.org/10.1016/j.bbr.2015.03.058] [PMID: 25841616]
[14]
Emborg M, Joers V, Dilley K, Vermilyea S. Systemic administration of 6-OHDA to rhesus monkeys upregulates HLA-DR expression in brain microvasculature. J Inflamm Res 2014; 7: 139-49.
[http://dx.doi.org/10.2147/JIR.S67285] [PMID: 25258551]
[15]
Burke RE, O’Malley K. Axon degeneration in Parkinson’s disease. Exp Neurol 2013; 246: 72-83.
[http://dx.doi.org/10.1016/j.expneurol.2012.01.011] [PMID: 22285449]
[16]
Sripetchwandee J, Pipatpiboon N, Chattipakorn N, Chattipakorn S. Combined therapy of iron chelator and antioxidant completely restores brain dysfunction induced by iron toxicity. PLoS One 2014; 9(1): e85115.
[http://dx.doi.org/10.1371/journal.pone.0085115] [PMID: 24400127]
[17]
Schober A. Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP. Cell Tissue Res 2004; 318(1): 215-24.
[http://dx.doi.org/10.1007/s00441-004-0938-y] [PMID: 15503155]
[18]
Martí Y, Matthaeus F, Lau T, Schloss P. Methyl-4-phenylpyridinium (MPP +) differentially affects monoamine release and re-uptake in murine embryonic stem cell-derived dopaminergic and serotonergic neurons. Mol Cell Neurosci 2017; 83: 37-45.
[http://dx.doi.org/10.1016/j.mcn.2017.06.009] [PMID: 28673772]
[19]
Bezard E, Yue Z, Kirik D, Spillantini MG. Animal models of Parkinson’s disease: Limits and relevance to neuroprotection studies. Mov Disord 2013; 28(1): 61-70.
[http://dx.doi.org/10.1002/mds.25108] [PMID: 22753348]
[20]
Sayre LM, Wang F, Hoppel CL. Tetraphenylborate potentiates the respiratory inhibition by the dopaminergic neurotoxin MPP+ in both electron transport particles and intact mitochondria. Biochem Biophys Res Commun 1989; 161(2): 809-18.
[http://dx.doi.org/10.1016/0006-291X(89)92672-7] [PMID: 2786720]
[21]
Petroske E, Meredith GE, Callen S, Totterdell S, Lau YS. Mouse model of Parkinsonism: A comparison between subacute MPTP and chronic MPTP/probenecid treatment. Neuroscience 2001; 106(3): 589-601.
[http://dx.doi.org/10.1016/S0306-4522(01)00295-0] [PMID: 11591459]
[22]
Bisbal M, Sanchez M. Neurotoxicity of the pesticide rotenone on neuronal polarization: A mechanistic approach. Neural Regen Res 2019; 14(5): 762-6.
[http://dx.doi.org/10.4103/1673-5374.249847] [PMID: 30688258]
[23]
Heikkila RE, Nicklas WJ, Vyas I, Duvoisin RC. Dopaminergic toxicity of rotenone and the 1-methyl-4-phenylpyridinium ion after their stereotaxic administration to rats: Implication for the mechanism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity. Neurosci Lett 1985; 62(3): 389-94.
[http://dx.doi.org/10.1016/0304-3940(85)90580-4] [PMID: 3912685]
[24]
Inden M, Kitamura Y, Abe M, Tamaki A, Takata K, Taniguchi T. Parkinsonian rotenone mouse model: reevaluation of long-term administration of rotenone in C57BL/6 mice. Biol Pharm Bull 2011; 34(1): 92-6.
[http://dx.doi.org/10.1248/bpb.34.92] [PMID: 21212524]
[25]
Tapias V, Cannon JR, Greenamyre JT. Melatonin treatment potentiates neurodegeneration in a rat rotenone Parkinson’s disease model. J Neurosci Res 2010; 88(2): 420-7.
[http://dx.doi.org/10.1002/jnr.22201] [PMID: 19681169]
[26]
Lautenschläger J, Stephens AD, Fusco G, et al. C-terminal calcium binding of α-synuclein modulates synaptic vesicle interaction. Nat Commun 2018; 9(1): 712.
[http://dx.doi.org/10.1038/s41467-018-03111-4] [PMID: 29459792]
[27]
Tóth G, Gardai SJ, Zago W, et al. Targeting the intrinsically disordered structural ensemble of α-synuclein by small molecules as a potential therapeutic strategy for Parkinson’s disease. PLoS One 2014; 9(2): e87133.
[http://dx.doi.org/10.1371/journal.pone.0087133] [PMID: 24551051]
[28]
Brucale M, Sandal M, Di Maio S, et al. Pathogenic mutations shift the equilibria of alpha-synuclein single molecules towards structured conformers. ChemBioChem 2009; 10(1): 176-83.
[http://dx.doi.org/10.1002/cbic.200800581] [PMID: 19067456]
[29]
Masliah E, Rockenstein E, Veinbergs I, et al. Dopaminergic loss and inclusion body formation in alpha-synuclein mice: Implications for neurodegenerative disorders. Science 2000; 287(5456): 1265-9.
[http://dx.doi.org/10.1126/science.287.5456.1265] [PMID: 10678833]
[30]
Matsuoka Y, Vila M, Lincoln S, et al. Lack of nigral pathology in transgenic mice expressing human alpha-synuclein driven by the tyrosine hydroxylase promoter. Neurobiol Dis 2001; 8(3): 535-9.
[http://dx.doi.org/10.1006/nbdi.2001.0392] [PMID: 11442360]
[31]
Prasad K, Tarasewicz E, Ohman Strickland PA, et al. Biochemical and morphological consequences of human α-synuclein expression in a mouse α-synuclein null background. Eur J Neurosci 2011; 33(4): 642-56.
[http://dx.doi.org/10.1111/j.1460-9568.2010.07558.x] [PMID: 21272100]
[32]
Li Y, Liu W, Oo TF, et al. Mutant LRRK2R1441G BAC transgenic mice recapitulate cardinal features of Parkinson’s disease. Nat Neurosci 2009; 12(7): 826-8.
[http://dx.doi.org/10.1038/nn.2349] [PMID: 19503083]
[33]
Lee BD, Shin JH, VanKampen J, et al. Inhibitors of leucine-rich repeat kinase-2 protect against models of Parkinson’s disease. Nat Med 2010; 16(9): 998-1000.
[http://dx.doi.org/10.1038/nm.2199] [PMID: 20729864]
[34]
West AB. Achieving neuroprotection with LRRK2 kinase inhibitors in Parkinson disease. Exp Neurol 2017; 298(Pt B): 236-45.
[http://dx.doi.org/10.1016/j.expneurol.2017.07.019]
[35]
Song P, Li S, Wu H, et al. Parkin promotes proteasomal degradation of p62: Implication of selective vulnerability of neuronal cells in the pathogenesis of Parkinson’s disease. Protein Cell 2016; 7(2): 114-29.
[http://dx.doi.org/10.1007/s13238-015-0230-9] [PMID: 26746706]
[36]
Dawson TM, Ko HS, Dawson VL. Genetic animal models of Parkinson’s disease. Neuron 2010; 66(5): 646-61.
[http://dx.doi.org/10.1016/j.neuron.2010.04.034] [PMID: 20547124]
[37]
Bian M, Liu J, Hong X, et al. Overexpression of parkin ameliorates dopaminergic neurodegeneration induced by 1- methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. PLoS One 2012; 7(6): e39953.
[http://dx.doi.org/10.1371/journal.pone.0039953] [PMID: 22792139]
[38]
Ariga H, Takahashi-Niki K, Kato I, Maita H, Niki T, Iguchi-Ariga SMM. Neuroprotective function of DJ-1 in Parkinson’s disease. Oxid Med Cell Longev 2013; 2013: 1-9.
[http://dx.doi.org/10.1155/2013/683920] [PMID: 23766857]
[39]
Chen L, Cagniard B, Mathews T, et al. Age-dependent motor deficits and dopaminergic dysfunction in DJ-1 null mice. J Biol Chem 2005; 280(22): 21418-26.
[http://dx.doi.org/10.1074/jbc.M413955200] [PMID: 15799973]
[40]
Hauser DN, Primiani CT, Langston RG, Kumaran R, Cookson MR. The polg mutator phenotype does not cause dopaminergic neurodegeneration in DJ-1-deficient mice. eNeuro 2015; 2(1): ENEURO.0075-14.2015.
[http://dx.doi.org/10.1523/ENEURO.0075-14.2015]
[41]
Kitada T, Tong Y, Gautier CA, Shen J. Absence of nigral degeneration in aged parkin/DJ-1/PINK1 triple knockout mice. J Neurochem 2009; 111(3): 696-702.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06350.x] [PMID: 19694908]
[42]
Aleyasin H, Rousseaux MWC, Marcogliese PC, et al. DJ-1 protects the nigrostriatal axis from the neurotoxin MPTP by modulation of the AKT pathway. Proc Natl Acad Sci USA 2010; 107(7): 3186-91.
[http://dx.doi.org/10.1073/pnas.0914876107] [PMID: 20133695]
[43]
Matsuda S, Kitagishi Y, Kobayashi M. Function and characteristics of PINK1 in mitochondria. Oxid Med Cell Longev 2013; 2013: 1-6.
[http://dx.doi.org/10.1155/2013/601587] [PMID: 23533695]
[44]
Park J, Lee SB, Lee S, et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 2006; 441(7097): 1157-61.
[http://dx.doi.org/10.1038/nature04788] [PMID: 16672980]
[45]
Morais VA, Verstreken P, Roethig A, et al. Parkinson’s disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function. EMBO Mol Med 2009; 1(2): 99-111.
[http://dx.doi.org/10.1002/emmm.200900006] [PMID: 20049710]
[46]
Gispert S, Ricciardi F, Kurz A, et al. Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration. PLoS One 2009; 4(6): e5777.
[http://dx.doi.org/10.1371/journal.pone.0005777] [PMID: 19492057]
[47]
Zetterström RH, Solomin L, Jansson L, Hoffer BJ, Olson L, Perlmann T. Dopamine neuron agenesis in Nurr1-deficient mice. Science 1997; 276(5310): 248-50.
[http://dx.doi.org/10.1126/science.276.5310.248] [PMID: 9092472]
[48]
Decressac M, Volakakis N, Björklund A, Perlmann T. NURR1 in Parkinson disease-from pathogenesis to therapeutic potential. Nat Rev Neurol 2013; 9(11): 629-36.
[http://dx.doi.org/10.1038/nrneurol.2013.209] [PMID: 24126627]
[49]
Le W, Conneely OM, He Y, Jankovic J, Appel SH. Reduced Nurr1 expression increases the vulnerability of mesencephalic dopamine neurons to MPTP-induced injury. J Neurochem 1999; 73(5): 2218-21.
[PMID: 10537083]
[50]
Kadkhodaei B, Alvarsson A, Schintu N, et al. Transcription factor Nurr1 maintains fiber integrity and nuclear-encoded mitochondrial gene expression in dopamine neurons. Proc Natl Acad Sci 2013; 110(6): 2360-5.
[http://dx.doi.org/10.1073/pnas.1221077110] [PMID: 23341612]
[51]
Kadkhodaei B, Ito T, Joodmardi E, et al. Nurr1 is required for maintenance of maturing and adult midbrain dopamine neurons. J Neurosci 2009; 29(50): 15923-32.
[http://dx.doi.org/10.1523/JNEUROSCI.3910-09.2009] [PMID: 20016108]
[52]
Wang Y, Chen X, Wang Y, Li S, Cai H, Le W. The essential role of transcription factor Pitx3 in preventing mesodiencephalic dopaminergic neurodegeneration and maintaining neuronal subtype identities during aging. Cell Death Dis 2021; 12(11): 1008.
[http://dx.doi.org/10.1038/s41419-021-04319-x] [PMID: 34707106]
[53]
Park JS, Davis RL, Sue CM. Mitochondrial dysfunction in Parkinson’s disease: New mechanistic insights and therapeutic perspectives. Curr Neurol Neurosci Rep 2018; 18(5): 21.
[http://dx.doi.org/10.1007/s11910-018-0829-3] [PMID: 29616350]
[54]
Bender A, Krishnan KJ, Morris CM, et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 2006; 38(5): 515-7.
[http://dx.doi.org/10.1038/ng1769] [PMID: 16604074]
[55]
Harvey BK, Wang Y, Hoffer BJ. Transgenic rodent models of Parkinson’s disease. Acta Neurochir Suppl 2008; 101: 89-92.
[http://dx.doi.org/10.1007/978-3-211-78205-7_15] [PMID: 18642640]
[56]
Spencer PS. Hypothesis: Etiologic and molecular mechanistic leads for sporadic neurodegenerative diseases based on experience with Western Pacific ALS/PDC. Front Neurol 2019; 10: 754.
[http://dx.doi.org/10.3389/fneur.2019.00754] [PMID: 31417480]
[57]
Hirano A, Zimmerman HM. Alzheimer’s neurofibrillary changes. A topographic study. Arch Neurol 1962; 7(3): 227-42.
[http://dx.doi.org/10.1001/archneur.1962.04210030065009] [PMID: 13907611]
[58]
Forman MS, Schmidt ML, Kasturi S, Perl DP, Lee VMY, Trojanowski JQ. Tau and alpha-synuclein pathology in amygdala of Parkinsonism-dementia complex patients of Guam. Am J Pathol 2002; 160(5): 1725-31.
[http://dx.doi.org/10.1016/S0002-9440(10)61119-4] [PMID: 12000724]
[59]
Emborg ME, Ma SY, Mufson EJ, et al. Age-related declines in nigral neuronal function correlate with motor impairments in rhesus monkeys. J Comp Neurol 1998; 401(2): 253-65.
[http://dx.doi.org/10.1002/(SICI)1096-9861(19981116)401:2<253:AID-CNE7>3.0.CO;2-X] [PMID: 9822152]
[60]
Chu Y, Kordower JH. Age-associated increases of α-synuclein in monkeys and humans are associated with nigrostriatal dopamine depletion: Is this the target for Parkinson’s disease? Neurobiol Dis 2007; 25(1): 134-49.
[http://dx.doi.org/10.1016/j.nbd.2006.08.021] [PMID: 17055279]
[61]
Canron MH, Perret M, Vital A, Bézard E, Dehay B. Age-dependent α-synuclein aggregation in the Microcebus murinus lemur primate. Sci Rep 2012; 2(1): 910.
[http://dx.doi.org/10.1038/srep00910] [PMID: 23205271]
[62]
William Langston J, Forno LS, Rebert CS, Irwin I. Selective nigral toxicity after systemic administration of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyrine (MPTP) in the squirrel monkey. Brain Res 1984; 292(2): 390-4.
[http://dx.doi.org/10.1016/0006-8993(84)90777-7] [PMID: 6607092]
[63]
Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ. A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci 1983; 80(14): 4546-50.
[http://dx.doi.org/10.1073/pnas.80.14.4546] [PMID: 6192438]
[64]
Jacobowitz DM, Burns RS, Chiueh CC, Kopin IJ. N-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine (MPTP) causes destruction of the nigrostriatal but not the mesolimbic dopamine system in the monkey. Psychopharmacol Bull 1984; 20(3): 416-22.
[PMID: 6332329]
[65]
Jenner P, Rupniak NMJ, Rose S, et al. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in the common marmoset. Neurosci Lett 1984; 50(1-3): 85-90.
[http://dx.doi.org/10.1016/0304-3940(84)90467-1] [PMID: 6436758]
[66]
Forno LS, Langston JW, DeLanney LE, Irwin I, Ricaurte GA. Locus ceruleus lesions and eosinophilic inclusions in MPTP-treated monkeys. Ann Neurol 1986; 20(4): 449-55.
[http://dx.doi.org/10.1002/ana.410200403] [PMID: 3024555]
[67]
Huang B, Wu S, Wang Z, et al. Phosphorylated α-synuclein accumulations and lewy body-like pathology distributed in Parkinson’s disease-related brain areas of aged rhesus monkeys treated with MPTP. Neuroscience 2018; 379: 302-15.
[http://dx.doi.org/10.1016/j.neuroscience.2018.03.026] [PMID: 29592843]
[68]
Kirik D, Rosenblad C, Burger C, et al. Parkinson-like neurodegeneration induced by targeted overexpression of alpha-synuclein in the nigrostriatal system. J Neurosci 2002; 22(7): 2780-91.
[http://dx.doi.org/10.1523/JNEUROSCI.22-07-02780.2002] [PMID: 11923443]
[69]
Koprich JB, Johnston TH, Reyes MG, Sun X, Brotchie JM. Expression of human A53T alpha-synuclein in the rat substantia nigra using a novel AAV1/2 vector produces a rapidly evolving pathology with protein aggregation, dystrophic neurite architecture and nigrostriatal degeneration with potential to model the pathology of Parkinson’s disease. Mol Neurodegener 2010; 5(1): 43.
[http://dx.doi.org/10.1186/1750-1326-5-43] [PMID: 21029459]
[70]
Kirik D, Annett LE, Burger C, Muzyczka N, Mandel RJ, Björklund A. Nigrostriatal α-synucleinopathy induced by viral vector-mediated overexpression of human α-synuclein: A new primate model of Parkinson’s disease. Proc Natl Acad Sci 2003; 100(5): 2884-9.
[http://dx.doi.org/10.1073/pnas.0536383100] [PMID: 12601150]
[71]
Eslamboli A, Romero-Ramos M, Burger C, et al. Long-term consequences of human alpha-synuclein overexpression in the primate ventral midbrain. Brain 2007; 130(3): 799-815.
[http://dx.doi.org/10.1093/brain/awl382] [PMID: 17303591]
[72]
Yang W, Wang G, Wang CE, et al. Mutant alpha-synuclein causes age-dependent neuropathology in monkey brain. J Neurosci 2015; 35(21): 8345-58.
[http://dx.doi.org/10.1523/JNEUROSCI.0772-15.2015] [PMID: 26019347]
[73]
Irwin I, DeLanney LE, McNeill T, et al. Aging and the nigrostriatal dopamine system: A non-human primate study. Neurodegeneration 1994; 3(4): 251-65.
[PMID: 7531106]
[74]
McCormack AL, Di Monte DA, Delfani K, et al. Aging of the nigrostriatal system in the squirrel monkey. J Comp Neurol 2004; 471(4): 387-95.
[http://dx.doi.org/10.1002/cne.20036] [PMID: 15022260]
[75]
Collier TJ, Lipton J, Daley BF, et al. Aging-related changes in the nigrostriatal dopamine system and the response to MPTP in nonhuman primates: Diminished compensatory mechanisms as a prelude to parkinsonism. Neurobiol Dis 2007; 26(1): 56-65.
[http://dx.doi.org/10.1016/j.nbd.2006.11.013] [PMID: 17254792]
[76]
Koprich JB, Johnston TH, Reyes G, Omana V, Brotchie JM. Towards a non-human primate model of alpha-synucleinopathy for development of therapeutics for Parkinson’s disease: Optimization of AAV1/2 delivery parameters to drive sustained expression of alpha synuclein and dopaminergic degeneration in macaque. PLoS One 2016; 11(11): e0167235.
[http://dx.doi.org/10.1371/journal.pone.0167235] [PMID: 27902767]
[77]
Yang W, Li S, Li XJ. A CRISPR monkey model unravels a unique function of PINK1 in primate brains. Mol Neurodegener 2019; 14(1): 17.
[http://dx.doi.org/10.1186/s13024-019-0321-9] [PMID: 31046796]
[78]
Niu Y, Guo X, Chen Y, et al. Early Parkinson’s disease symptoms in -synuclein transgenic monkeys. Hum Mol Genet 2015; 24(8): 2308-17.
[http://dx.doi.org/10.1093/hmg/ddu748] [PMID: 25552648]
[79]
Moreau C, Rolland AS, Pioli E, et al. Intraventricular dopamine infusion alleviates motor symptoms in a primate model of Parkinson’s disease. Neurobiol Dis 2020; 139: 104846.
[http://dx.doi.org/10.1016/j.nbd.2020.104846] [PMID: 32205254]
[80]
Borgognon S, Cottet J, Moret V, et al. Fine manual dexterity assessment after Autologous Neural Cell Ecosystem (ANCE) transplantation in a non-human primate model of Parkinson’s disease. Neurorehabil Neural Repair 2019; 33(7): 553-67.
[http://dx.doi.org/10.1177/1545968319850133] [PMID: 31170868]
[81]
Li J, Zhang HY, Jiang Y, Li TQ. Comparison of Parkinson’s monkey models induced by unilateral and bilateral intracerebroventricular injections of MPP. Sheng Li Xue Bao 2017; 69(6): 743-50.
[82]
Metzger JM, Matsoff HN, Zinnen AD, et al. Post mortem evaluation of inflammation, oxidative stress, and PPARγ activation in a nonhuman primate model of cardiac sympathetic neurodegeneration. PLoS One 2020; 15(1): e0226999.
[http://dx.doi.org/10.1371/journal.pone.0226999] [PMID: 31910209]
[83]
Joers V, Dilley K, Rahman S, et al. Cardiac sympathetic denervation in 6-OHDA-treated nonhuman primates. PLoS One 2014; 9(8): e104850.
[http://dx.doi.org/10.1371/journal.pone.0104850] [PMID: 25133405]
[84]
Metzger JM, Moore CF, Boettcher CA, et al. In vivo imaging of inflammation and oxidative stress in a nonhuman primate model of cardiac sympathetic neurodegeneration. NPJ Parkinsons Dis 2018; 4(1): 22.
[http://dx.doi.org/10.1038/s41531-018-0057-1] [PMID: 30038956]
[85]
Garea-Rodríguez E, Eesmaa A, Lindholm P, et al. Comparative analysis of the effects of neurotrophic factors CDNF and GDNF in a Nonhuman Primate Model of Parkinson’s disease. PLoS One 2016; 11(2): e0149776.
[http://dx.doi.org/10.1371/journal.pone.0149776] [PMID: 26901822]
[86]
Christensen AB, Sørensen JCH, Ettrup KS, Orlowski D, Bjarkam CR. Pirouetting pigs: A large non-primate animal model based on unilateral 6-hydroxydopamine lesioning of the nigrostriatal pathway. Brain Res Bull 2018; 139: 167-73.
[http://dx.doi.org/10.1016/j.brainresbull.2018.02.010] [PMID: 29462643]
[87]
Fox SH, Brotchie JM. The MPTP-lesioned non-human primate models of Parkinson’s disease. Past, present, and future. Prog Brain Res 2010; 184: 133-57.
[http://dx.doi.org/10.1016/S0079-6123(10)84007-5] [PMID: 20887873]
[88]
Mounayar S, Boulet S, Tandé D, et al. A new model to study compensatory mechanisms in MPTP-treated monkeys exhibiting recovery. Brain 2007; 130(11): 2898-914.
[http://dx.doi.org/10.1093/brain/awm208] [PMID: 17855373]
[89]
Jan C, François C, Tandé D, et al. Dopaminergic innervation of the pallidum in the normal state, in MPTP-treated monkeys and in parkinsonian patients. Eur J Neurosci 2000; 12(12): 4525-35.
[PMID: 11122363]
[90]
Grow DA, McCarrey JR, Navara CS. Advantages of nonhuman primates as preclinical models for evaluating stem cell-based therapies for Parkinson’s disease. Stem Cell Res 2016; 17(2): 352-66.
[http://dx.doi.org/10.1016/j.scr.2016.08.013] [PMID: 27622596]
[91]
Barone MC, Bohmann D. Assessing neurodegenerative phenotypes in Drosophila dopaminergic neurons by climbing assays and whole brain immunostaining. J Vis Exp 2013; 74: e50339.
[http://dx.doi.org/10.3791/50339] [PMID: 23644755]
[92]
Navarro JA, Heßner S, Yenisetti SC, et al. Analysis of dopaminergic neuronal dysfunction in genetic and toxin-induced models of Parkinson’s disease in Drosophila. J Neurochem 2014; 131(3): 369-82.
[http://dx.doi.org/10.1111/jnc.12818] [PMID: 25040725]
[93]
De Lazzari F, Bisaglia M, Zordan M, Sandrelli F. Circadian rhythm abnormalities in Parkinson’s disease from humans to flies and back. Int J Mol Sci 2018; 19(12): 3911.
[http://dx.doi.org/10.3390/ijms19123911] [PMID: 30563246]
[94]
West RJH, Furmston R, Williams CAC, Elliott CJH. Neurophysiology of Drosophila models of Parkinson’s disease. Parkinsons Dis 2015; 2015: 1-11.
[http://dx.doi.org/10.1155/2015/381281] [PMID: 25960916]
[95]
Youssef K, Tandon A, Rezai P. Studying Parkinson’s disease using Caenorhabditis elegans models in microfluidic devices. Integr Biol 2019; 11(5): 186-207.
[http://dx.doi.org/10.1093/intbio/zyz017] [PMID: 31251339]
[96]
Cooper JF, Van Raamsdonk JM. Modeling Parkinson’s Disease in C. elegans. J Parkinsons Dis 2018; 8(1): 17-32.
[http://dx.doi.org/10.3233/JPD-171258] [PMID: 29480229]
[97]
Culetto E, Sattelle DB. A role for Caenorhabditis elegans in understanding the function and interactions of human disease genes. Hum Mol Genet 2000; 9(6): 869-77.
[http://dx.doi.org/10.1093/hmg/9.6.869] [PMID: 10767309]
[98]
Kaletta T, Hengartner MO. Finding function in novel targets: C. elegans as a model organism. Nat Rev Drug Discov 2006; 5(5): 387-99.
[http://dx.doi.org/10.1038/nrd2031] [PMID: 16672925]
[99]
Kim W, Underwood RS, Greenwald I, Shaye DD. OrthoList 2: A New comparative genomic analysis of human and Caenorhabditis elegans Genes. Genetics 2018; 210(2): 445-61.
[http://dx.doi.org/10.1534/genetics.118.301307] [PMID: 30120140]
[100]
Shaye DD, Greenwald I. OrthoList: a compendium of C. elegans genes with human orthologs. PLoS One 2011; 6(5): e20085.
[http://dx.doi.org/10.1371/journal.pone.0020085] [PMID: 21647448]
[101]
Xiong Y, Yu J. Modeling Parkinson’s Disease in Drosophila: What have we learned for dominant traits? Front Neurol 2018; 9: 228.
[http://dx.doi.org/10.3389/fneur.2018.00228] [PMID: 29686647]
[102]
Mizuno H, Fujikake N, Wada K, Nagai Y. α -Synuclein Transgenic Drosophila as a model of Parkinson’s disease and related synucleinopathies. Parkinsons Dis 2011; 2011: 1-7.
[http://dx.doi.org/10.4061/2011/212706] [PMID: 21209707]
[103]
Wang D, Tang B, Zhao G, et al. Dispensable role of Drosophila ortholog of LRRK2 kinase activity in survival of dopaminergic neurons. Mol Neurodegener 2008; 3(1): 3.
[http://dx.doi.org/10.1186/1750-1326-3-3] [PMID: 18257932]
[104]
Lee SB, Kim W, Lee S, Chung J. Loss of LRRK2/PARK8 induces degeneration of dopaminergic neurons in Drosophila. Biochem Biophys Res Commun 2007; 358(2): 534-9.
[http://dx.doi.org/10.1016/j.bbrc.2007.04.156] [PMID: 17498648]
[105]
Muñoz-Soriano V, Paricio N. Drosophila models of Parkinson’s disease: Discovering relevant pathways and novel therapeutic strategies. Parkinsons Dis 2011; 2011: 1-14.
[http://dx.doi.org/10.4061/2011/520640] [PMID: 21512585]
[106]
Falkenburger BH, Saridaki T, Dinter E. Cellular models for Parkinson’s disease. J Neurochem 2016; 139 (Suppl. 1): 121-30.
[http://dx.doi.org/10.1111/jnc.13618] [PMID: 27091001]
[107]
Xicoy H, Wieringa B, Martens GJM. The SH-SY5Y cell line in Parkinson’s disease research: A systematic review. Mol Neurodegener 2017; 12(1): 10.
[http://dx.doi.org/10.1186/s13024-017-0149-0] [PMID: 28118852]
[108]
Krishna A, Biryukov M, Trefois C, et al. Systems genomics evaluation of the SH-SY5Y neuroblastoma cell line as a model for Parkinson’s disease. BMC Genomics 2014; 15(1): 1154.
[http://dx.doi.org/10.1186/1471-2164-15-1154] [PMID: 25528190]
[109]
Gillies GE, Pienaar IS, Vohra S, Qamhawi Z. Sex differences in Parkinson’s disease. Front Neuroendocrinol 2014; 35(3): 370-84.
[http://dx.doi.org/10.1016/j.yfrne.2014.02.002] [PMID: 24607323]
[110]
Murray HE, Pillai AV, McArthur SR, et al. Dose- and sex-dependent effects of the neurotoxin 6-hydroxydopamine on the nigrostriatal dopaminergic pathway of adult rats: differential actions of estrogen in males and females. Neuroscience 2003; 116(1): 213-22.
[http://dx.doi.org/10.1016/S0306-4522(02)00578-X] [PMID: 12535954]
[111]
Gillies GE, Murray HE, Dexter D, McArthur S. Sex dimorphisms in the neuroprotective effects of estrogen in an animal model of Parkinson’s disease. Pharmacol Biochem Behav 2004; 78(3): 513-22.
[http://dx.doi.org/10.1016/j.pbb.2004.04.022] [PMID: 15251260]
[112]
Baldereschi M, Di Carlo A, Rocca WA, et al. Parkinson’s disease and parkinsonism in a longitudinal study: Two-fold higher incidence in men. Neurology 2000; 55(9): 1358-63.
[http://dx.doi.org/10.1212/WNL.55.9.1358] [PMID: 11087781]
[113]
Rocca WA, Bower JH, Maraganore DM, et al. Increased risk of parkinsonism in women who underwent oophorectomy before menopause. Neurology 2008; 70(3): 200-9.
[http://dx.doi.org/10.1212/01.wnl.0000280573.30975.6a] [PMID: 17761549]
[114]
Smith KM, Dahodwala N. Sex differences in Parkinson’s disease and other movement disorders. Exp Neurol 2014; 259: 44-56.
[http://dx.doi.org/10.1016/j.expneurol.2014.03.010] [PMID: 24681088]
[115]
Lubomski M, Louise Rushworth R, Lee W, Bertram KL, Williams DR. Sex differences in Parkinson’s disease. J Clin Neurosci 2014; 21(9): 1503-6.
[http://dx.doi.org/10.1016/j.jocn.2013.12.016] [PMID: 24767694]
[116]
Bourque M, Dluzen DE, Di Paolo T. Male/female differences in neuroprotection and neuromodulation of brain dopamine. Front Endocrinol 2011; 2: 35.
[http://dx.doi.org/10.3389/fendo.2011.00035] [PMID: 22654803]
[117]
Karalija N, Papenberg G, Wåhlin A, et al. Sex differences in dopamine integrity and brain structure among healthy older adults: Relationships to episodic memory. Neurobiol Aging 2021; 105: 272-9.
[http://dx.doi.org/10.1016/j.neurobiolaging.2021.04.022] [PMID: 34134056]
[118]
Weber CM, Clyne AM. Sex differences in the blood–brain barrier and neurodegenerative diseases. APL Bioeng 2021; 5(1): 011509.
[http://dx.doi.org/10.1063/5.0035610] [PMID: 33758788]
[119]
Rabiei Z, Solati K, Amini-Khoei H. Phytotherapy in treatment of Parkinson’s disease: A review. Pharm Biol 2019; 57(1): 355-62.
[http://dx.doi.org/10.1080/13880209.2019.1618344] [PMID: 31141426]
[120]
Vaidya B, Sharma SS. Transient receptor potential channels as an emerging target for the treatment of Parkinson’s disease: An insight into role of pharmacological interventions. Front Cell Dev Biol 2020; 8: 584513.
[http://dx.doi.org/10.3389/fcell.2020.584513] [PMID: 33330461]
[121]
Vaidya B, Dhamija K, Guru P, Sharma SS. Parkinson’s disease in women: Mechanisms underlying sex differences. Eur J Pharmacol 2021; 895: 173862.
[http://dx.doi.org/10.1016/j.ejphar.2021.173862] [PMID: 33450279]
[122]
Kin K, Yasuhara T, Kameda M, Date I. Animal Models for Parkinson’s Disease Research: Trends in the 2000s. Int J Mol Sci 2019; 20(21): 5402.
[http://dx.doi.org/10.3390/ijms20215402] [PMID: 31671557]
[123]
Rascol O. “Disease-modification” trials in Parkinson disease: Target populations, endpoints and study design. Neurology 2009; 72(7): S51-8.
[http://dx.doi.org/10.1212/WNL.0b013e318199049e] [PMID: 19221315]
[124]
Antony PMA, Diederich NJ, Balling R. Parkinson’s disease mouse models in translational research. Mamm Genome 2011; 22(7-8): 401-19.
[http://dx.doi.org/10.1007/s00335-011-9330-x] [PMID: 21559878]
[125]
Gamber KM. Animal Models of Parkinson’s Disease: New models provide greater translational and predictive value. Biotechniques 2016; 61(4): 210-1.
[http://dx.doi.org/10.2144/000114463]
[126]
Asakawa T, Fang H, Sugiyama K, et al. Animal behavioral assessments in current research of Parkinson’s disease. Neurosci Biobehav Rev 2016; 65: 63-94.
[http://dx.doi.org/10.1016/j.neubiorev.2016.03.016] [PMID: 27026638]
[127]
Prasad EM, Hung SY. Behavioral tests in neurotoxin-induced animal models of parkinson’s disease. Antioxidants 2020; 9(10): 1007.
[http://dx.doi.org/10.3390/antiox9101007] [PMID: 33081318]
[128]
Mikkelsen M. MØller A, Jensen LH, Pedersen A, Harajehi JB, Pakkenberg H. MPTP-induced Parkinsonism in minipigs: A behavioral, biochemical, and histological study. Neurotoxicol Teratol 1999; 21(2): 169-75.
[http://dx.doi.org/10.1016/S0892-0362(98)00037-3] [PMID: 10192277]
[129]
Moon JH, Kim JH, Im HJ, et al. Proposed motor scoring system in a porcine model of Parkinson’s disease induced by chronic subcutaneous injection of MPTP. Exp Neurobiol 2014; 23(3): 258-65.
[http://dx.doi.org/10.5607/en.2014.23.3.258] [PMID: 25258574]
[130]
Schneider JS, Yuwiler A, Markham CH. Production of a Parkinson-like syndrome in the cat with N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): Behavior, histology, and biochemistry. Exp Neurol 1986; 91(2): 293-307.
[http://dx.doi.org/10.1016/0014-4886(86)90070-1] [PMID: 3484707]
[131]
Schneider JS, Rothblat DS. Neurochemical evaluation of the striatum in symptomatic and recovered mptp-treated cats. Neuroscience 1991; 44(2): 421-9.
[http://dx.doi.org/10.1016/0306-4522(91)90066-W] [PMID: 1944893]
[132]
Choi CB, Kim SY, Lee SH, et al. Assessment of metabolic changes in the striatum of a MPTP-intoxicated canine model: In vivo 1H-MRS study of an animal model for Parkinson’s disease. Magn Reson Imaging 2011; 29(1): 32-9.
[http://dx.doi.org/10.1016/j.mri.2010.03.043] [PMID: 20980117]
[133]
Feany MB, Bender WW. A Drosophila model of Parkinson’s disease. Nature 2000; 404(6776): 394-8.
[http://dx.doi.org/10.1038/35006074] [PMID: 10746727]
[134]
Shaltiel-Karyo R, Davidi D, Menuchin Y, et al. A novel, sensitive assay for behavioral defects in Parkinson’s disease model Drosophila. Parkinsons Dis 2012; 2012: 1-6.
[http://dx.doi.org/10.1155/2012/697564] [PMID: 22888468]
[135]
Zhu J, Vereshchagina N, Sreekumar V, et al. Knockdown of Hsc70-5/mortalin induces loss of synaptic mitochondria in a Drosophila Parkinson’s disease model. PLoS One 2013; 8(12): e83714.
[http://dx.doi.org/10.1371/journal.pone.0083714] [PMID: 24386261]
[136]
Pesah Y, Pham T, Burgess H, et al. Drosophila parkin mutants have decreased mass and cell size and increased sensitivity to oxygen radical stress. Development 2004; 131(9): 2183-94.
[http://dx.doi.org/10.1242/dev.01095] [PMID: 15073152]
[137]
Braungart E, Gerlach M, Riederer P, Baumeister R, Hoener MC. Caenorhabditis elegans MPP+ model of Parkinson’s disease for high-throughput drug screenings. Neurodegener Dis 2004; 1(4-5): 175-83.
[http://dx.doi.org/10.1159/000080983] [PMID: 16908987]
[138]
Yao C, El Khoury R, Wang W, et al. LRRK2-mediated neurodegeneration and dysfunction of dopaminergic neurons in a Caenorhabditis elegans model of Parkinson’s disease. Neurobiol Dis 2010; 40(1): 73-81.
[http://dx.doi.org/10.1016/j.nbd.2010.04.002] [PMID: 20382224]
[139]
Pollard HB, Dhariwal K, Adeyemo OM, et al. A parkinsonian syndrome induced in the goldfish by the neurotoxin MPTP. FASEB J 1992; 6(12): 3108-16.
[http://dx.doi.org/10.1096/fasebj.6.12.1521741] [PMID: 1521741]
[140]
Bretaud S, Lee S, Guo S. Sensitivity of zebrafish to environmental toxins implicated in Parkinson’s disease. Neurotoxicol Teratol 2004; 26(6): 857-64.
[http://dx.doi.org/10.1016/j.ntt.2004.06.014] [PMID: 15451049]
[141]
Clarke CE, Sambrook MA, Mitchell IJ, Crossman AR. Levodopa-induced dyskinesia and response fluctuations in primates rendered parkinsonian with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). J Neurol Sci 1987; 78(3): 273-80.
[http://dx.doi.org/10.1016/0022-510X(87)90041-4] [PMID: 3495642]
[142]
Gomez-Mancilla B, Bédard PJ. Effect of nondopaminergic drugs on L-dopa-induced dyskinesias in MPTP-treated monkeys. Clin Neuropharmacol 1993; 16(5): 418-27.
[http://dx.doi.org/10.1097/00002826-199310000-00004] [PMID: 8106150]
[143]
Benazzouz A, Boraud T, Dubédat P, Boireau A, Stutzmann JM, Gross C. Riluzole prevents MPTP-induced parkinsonism in the rhesus monkey: A pilot study. Eur J Pharmacol 1995; 284(3): 299-307.
[http://dx.doi.org/10.1016/0014-2999(95)00362-O] [PMID: 8666012]
[144]
Papa SM, Chase TN. Levodopa-induced dyskinesias improved by a glutamate antagonist in parkinsonia monkeys. Ann Neurol 1996; 39(5): 574-8.
[http://dx.doi.org/10.1002/ana.410390505] [PMID: 8619541]
[145]
Imbert C, Bezard E, Guitraud S, Boraud T, Gross CE. Comparison of eight clinical rating scales used for the assessment of MPTP-induced parkinsonism in the Macaque monkey. J Neurosci Methods 2000; 96(1): 71-6.
[http://dx.doi.org/10.1016/S0165-0270(99)00184-3] [PMID: 10704673]
[146]
Visanji NP, Fox SH, Johnston TH, Millan MJ, Brotchie JM. Alpha1-adrenoceptors mediate dihydroxyphenylalanine-induced activity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned macaques. J Pharmacol Exp Ther 2009; 328(1): 276-83.
[http://dx.doi.org/10.1124/jpet.108.144097] [PMID: 18955589]
[147]
Bergman H, Wichmann T, DeLong MR. Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 1990; 249(4975): 1436-8.
[http://dx.doi.org/10.1126/science.2402638] [PMID: 2402638]
[148]
Kurlan R, Kim MH, Gash DM. Oral levodopa dose-response study in MPTP-induced hemiparkinsonian monkeys: Assessment with a new rating scale for monkey parkinsonism. Mov Disord 1991; 6(2): 111-8.
[http://dx.doi.org/10.1002/mds.870060205] [PMID: 2057003]
[149]
Smith RD, Zhang Z, Kurlan R, McDermott M, Gash DM. Developing a stable bilateral model of parkinsonism in rhesus monkeys. Neuroscience 1993; 52(1): 7-16.
[http://dx.doi.org/10.1016/0306-4522(93)90176-G] [PMID: 8433810]
[150]
Taylor JR, Elsworth JD, Roth RH, Sladek JR Jr, Redmond DE Jr. Severe long-term 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in the vervet monkey (Cercopithecus aethiops sabaeus). Neuroscience 1997; 81(3): 745-55.
[http://dx.doi.org/10.1016/S0306-4522(97)00214-5] [PMID: 9316026]
[151]
Schneider JS, Gonczi H, Decamp E. Development of levodopa-induced dyskinesias in parkinsonian monkeys may depend upon rate of symptom onset and/or duration of symptoms. Brain Res 2003; 990(1-2): 38-44.
[http://dx.doi.org/10.1016/S0006-8993(03)03382-1] [PMID: 14568327]
[152]
Kordower JH, Herzog CD, Dass B, et al. Delivery of neurturin by AAV2 (CERE-120)-mediated gene transfer provides structural and functional neuroprotection and neurorestoration in MPTP-treated monkeys. Ann Neurol 2006; 60(6): 706-15.
[http://dx.doi.org/10.1002/ana.21032] [PMID: 17192932]
[153]
Koprich JB, Fox SH, Johnston TH, et al. The selective mu-opioid receptor antagonist adl5510 reduces levodopa-induced dyskinesia without affecting antiparkinsonian action in mptp-lesioned macaque model of Parkinson’s disease. Mov Disord 2011; 26(7): 1225-33.
[http://dx.doi.org/10.1002/mds.23631] [PMID: 21465551]
[154]
Campos-Romo A, Ojeda-Flores R, Moreno-Briseño P, et al. Behavioral improvement in MPTP-treated nonhuman primates in the HALLWAY task after transfer of TH cDNA to host astrocytes. Acta Neurobiol Exp 2012; 72(2): 166-76.
[PMID: 22810218]
[155]
Gash DM, Zhang Z, Umberger G, et al. An automated movement assessment panel for upper limb motor functions in rhesus monkeys and humans. J Neurosci Methods 1999; 89(2): 111-7.
[http://dx.doi.org/10.1016/S0165-0270(99)00051-5] [PMID: 10491941]
[156]
Taylor JR, Elsworth JD, Roth RH, Sladek JR Jr, Redmond DE Jr. Cognitive and motor deficits in the acquisition of an object retrieval/detour task in MPTP-treated monkeys. Brain 1990; 113(3): 617-37.
[http://dx.doi.org/10.1093/brain/113.3.617] [PMID: 2364263]
[157]
Löschmann PA, Smith LA, Lange KW, Jähnig P, Jenner P, Marsden CD. Motor activity following the administration of selective D-1 and D-2 dopaminergic drugs to MPTP-treated common marmosets. Psychopharmacology 1992; 109(1-2): 49-56.
[http://dx.doi.org/10.1007/BF02245479] [PMID: 1365671]
[158]
Iravani MM, Jackson MJ, Kuoppamäki M, Smith LA, Jenner P. 3,4-methylenedioxymethamphetamine (ecstasy) inhibits dyskinesia expression and normalizes motor activity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated primates. J Neurosci 2003; 23(27): 9107-15.
[http://dx.doi.org/10.1523/JNEUROSCI.23-27-09107.2003] [PMID: 14534244]
[159]
Philippens IHCHM, Melchers BPC, Roeling TAP, Bruijnzeel PLB. Behavioral test systems in marmoset monkeys. Behav Res Methods Instrum Comput 2000; 32(1): 173-9.
[http://dx.doi.org/10.3758/BF03200799] [PMID: 10758675]
[160]
Verhave PS, Vanwersch RAP, van Helden HPM, Smit AB, Philippens IHCHM. Two new test methods to quantify motor deficits in a marmoset model for Parkinson’s disease. Behav Brain Res 2009; 200(1): 214-9.
[http://dx.doi.org/10.1016/j.bbr.2009.01.022] [PMID: 19378465]
[161]
Marshall JWB, Baker HF, Ridley RM. Contralesional neglect in monkeys with small unilateral parietal cortical ablations. Behav Brain Res 2002; 136(1): 257-65.
[http://dx.doi.org/10.1016/S0166-4328(02)00138-9] [PMID: 12385812]
[162]
Coleman K, Pierre PJ. Assessing anxiety in nonhuman primates. ILAR J 2014; 55(2): 333-46.
[http://dx.doi.org/10.1093/ilar/ilu019] [PMID: 25225310]
[163]
van Vliet SAM, Vanwersch RAP, Jongsma MJ, van der Gugten J, Olivier B, Philippens IHCHM. Neuroprotective effects of modafinil in a marmoset Parkinson model: Behavioral and neurochemical aspects. Behav Pharmacol 2006; 17(5-6): 453-62.
[http://dx.doi.org/10.1097/00008877-200609000-00011] [PMID: 16940766]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy